JPS62270249A - Production of mold for continuous casting - Google Patents

Production of mold for continuous casting

Info

Publication number
JPS62270249A
JPS62270249A JP11335486A JP11335486A JPS62270249A JP S62270249 A JPS62270249 A JP S62270249A JP 11335486 A JP11335486 A JP 11335486A JP 11335486 A JP11335486 A JP 11335486A JP S62270249 A JPS62270249 A JP S62270249A
Authority
JP
Japan
Prior art keywords
alloy
mold
continuous casting
base material
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11335486A
Other languages
Japanese (ja)
Inventor
Tetsuo Uchibayashi
内林 哲夫
Katsuyuki Yamamura
勝行 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUJIKI KOSAN KK
Original Assignee
FUJIKI KOSAN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUJIKI KOSAN KK filed Critical FUJIKI KOSAN KK
Priority to JP11335486A priority Critical patent/JPS62270249A/en
Publication of JPS62270249A publication Critical patent/JPS62270249A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/059Mould materials or platings

Abstract

PURPOSE:To obtain a mold for continuous casting having large strength for base metal and excellent wear resistance at the inner face by forming the mold for high speed continuous casting by Cu-Be alloy, plating Ni-B alloy on its inner surface and further thermal-spraying and heat-treating Ni-base autogeneous alloy. CONSTITUTION:The mold for continuous casting is produced by Cu-Be alloy containing 0.2-2.75wt% Be and Ni-B alloy containing 1.5wt% B is placed at 15mum thickness in the inner face of the mold. Next, by plasma thermal- spraying, the thermal-spraying layer of Ni-base autogeneous alloy composing of, by wt%, 17% Cr, 3.5% B, 3.0% Si, 0.7% c, 3% Fe, 0.5% Co, remaining part of Ni is formed. Further after keeping for about one hour in a heating furnace at about 1,000 deg.C, the solution heat treatment is executed by rapid water cooling, and then the ageing treatment is executed at about 450 deg.C for three hours.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〈産業上の利用分野〉 本発明は連続鋳造用鋳型の製造方法に関するものである
Detailed Description of the Invention 3. Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method of manufacturing a mold for continuous casting.

〈従来の技術及びその問題点〉 連続鋳造用鋳型は、抜熱性と内表面の耐摩耗性あるいは
焼付防止性等が要求され、一般には銅あるいは調合金製
の母材の内表面にNiやCrの表面コーティング層が設
けられた形態のものが用いられて来た。しかるに連続鋳
造がますます高速で行なわれろ様になり表面の耐摩耗性
及び鋳型母材の強度もより大なものが求められ、例えば
特公昭58−1978号公報で示される様に耐摩耗性を
保有させ、また鋳型母材としては強度が大なる析出硬化
型銅合金を、又表面コーティング層としては溶射槽を用
いる様に変化して来た。
<Prior art and its problems> Molds for continuous casting are required to have heat removal properties and inner surface wear resistance or anti-seizure properties, and generally the inner surface of the base material made of copper or prepared alloy is coated with Ni or Cr. Types with a surface coating layer have been used. However, as continuous casting is being performed at increasingly high speeds, greater wear resistance on the surface and greater strength of the mold base material are required. In addition, the mold base material has changed to a precipitation hardening type copper alloy with high strength, and the surface coating layer has changed to the use of a thermal spray tank.

この析出硬化型鋼合金とし°Cは、各種の合金が用いら
れているが、その中で強度、加工性等の面で最も好まし
いと考えられろCu−Be合金の場合に於いて、それに
直接溶射槽を形成せしめると溶射層の密着力が小さく、
使用中に剥離をするという事が判明した。即ち、Cu−
Be合金は、Cuに対し通常02〜275重量%のBe
を含有せしめた合金で、時効処理によす微細なCuBe
が析出し、著しく強さ。
Various types of alloys are used for this precipitation hardening steel alloy, but in the case of Cu-Be alloy, which is considered to be the most preferable in terms of strength, workability, etc., direct thermal spraying is used. When a tank is formed, the adhesion of the sprayed layer is small,
It was discovered that it peeled off during use. That is, Cu-
Be alloy usually contains 02 to 275% by weight of Be based on Cu.
It is an alloy containing fine CuBe that undergoes aging treatment.
precipitates and becomes extremely strong.

