JPS61157719A - Air intake device of multicylinder engine - Google Patents

Air intake device of multicylinder engine

Info

Publication number
JPS61157719A
JPS61157719A JP59275490A JP27549084A JPS61157719A JP S61157719 A JPS61157719 A JP S61157719A JP 59275490 A JP59275490 A JP 59275490A JP 27549084 A JP27549084 A JP 27549084A JP S61157719 A JPS61157719 A JP S61157719A
Authority
JP
Japan
Prior art keywords
intake
passages
tank
passage
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59275490A
Other languages
Japanese (ja)
Other versions
JPH0353455B2 (en
Inventor
Fusatoshi Tanaka
房利 田中
Shuichi Nakatani
中谷 收一
Hideo Nakayama
中山 英夫
Hiroyuki Hanabusa
花房 宏行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP59275490A priority Critical patent/JPS61157719A/en
Publication of JPS61157719A publication Critical patent/JPS61157719A/en
Publication of JPH0353455B2 publication Critical patent/JPH0353455B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0247Plenum chambers; Resonance chambers or resonance pipes
    • F02B27/0252Multiple plenum chambers or plenum chambers having inner separation walls, e.g. comprising valves for the same group of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0205Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the charging effect
    • F02B27/0215Oscillating pipe charging, i.e. variable intake pipe length charging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To facilitate incorporation of a control valve to communicating passages while securing intake inertia effect by utilizing a portion of a tank to form independent air intake passages leading to cylinder and communicating paths of the passages in an integrated force and forming the portion of the tank in a separated form. CONSTITUTION:Lower stream ends of respective independent air intake passages 6 are opened to combustion chambers 5 of respective cylinders 4 through intake ports 7 and upper stream ends are communicated to a first volume chamber 8a of an air intake expansion chamber 8. Second passages 13 are branched from the way of the passages 6 and the other ends are communicated to a second volume chamber 8b of the expansion chamber 8, and respective second passages 13 are provided with control valves 14 opening and closing the passages 13. In this case, an intake system structure 16 consists of a tank unit 17 forming the chamber 8, integrated intake pipe units 18 and branched intake pipe units 19 respectively forming upper stream side portions 6a and lower stream side portions 6b of the passages 6, and a communicating pipe unit 20 forming the second passages 13 integrally, and it is divided into upper and lower portions at the position of a partitioning board 9.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、各気筒と吸気拡大室(タンク)とを互いに独
立した吸気通路で接続して、吸気の動的効果(吸気慣性
効果)により出力の向上を図るようにした多気筒エンジ
ンの吸気装置の改良に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention connects each cylinder and an intake expansion chamber (tank) through independent intake passages, thereby utilizing the dynamic effect of intake air (intake inertia effect). The present invention relates to an improvement of an intake system for a multi-cylinder engine designed to improve output.

(従来の技術) 従来から、エンジンの吸気装置において、吸気開始に伴
って生じる負圧波(負圧の圧力波)が吸気通路上流側の
大気または吸気拡大室への開口端で反射され正圧波(正
圧の圧力波)となって吸気ポート方向に戻されることを
利用し、上記正圧波が吸気弁の閉弁寸前に吸気ポートに
達して吸気を燃焼室に押し込むようにする。いわゆる吸
気の慣性効果によって吸気の充填効率を高めるようにす
ることは知られている。このような技術を用いようとす
る場合に、吸気通路の形状が一定であると、吸気通路に
生じる圧力波の撮動周期と吸気弁の開閉周期とがマツチ
ングして吸気慣性効果が商められるのは特定回転域に限
られる。
(Prior Art) Conventionally, in an engine intake system, a negative pressure wave (pressure wave of negative pressure) generated with the start of intake is reflected at the open end of the intake passage to the atmosphere or the intake expansion chamber on the upstream side of the intake passage, and a positive pressure wave ( Taking advantage of the fact that the positive pressure wave becomes a positive pressure wave and returns toward the intake port, the positive pressure wave reaches the intake port just before the intake valve closes and forces the intake air into the combustion chamber. It is known to increase the filling efficiency of the intake air by the so-called inertia effect of the intake air. When trying to use such technology, if the shape of the intake passage is constant, the imaging cycle of the pressure waves generated in the intake passage and the opening/closing cycle of the intake valve will match, resulting in an intake inertia effect. is limited to a specific rotation range.