硬さを増すという利点がある反面、Beの酸素との親和
力が著しく大である為に溶射工程中に鋳型母材表面即ち
溶射層との界面に酸化物が形成され、溶射層の密着が非
常に困難である。
Although it has the advantage of increasing hardness, since Be has a significantly high affinity with oxygen, oxides are formed on the surface of the mold base material, that is, at the interface with the sprayed layer during the thermal spraying process, resulting in very poor adhesion of the sprayed layer. It is difficult to

く問題点を解決する為の手段〉 本発明は上記問題点を解決する為に、溶射工程中に酸化
され難く、シかも鋳型母材及び溶射層のいずれとも互に
拡散結合をし易いNi−B合金をメッキ層として介在せ
しめようとするものであり、その要旨は析出硬化型のC
u−Be合金から成る鋳型母材の内表面の一部又は全部
に、Ni−B合金メッキ悠を施し、該Ni−B合金メッ
キ層の上面にNi基自溶性合金から成る溶射皮膜を施し
、次いで該溶射皮膜の溶融処理をした後あるいは同溶融
処理と同時に鋳型母材の溶体化処理をも行ない、その後
時効処理を行なうことを特徴とする連続鋳造用鋳型の製
造方法である。
Means for Solving the Problems> In order to solve the above problems, the present invention has developed Ni- The purpose is to interpose B alloy as a plating layer, and the gist is to use precipitation hardening type C.
Ni-B alloy plating is applied to part or all of the inner surface of the mold base material made of u-Be alloy, and a thermal sprayed coating made of Ni-based self-fusing alloy is applied to the upper surface of the Ni-B alloy plating layer, Next, after or simultaneously with the melting treatment of the thermal sprayed coating, the mold base material is also subjected to solution treatment, and then an aging treatment is performed.

なお本発明で鋳型母材として使用するCu−Be合金は
、Cuに対しBeを02〜06重量%含有する合金であ
り、通常は900±10℃で約1時間の加熱処理後の水
中焼入に引続き450±5℃で約3時間時効処理を行な
って用いるものである。メッキ層として用いる旧−B合
金は、Niに対しBが1〜2.5重量%含有、通常は1
.5重量%含有の合金を用い、このNi−8合金メツキ
層の厚さは5〜50μm1好ましくは5〜20μm位と
する、これは5μm以上なければNi−8合金メツキを
施す効果が発揮されないが、あまり厚くなり過ぎるとそ
の後に行なう溶融処理で乙のNI−Bす金メッキ槽を鋳
型母材及び溶射層の双方へ拡散させるのに長時間を要す
るからである。
The Cu-Be alloy used as the mold base material in the present invention is an alloy containing 02 to 06% by weight of Be relative to Cu, and is usually quenched in water after heat treatment at 900±10°C for about 1 hour. This is followed by aging treatment at 450±5° C. for about 3 hours before use. The old-B alloy used as the plating layer contains 1 to 2.5% by weight of B, usually 1 to 2.5% by weight, based on Ni.
.. Using an alloy containing 5% by weight, the thickness of this Ni-8 alloy plating layer is 5 to 50 μm, preferably 5 to 20 μm, although the effect of Ni-8 alloy plating will not be exhibited unless it is 5 μm or more. This is because if it becomes too thick, it will take a long time to diffuse the NI-B gold plating bath into both the mold base material and the sprayed layer in the subsequent melting process.

Ni−8合金メツキ層上に溶射するNi基自溶性合金は
、Cr15〜20重量%、 B3.O〜4.5重量%、
Si2.Q〜50重景%、 、C0,5〜1.1重量%
、 Fe5.0重量%以下。
The Ni-based self-fluxing alloy sprayed onto the Ni-8 alloy plating layer contains 15 to 20% by weight of Cr, B3. O ~ 4.5% by weight,
Si2. Q~50 weight%, C0.5~1.1% by weight
, Fe5.0% by weight or less.

C010重量%以下、残部がNiから成る如き合金を用
い、その溶射厚さは01〜1.0mmとする。
An alloy consisting of 10% by weight or less of CO and the balance of Ni is used, and the spraying thickness is set to 0.1 to 1.0 mm.

この溶射后形成後の■溶融処理は、通常980〜110
0℃で30分間前後行なう、この溶融処理温度域は上述
したCu−Be合金の溶体化処理の為の温度より若干高
めであるが、表面石としての溶射槽を上記980〜11
00℃に加熱すれば母材とiノてのCu −B e合金
部分は丁度上記溶体化処理温度範囲位になるので一度の
加熱処理で済ませる事も可能である。勿論との溶射層の
再溶融の為の加熱処理と、溶体化処理とを2段階に行な
いより厳しく温度制御をする事があるのは当然である。
■ Melting treatment after this thermal spraying is usually 980 to 110
The temperature range of this melting treatment, which is carried out at 0°C for about 30 minutes, is slightly higher than the temperature for the solution treatment of the Cu-Be alloy mentioned above, but the thermal spraying bath as the surface stone is used in the above 980~11.
If heated to 00° C., the base material and the Cu-Be alloy portion will be within the above-mentioned solution treatment temperature range, so it is possible to complete the heat treatment only once. Of course, the heat treatment for remelting the sprayed layer and the solution treatment may be performed in two stages to control the temperature more strictly.

〈実施例及び作用〉 以下実施例を示し乍ら、本発明方法を詳述する。<Examples and effects> The method of the present invention will be described in detail below with reference to Examples.

05重量%Be含有のCu−Be合金製の鋳型本体の内
表面の全域に、厚さ15μmの15重量%B含有のに1
−8合金メツキ槽を形成し、次いてプラズマ溶射法を用
い、Ni基自溶性合金溶射槽をその厚さが約0、8mm
となる様に装着した。用いた自溶性合金の組成は、Cr
17.0重量%、B35重量%、’Si3.0重量%、
007重量%、Fe3.0重量%、Co0.5重量%、
残部Niである。
A mold body made of a Cu-Be alloy containing 0.05 wt. % Be was coated with 15 wt.
-8 alloy plating bath is formed, and then a Ni-based self-fluxing alloy coating bath is formed with a thickness of about 0.8 mm using plasma spraying method.
It was installed so that The composition of the self-fusing alloy used was Cr
17.0% by weight, B35% by weight, 'Si3.0% by weight,
007% by weight, Fe3.0% by weight, Co0.5% by weight,
The remainder is Ni.

次に約1000℃に保持した加熱炉内へ装入し、約1時
間保持する事で、溶射層の再溶融封孔処理と共に鋳型母
材の溶体化処理をも行ない、加熱炉より取出し、直ちに
油中急冷をなし、引続いて450±5℃に保持した加熱
炉内へ入れ3時間時効処理を行なった。
Next, it is charged into a heating furnace maintained at approximately 1000°C and held for approximately 1 hour to perform remelting and sealing of the sprayed layer as well as solution treatment of the mold base material. The material was rapidly cooled in oil, and then placed in a heating furnace maintained at 450±5° C. for aging treatment for 3 hours.