このため、従来、特開昭56−115819号公報にみ
られるように、エンジンの回転数に応じて吸気通路の長
さ等を変えるようにし、例えば、各気筒別の吸気通路を
上流部で2叉に分岐させて長い通路と短い通路とを形成
し、これらの通路の上流端を吸気拡大室等に開口させる
とともに、短い通路に制御弁を設けて、高回転域でこの
制御弁を開くことにより吸気通路の有効長を短縮するよ
うにしく上記公報の第6図参照)、こうして低回転域と
高回転域とでそれぞれ吸気の慣性効果を烏めるようにし
た吸気装置が提案されている。
For this reason, conventionally, as seen in Japanese Patent Application Laid-Open No. 115819/1982, the length of the intake passage is changed depending on the engine speed. For example, the intake passage for each cylinder is divided into A long passage and a short passage are formed by branching, and the upstream ends of these passages are opened to an intake expansion chamber, etc., and a control valve is provided in the short passage, and this control valve is opened in a high rotation range. An intake system has been proposed in which the effective length of the intake passage is shortened (see Figure 6 of the above-mentioned publication), thereby reducing the inertia effect of intake air in the low-speed range and the high-speed range, respectively. .

(発明が解決しようとする問題点) ところで、エンジンおよびその吸気系を乗用車等のエン
ジンルーム内に搭載する場合、後方は車室前端面にて制
限され、上方はボンネットにて制限されるなど、限られ
たスペース内に納めなければならないというスペース上
の制約がある。
(Problems to be Solved by the Invention) By the way, when an engine and its intake system are mounted in the engine compartment of a passenger car, etc., the rear part is restricted by the front end of the passenger compartment, the upper part is restricted by the bonnet, etc. There is a space constraint that it must be accommodated within a limited space.

このため、上記提案例の如く吸気拡大室(タンク)と各
気筒とを互いに独立して接続する各独立吸気通路の途中
を上記吸気拡大室に連通ずる第2通路を設けるとともに
、該第2通路にエンジンの運転状態に応じて開閉する制
御弁を設けた多気筒エンジンの吸気装置において、上記
のスペース上の制約を解消すべく、上記各独立吸気通路
を吸気拡大室の周囲に該吸気拡大室の構成壁の一部を手
す用して一体的に形成するとともに、上記各第2通路を
吸気拡大室の一部と一体的に形成することにより、コン
パクト化を図るようにすることが考えられる。
Therefore, as in the above proposed example, a second passage is provided that communicates the middle of each independent intake passage that connects the intake expansion chamber (tank) and each cylinder independently with the intake expansion chamber, and the second passage In an intake system for a multi-cylinder engine, which is equipped with a control valve that opens and closes depending on the engine operating condition, in order to eliminate the above-mentioned space constraints, each of the independent intake passages is arranged around the intake expansion chamber. The idea is to make it more compact by integrally forming a part of the constituent wall for use as a handrail, and by integrally forming each of the second passages with a part of the intake expansion chamber. It will be done.

しかるに、この場合、lbIIgla弁を第2通路に組
付ける際、上述の如く吸気拡大室と各独立吸気通路およ
び各第2通路とが一体的に形成されていることから、制
御弁の組付けが不可能であり、分割面を設ける必要があ
る。
However, in this case, when assembling the lbIIgla valve to the second passage, since the intake expansion chamber, each independent intake passage, and each second passage are integrally formed as described above, it is difficult to assemble the control valve. This is not possible, and it is necessary to provide a dividing surface.

そこで、本発明はかかる点に鑑みてなされたものであり
、その目的とするところは、各独立吸気通路と制御弁を
備えた各第2通路とが一体的に形成された吸気拡大室(
タンク)に対してその適切な位置に分割面を設けること
により、低回転域と高回転域とで吸気慣性効果が得られ
る吸気系を限られたスペース内に納めるようコンパクト
化な図りながら、上記制御弁の組付は性を良好に確保す
、ることにある。
Therefore, the present invention has been made in view of these points, and its object is to provide an intake expansion chamber (in which each independent intake passage and each second passage provided with a control valve are integrally formed).
By providing a dividing surface at an appropriate position relative to the tank), the intake system, which provides an intake inertia effect in the low and high rotation ranges, can be compacted to fit within a limited space. The purpose of assembling the control valve is to ensure good performance.