この様にして得た連続鋳造用鋳型につき、鋳型母材とそ
の内表面に施されたメッキ層、溶射層との接合部分を顕
微鏡観察した結果が第1図に示す写真(倍率320倍)
であり、この写・真からは下部の鋳型母材層(1)及び
上部の溶射層(2)との区別は明確であるが、その中間
に位置するメッキ層は殆/しどそれ自体として識別し難
く、この部分で活発な拡散が進行した事が判る。これは
メッキ層であろNi−B合金の融点が低く、シかもこの
メッキ層の成分は、Ni基出自溶性合金成分と類似し、
かっB(よ非常に拡散し易い元素である為に活発な拡散
現象が起こったものと考えられる。なお剥離試験による
結果は、溶射層と鋳型母材との間で破断が起こり、密着
性は30kg/mm2であった。
The photograph in Figure 1 (320x magnification) shows the result of microscopic observation of the bonded area between the mold base material, the plating layer applied to its inner surface, and the thermal sprayed layer for the continuous casting mold obtained in this way.
From this photograph, it is clear to distinguish between the lower mold base material layer (1) and the upper sprayed layer (2), but the plating layer located in between is almost/as it is. It is difficult to distinguish, and it can be seen that active diffusion has progressed in this area. This may be because the melting point of the Ni-B alloy is low, even if it is a plating layer, and the components of this plating layer are similar to those of the Ni-based self-fusing alloy.
It is thought that an active diffusion phenomenon occurred because it is an element that diffuses very easily.The results of the peel test showed that rupture occurred between the sprayed layer and the mold base material, and the adhesion was poor. It was 30 kg/mm2.

なお比較の為の脱酸銅製板材の表面に、直接上記本発明
の実施例で用いたのと同組成のNi基自溶性さ金を、同
条件で同し厚さに溶射し、中性ガス炎を用いその溶射層
が980〜1100℃となる如く■溶融処理を行なった
試料について、その溶射層の密着力を測定した結果は1
8kg/mm2であった。この脱酸銅に対してM接Ni
基自溶性合金溶射槽を施した物は現状としても十分な耐
久性を持って吏用されている鋳型であるので上記本発明
方法による物の30kg/mm”の密着力がいかに大で
あるかが判る。
For comparison, a Ni-based self-fusing metal with the same composition as that used in the above-mentioned embodiment of the present invention was directly sprayed on the surface of a deoxidized copper plate material under the same conditions and to the same thickness. The results of measuring the adhesion of the sprayed layer on samples that were melted using flame so that the temperature of the sprayed layer was 980-1100℃ were 1.
It was 8 kg/mm2. M contact Ni to this deoxidized copper
The molds that have been treated with a base self-fusing alloy thermal spraying bath have sufficient durability and are used in the current situation, so the adhesion of 30 kg/mm" for the molds made by the above method of the present invention is significant. I understand.

次に第2図に示すのは、上記本発明の実施例方法でのN
i−B合金メッキ槽を、Niメッキ層に変え、他は上記
実施例と全く同様にして得た連続鋳造用鋳型の顕Wi鏡
写真(倍率320倍)であるが、この様にNiメッキ槽
を用いた場合には、下部の鋳型母材層(1′)と上部の
溶射! (2′)との間に明瞭にNiメッキ層(3′)
が残存し、この部分に於ける拡散が十分にはなされてい
ない事が判る。
Next, FIG. 2 shows the N
This is a micrograph (320x magnification) of a continuous casting mold obtained in the same manner as in the above example except that the i-B alloy plating tank was replaced with a Ni plating layer. When using the lower mold base material layer (1') and the upper layer! There is a clear Ni plating layer (3') between (2') and (2').
remains, indicating that the diffusion in this area is not sufficient.

なお上記した本発明の実施例では、鋳型母材の内表面の
全域に同一厚さでNi−B合金メッキ層及びNi基自溶
性合金溶射槽を形成したが、連続鋳造用鋳型がその使用
中に受ける負荷を考慮し、鋳型下方部へ行くに従ってそ
れらメッキ層及び溶射層、特に溶射層の厚みを増大せし
める、又+、1鋳型上方部は何らコーティング肩を施さ
ず下半部のみに施すという様な事は従来からなされてい
る様に本発明にあっても採用する事はある。同様に鋳型
使用初期の対スプラッシュ対策として、最外表面に薄く
クロム唐を設ける場合もある。
In the above embodiments of the present invention, the Ni-B alloy plating layer and the Ni-based self-fluxing alloy spray tank were formed with the same thickness over the entire inner surface of the mold base material. Considering the load applied to the mold, the thickness of the plating layer and the sprayed layer, especially the sprayed layer, increases as you move toward the lower part of the mold, and +1.No coating shoulder is applied to the upper part of the mold, and only the lower half is coated. Similar methods may be adopted in the present invention, as they have been conventionally done. Similarly, a thin layer of chrome is sometimes provided on the outermost surface of the mold to prevent splashing during the initial use of the mold.