(問題点を解決するための手段) 上記の目的を達成するため、本発明の解決手段は、タン
ク内部の少なくとも一つの空間と各気筒とを互いに独立
した気筒別の各独立吸気通路で接続するとともに、該各
独立吸気通路の途中をタンク内部の空間に連通する第2
通路を設け、該8第2通路にエンジンの運転状態に応じ
て開閉する制御弁を設けた多気筒エンジンの吸気装置を
対象とする。これに対し、上記各独立吸気通路を、タン
クの周囲に上記空間を構成するタンク構成壁の一部を利
用して一体的に形成する。また、上記各第2通路をタン
クの一部と一体的に形成する。そして、上記各第2通路
を含むタンクの一部とタンクの他の部分とをその長手方
向に沿った分割面で分割して形成する構成としたもので
ある。
(Means for solving the problem) In order to achieve the above object, the solving means of the present invention connects at least one space inside the tank and each cylinder through independent intake passages for each cylinder, which are independent from each other. In addition, a second air intake passage communicating with the space inside the tank is provided in the middle of each independent intake passage.
The present invention is directed to an intake system for a multi-cylinder engine in which a passage is provided, and a control valve that opens and closes in accordance with the operating state of the engine is provided in the eight second passages. On the other hand, each of the independent intake passages is integrally formed using a part of the tank-constituting wall that constitutes the space around the tank. Further, each of the second passages is formed integrally with a part of the tank. A part of the tank including each of the second passages and another part of the tank are divided by a dividing plane along the longitudinal direction.

(作用) 上記の構成により、本発明では、エンジン回転数が設定
値未満の低回転taでは、制御弁により各第2通路を閉
じておくと、各気筒から伝播する負圧波が各独立吸気通
路を経てタンクで正圧の圧力波に反転して反射されるの
で、吸気慣性効果を得るための通路長がタンクから各気
筒までの比較的長いものとなり、このことにより低回転
域での吸気の慣性効果が幽められる。一方1エンジン回
転数が設定値以上の高回転域では、制御弁により各第2
通路を開くと、各気筒が各独立吸気通路途中の第2通路
を介してタンク内部の空間に連通し、この経路を経て各
気筒から伝播する負圧波が正圧の圧力波に反転して反射
されることになって、吸気慣性効果を得るための吸気通
路の有効長が短くなり、高回転域での吸気慣性効果が高
められることになる。
(Function) With the above configuration, in the present invention, when each second passage is closed by the control valve at a low engine rotation speed ta that is less than a set value, negative pressure waves propagating from each cylinder are transmitted to each independent intake passage. As a result, the passage length from the tank to each cylinder is relatively long in order to obtain the intake inertia effect, and this reduces the intake air flow in the low rotation range. Inertial effects are suppressed. On the other hand, in the high rotation range where the number of engine revolutions exceeds the set value, the control valve
When the passage is opened, each cylinder communicates with the space inside the tank via the second passage in the middle of each independent intake passage, and the negative pressure waves propagating from each cylinder via this route are reversed into positive pressure waves and reflected. As a result, the effective length of the intake passage for obtaining the intake inertia effect is shortened, and the intake inertia effect in the high rotation range is enhanced.

その場合、上記タンクの周囲に各独立吸気通路がタンク
構成壁の一部を利用して一体的に形成され、かつタンク
の一部に各第2通路が一体的に形成されていて、限られ
たスペース内に納まるようコンパクトにしながら、上述
の吸気慣性効果を得るための所要の吸気通路長さおよび
所要の吸気拡大室容積が確保される。
In that case, each independent intake passage is integrally formed around the tank using a part of the tank constituent wall, and each second passage is integrally formed in a part of the tank, and there are limited The required intake passage length and required intake expansion chamber volume to obtain the above-mentioned intake inertia effect are ensured while being compact enough to fit within a small space.

その上で、上記各第2通路を含むタンクの一部とタンク
の他の部分とがその長手方向に沿った分割面で分割され
て形成されているので、上記タンクの一部分割部分にお
ける各第2通路に対しその空間側から制御弁を容易に組
付けることが可能となる。
Furthermore, since the part of the tank including each of the second passages and the other part of the tank are divided by a dividing plane along the longitudinal direction, each part of the tank in the partially divided part of the tank is It becomes possible to easily assemble the control valve to the two passages from the space side.

(実施例) 以下、本発明の実施例について図面に基づいて詳細に説
明する。
(Example) Hereinafter, an example of the present invention will be described in detail based on the drawings.

第1図〜第3図は本発明を4気筒4サイクルエンジンに
適用した場合の第1*施例を示す。同図において、1は
シリンダブロック2およびシリシタヘッド3等からなる
エンジン本体であって、該エンジン本体1にはその長手
方向に第1〜第4の4つの気筒4,4.・・・が直列状
に形成されている。
FIGS. 1 to 3 show a first embodiment in which the present invention is applied to a four-cylinder, four-stroke engine. In the figure, reference numeral 1 denotes an engine body consisting of a cylinder block 2, a syringe head 3, etc., and the engine body 1 has four cylinders 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4. ... are formed in series.

この各気筒4にはそれぞれ燃焼室5が形成されている。A combustion chamber 5 is formed in each cylinder 4.

6は気筒別に互いに独立して設けられた独立吸気通路で
あって、該各独立吸気通路6は、シリンダヘット3内に
形成され独立吸気通路6の下流端部を構成する吸気ボー
ト7を介して各気筒4の燃焼室5に開口している。また
、8はエンジン長手方向に平行に延びる略角筒形状のタ
ンクよりなる吸気拡大室であって、該吸気拡大室8は仕
切板9によって上下に仕切られて上側に比較的大きな容
積の第1容積室8aと下側に比較的小さな容積の第2容
積室8bとに区画されている。そして、上記各独立吸気
通路6,6・・・の上流端はそれぞれほぼ同一通路長で
もって上記吸気拡大室8の第1容積室8aに連通接続さ
れている。該第1容積室8aの一端面には外気を導入す
る吸気導入管1oが接続されていて、該吸気導入管10
内には吸入空気量を制御llするス9ットル弁11が配
設されており、上記吸気導入管10により第1容積室8
aに導入された吸気を各独立吸気通路6を介して8気1
1i4の燃焼室5に供給するようになされている。
Reference numeral 6 denotes independent intake passages provided independently of each other for each cylinder, and each independent intake passage 6 is connected via an intake boat 7 formed in the cylinder head 3 and constituting the downstream end of the independent intake passage 6. It opens into the combustion chamber 5 of each cylinder 4. Reference numeral 8 denotes an intake expansion chamber made of a substantially rectangular cylindrical tank extending parallel to the longitudinal direction of the engine. It is divided into a volume chamber 8a and a second volume chamber 8b having a relatively small volume on the lower side. The upstream ends of each of the independent intake passages 6, 6, . . . are connected to the first volume chamber 8a of the intake expansion chamber 8 with substantially the same passage length. An intake air introduction pipe 1o for introducing outside air is connected to one end surface of the first volume chamber 8a.
A throttle valve 11 for controlling the amount of intake air is disposed inside, and the first volume chamber 8 is connected to the intake air introduction pipe 10.
The intake air introduced into a is passed through each independent intake passage 6 to 8 air 1
It is designed to be supplied to a combustion chamber 5 of 1i4.

また、上記吸気ボート7には吸気弁12が設けられてい
る。
Further, the intake boat 7 is provided with an intake valve 12.

さらに、上記各独立吸気通路6の途中箇所から第2通路
13が分岐していて、該8第2通路13゜13・・・の
他端はそれぞれほぼ同一通路長でもって上記吸気拡大室
8の第2容積室8bに連通接続されており、このことか
ら第2容積室8bにより第2通路13を介して各独立吸
気通路6.6・・・を相互に連通ずるようにしている。
Further, a second passage 13 is branched from a midway point of each of the independent intake passages 6, and the other ends of the eight second passages 13, 13, . The intake passages 6, 6, . . . are communicated with each other through the second passage 13 by the second volume chamber 8b.

また、上記各第2通路13にはそれぞれ第2通路13を
開閉する制御弁14が設けられており、この各制御弁1
4は、吸気拡大室8長手方向と平行に延びるバルブシャ
フト15に一体的に連動可能に固定されていて、図示し
ていないが、エンジン回転数検出手段等の出力を受ける
制御回路によりアクチュエータを介して開閉制御され、
上記第2容積室8bによる各独立吸気通路6,6・・・
相互間の連通をエンジン運転状態に応じて制御し、工゛
Further, each of the second passages 13 is provided with a control valve 14 that opens and closes the second passage 13.
4 is integrally and interlockably fixed to a valve shaft 15 extending parallel to the longitudinal direction of the intake expansion chamber 8, and is connected via an actuator by a control circuit that receives an output from an engine rotation speed detection means, etc. (not shown). The opening and closing are controlled by
Each independent intake passage 6, 6, . . . is formed by the second volume chamber 8b.
The communication between them is controlled and operated according to the engine operating status.