〈発明の効采〉 以上述へた来た如く本発明よれば、鋳型母材としては、
強度に富むCu−Be合金を用いているので全体として
の強度は十分でその鋳型母材上に融点が低く、層形成後
の熱処理で鋳型母材及び溶射層の双方共に拡散性が大な
るNi−B合金メッキ槽を形成した後に、その上面に形
成する溶射層の密着力を30kg/mm”にまで高め、
Cu−Be合金にNiメッキ槽を形成した鋳型に比べそ
の拡散は大きく向上し、それだけ耐寿命性に富む鋳型と
なす事が出来るものである。
<Effects of the Invention> As described above, according to the present invention, as a mold base material,
Since a Cu-Be alloy with high strength is used, the overall strength is sufficient, and Ni, which has a low melting point and has a high diffusivity, is applied to both the mold base material and the thermal spray layer during the heat treatment after layer formation. - After forming the B alloy plating bath, the adhesion of the sprayed layer formed on the top surface is increased to 30 kg/mm'',
Compared to a mold in which a Ni plating bath is formed in a Cu-Be alloy, the diffusion is greatly improved, and the mold can have a longer lifespan.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例で得た鋳型の断面顕微鏡組織写真
、第2図は比較例としての鋳型の断面顕微鏡組織写真を
示し、倍率は共に320倍てある。 第1図中、  (1)鋳型母材層 (2)溶射層 952図中、  (X′)鋳型母材層 (2’)、溶射層 (3′)Niメッキ層 第 l 図 ※              〆   ++へ〜  
イI一7/′ 2溶す1ij 1vJ型母材層 2′制御寸舅 3′N】メッキ、1 1′刀型母材騙
FIG. 1 shows a cross-sectional microscopic structure photograph of a mold obtained in an example of the present invention, and FIG. 2 shows a cross-sectional microscopic structure photograph of a mold as a comparative example, both at a magnification of 320 times. In Figure 1, (1) Mold base material layer (2) Thermal sprayed layer 952 In the diagram, (X') Mold base material layer (2'), Thermal sprayed layer (3') Ni plating layer Figure l * Go to ++ ~
I17/' 2 melt 1ij 1vJ type base material layer 2' control dimension 3'N] plating, 1 1' sword type base material

Claims (1)

【特許請求の範囲】[Claims] 1、析出硬化型のCu−Be合金から成る鋳型母材の内
表面の一部又は全部に、Ni−B合金メッキ槽を施し、
該Ni−B合金メッキ層の上面にNi基自溶性合金から
成る溶射皮膜を施し、次いで該溶射皮膜の溶融処理をし
た後あるいは同溶融処理と同時に鋳型母材の溶体化処理
をも行ない、その後時効処理を行なうことを特徴とする
連続鋳造用鋳型の製造方法。
1. Applying a Ni-B alloy plating bath to part or all of the inner surface of the mold base material made of precipitation hardening type Cu-Be alloy,
A thermal spray coating made of a Ni-based self-fluxing alloy is applied to the upper surface of the Ni-B alloy plating layer, and then, after the thermal spray coating is melted or at the same time as the melting treatment, the mold base material is also subjected to solution treatment, and then A method for manufacturing a continuous casting mold, characterized by performing an aging treatment.
JP11335486A 1986-05-17 1986-05-17 Production of mold for continuous casting Pending JPS62270249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11335486A JPS62270249A (en) 1986-05-17 1986-05-17 Production of mold for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11335486A JPS62270249A (en) 1986-05-17 1986-05-17 Production of mold for continuous casting