ンジン回転数が設定値未満の低回転域では閉じられ、エ
ンジン回転数が設定値以上の高回転域では開かれるよう
に制御される。なお、このようなエンジン回転数に応じ
た制御弁14の開閉作動は、少なくとも出力が要求され
る高負荷時において行われるようにすればよく、低負荷
時には制御弁14が開状態または開状態に保たれるよう
にしてもよい。
It is controlled so that it is closed in a low speed range where the engine speed is less than a set value, and opened in a high speed range where the engine speed is higher than the set value. Note that the opening and closing operation of the control valve 14 according to the engine speed may be performed at least during high loads when output is required, and the control valve 14 may be in the open state or in the open state during low loads. It may be maintained.

そして、このような吸気系システムにおいて、16は、
上記吸気拡大室8、各独立吸気通路6゜6・・・および
各第2通路13.13・・・を形成するための吸気系構
造体であって、該構造体16は、吸気拡大室8(第1容
積室8aおよび第2容積室8b)を構成するタンク部1
7と、該タンク部17のエンジン側とは反対側の側辺上
部がら側辺および下辺にかけてタンク部17の周囲を迂
回して延び、かつその構成壁の一部つまり側壁および下
壁を利用して各独立吸気通路6,6・・・の上流側部分
5a、5a・・・をその各上流端がタンク部17(第1
容積室8a)側辺上部に開口するように一体的に形成す
る一体吸気管部18.18・・・と、該各一体吸気管部
18.18・・・の下辺部からエンジン側へ向かって各
気筒別に分岐して延び、各独立吸気通路6,6・・・の
下流側部分6b、611・・・を形成する分岐吸気管部
19.19・・・と、上記各一体吸気管部18の分岐吸
気管部19近傍においてタンク部17(第2容積室8b
)の構成壁のうちの下壁を利用して各独立吸気通路6の
途中を第2容積質8bに連通ずる第2通路13を一体的
に形成する連通管部20.20・・・と、十記各分岐吸
気管部19.19・・・の先端部を互いに連結する7タ
ンク部21とからなり、該7タンク部21にCエンジン
本体1に対し各分岐吸気管部19の独立吸気通路下流側
部分6bを各気筒4の吸気ボート7に合致せしめた状態
でボルト22.22・・・を側方から挿入して締付ける
ことによりエンジン本体1に固定される。また、上記タ
ンクll517のエンジン側の側辺上部はエンジン側に
膨出するように形成されており、第1容積室8aの容積
を十分に確保するようにしている。
In such an intake system, 16 is:
An intake system structure for forming the intake expansion chamber 8, each independent intake passage 6°6, and each second passage 13, 13, and the structure 16 includes the intake expansion chamber 8. Tank section 1 constituting (first volume chamber 8a and second volume chamber 8b)
7 and extends around the tank section 17 from the upper side of the tank section 17 on the side opposite to the engine side to the side and lower sides, and utilizes part of its constituent walls, that is, the side wall and the lower wall. The upstream ends of the upstream portions 5a, 5a... of the independent intake passages 6, 6... are connected to the tank portion 17 (the first
Volume chamber 8a) Integral intake pipe portions 18, 18... integrally formed so as to open at the upper side of the side, and from the lower side of each integrated intake pipe portion 18, 18... toward the engine side. Branch intake pipe portions 19, 19, . . . branch and extend for each cylinder and form downstream portions 6b, 611, . In the vicinity of the branch intake pipe section 19, the tank section 17 (second volume chamber 8b
) that integrally forms a second passage 13 that communicates the middle of each independent intake passage 6 with the second volumetric mass 8b by using the lower wall of the constituent walls of It consists of 7 tank parts 21 that connect the tips of the 10 branch intake pipe parts 19, 19... to each other, and the 7 tank parts 21 have independent intake passages of each branch intake pipe part 19 with respect to the C engine body 1. With the downstream portion 6b aligned with the intake boat 7 of each cylinder 4, it is fixed to the engine body 1 by inserting and tightening bolts 22, 22, . . . from the side. Further, the upper side of the tank 117 on the engine side is formed so as to bulge toward the engine side, thereby ensuring a sufficient volume of the first volume chamber 8a.