Publications (1)

Publication Number Publication Date
JPS62270249A true JPS62270249A (en) 1987-11-24

Family

ID=14610142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11335486A Pending JPS62270249A (en) 1986-05-17 1986-05-17 Production of mold for continuous casting

Country Status (1)

Country Link
JP (1) JPS62270249A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990000945A1 (en) * 1988-07-22 1990-02-08 Satosen Co., Ltd. Mold for continuously casting steel
US5230380A (en) * 1988-07-22 1993-07-27 Satosen Co., Ltd. Molds for continuous casting of steel
EP0924010A1 (en) * 1997-12-17 1999-06-23 KM Europa Metal Aktiengesellschaft Mould and method of production of a mould
JP2002356756A (en) * 2001-05-31 2002-12-13 Nippon Steel Corp Method for manufacturing high-strength copper alloy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5929342A (en) * 1982-08-10 1984-02-16 Matsushita Electronics Corp Fluorescent lamp
JPS5976645A (en) * 1982-10-21 1984-05-01 Mishima Kosan Co Ltd Production of mold for continuous casting

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5929342A (en) * 1982-08-10 1984-02-16 Matsushita Electronics Corp Fluorescent lamp
JPS5976645A (en) * 1982-10-21 1984-05-01 Mishima Kosan Co Ltd Production of mold for continuous casting

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990000945A1 (en) * 1988-07-22 1990-02-08 Satosen Co., Ltd. Mold for continuously casting steel
US5230380A (en) * 1988-07-22 1993-07-27 Satosen Co., Ltd. Molds for continuous casting of steel
EP0924010A1 (en) * 1997-12-17 1999-06-23 KM Europa Metal Aktiengesellschaft Mould and method of production of a mould
JP2002356756A (en) * 2001-05-31 2002-12-13 Nippon Steel Corp Method for manufacturing high-strength copper alloy

Similar Documents

Publication Publication Date Title
JP6014681B2 (en) Hot-dip galvanized steel sheet with excellent cryogenic bonding properties and manufacturing method thereof
CN107299306B (en) A kind of method of medium managese steel hot-dip
US3945423A (en) Method for the manufacture of a compound casting
JPS62270249A (en) Production of mold for continuous casting
JP3608546B2 (en) Mold for casting and manufacturing method thereof
JPS6335762A (en) Manufacture of continuous casting mold
JPS6039453B2 (en) Manufacturing method of continuous casting mold
JP2949443B2 (en) Method for forming molten metal corrosion resistant film
CN107236879A (en) Zirconium is strontium compound microalloyed and the magnesium alloy chemical Al-Si-Cu-based cast aluminium alloy gold of high-hardness corrosion-resistant and preparation method
JPH02125833A (en) Immersing member in galvanizing bath and its manufacture
JPS6115782B2 (en)
JPS5895850A (en) Copper alloy for lead frame of integrated circuit
JP2000064060A (en) Member for nonferrous molten metal
JPS58174566A (en) Surface treatment of cast metal
JPS63213630A (en) Corrosion resistant die casting zn alloy for wristwatch case
JPS58212840A (en) Casting mold for continuous casting
JPH0953187A (en) Hot-dip aluminized steel sheet having excellent workability and corrosion resistance
JP4309999B2 (en) Composite member and manufacturing method thereof
Dong et al. A new hybrid process for surface modification by combining brush plating with nitrocarburizing
EP0453432B1 (en) A method of forming a zinc-aluminium coating on a steel strip
JP2017008390A (en) Plated steel of high corrosion resistance, and manufacturing method thereof
JPH1161464A (en) Rustproofing of iron work
JPS61257484A (en) Aluminized steel sheet having superior corrosion and heat resistance
JPS62170466A (en) Formation of thermally sprayed heat resistant film on copper alloy as base material
TWI468238B (en) Casting mold and heat-treating method of the same