また、上記各分岐吸気管部19の独立吸気通路下流側部
分6bおよび各吸気ボート7は、斜め上方から燃焼室5
に向ってほぼ直線状に延びて燃焼室5に開口するように
形成されている。そして、該各分岐吸気管部19の独立
吸気通路下流側部分6bの下流端近傍上部には噴射弁装
着孔23が形成されており、燃料噴射弁24はその先端
噴射口部がシールリング23aを介して装着孔23に挿
入されて固定されている。この装着孔23及び燃料噴射
弁24の取付方向は該噴射弁24からの燃料が燃焼室5
の吸気弁12に向って噴射されるように装着されていて
、各燃料噴射弁24.24・・・はエンジン長手方向に
平行に配設された燃料供給管25に連通接続されている
。このことにより、燃料噴射弁24は分岐吸気管部19
にほぼ沿って寝た状態で取付けられることとなり、該燃
料噴射弁24の中心線の延長線臭上に上記吸気拡大室8
(タンク部17)が燃料噴射弁24および燃料供給管2
5に近接して位置することになる。
Further, the independent intake passage downstream portion 6b of each of the branch intake pipe portions 19 and each intake boat 7 are connected to the combustion chamber 5 from diagonally above.
The combustion chamber 5 is formed to extend substantially linearly toward the combustion chamber 5 and open into the combustion chamber 5. An injection valve mounting hole 23 is formed in the upper part near the downstream end of the downstream side portion 6b of the independent intake passage of each branch intake pipe section 19, and the fuel injection valve 24 has a seal ring 23a at its tip injection port. It is inserted into the mounting hole 23 and fixed therethrough. The installation direction of the mounting hole 23 and the fuel injection valve 24 is such that the fuel from the injection valve 24 is directed to the combustion chamber 5.
Each of the fuel injection valves 24, 24, . . . is connected to a fuel supply pipe 25 arranged parallel to the longitudinal direction of the engine. As a result, the fuel injection valve 24 is connected to the branch intake pipe section 19.
The intake expansion chamber 8 is installed on the extension line of the center line of the fuel injector 24.
(tank part 17) includes fuel injection valve 24 and fuel supply pipe 2
It will be located close to 5.

さらに、上記各連通管部20の第2通路13に制御弁1
4が配設されること、および吸気拡大室8(タンク部1
7)が燃料噴射弁24の中心延長線p上に位置すること
から、上記吸気系構造体16は、そのタンク部17にお
いて、上記中心延長線交よりも下側の位置でかつ各第2
通路13,13・・・を含む吸気拡大室8の第2容積室
8bの部分と吸気拡大室8の第1容積室8aとの間とし
ての上記仕切板9の位置で吸気拡大室8の長手方向に沿
った分割面によって上下に分割されて形成されていて、
タンク部17の上半部および各一体板気管部18.18
・・・の上半部が一体成形された上側分割体16aと、
タンク部17の下半部、一体板気管部18.18・・・
の下半部、各分岐吸気管部19.19・・・、各連通管
部20.20・・・および7タンク部21が一体成形さ
れた上側分割体16bとからなり、両分割体16a、1
6bが上記仕切板9を介して接合され、ボルト26.2
6・・・を下方から挿入して締付けることにより気密的
に結合されてなる。
Further, a control valve 1 is provided in the second passage 13 of each communication pipe section 20.
4 is arranged, and the intake expansion chamber 8 (tank part 1
7) is located on the center extension line p of the fuel injection valve 24, the intake system structure 16 is located at a position below the center extension line intersection in the tank portion 17 and on each second
The length of the intake expansion chamber 8 is at the position of the partition plate 9 between the second volume chamber 8b of the intake expansion chamber 8 including the passages 13, 13, . . . and the first volume chamber 8a of the intake expansion chamber 8. It is formed by being divided into upper and lower parts by a dividing plane along the direction,
Upper half of tank part 17 and each integral plate trachea part 18.18
... an upper divided body 16a whose upper half is integrally molded;
Lower half of tank part 17, integral plate trachea part 18, 18...
, each branch intake pipe section 19, 19..., each communication pipe section 20, 20..., and an upper division body 16b in which seven tank sections 21 are integrally molded, and both division bodies 16a, 1
6b are joined via the partition plate 9, and the bolts 26.2
6... are inserted from below and tightened to form an airtight connection.

次に、上記実施例の作用について述べるに、各制御弁1
4が閉じて第2通路13の閉塞によって第2容積室8b
による各独立吸気通路6.6・・・相互間の連通が遮断
されている状態では、各気筒4の吸気行程で生じる負圧
波が第1容積室8aまで伝播されてここで反射され、つ
まり比較的長い通路を通して上記負圧波およびその反射
波が伝播することにより、低回転域においてこのような
圧力波の振動周期が吸気弁開閉周期にマツチングするこ
とになり、低回転域での吸気の慣性効果が高められて、
吸気充填効率が^められる。一方、上記各制御弁14が
開かれ第2通路13が開放されで、第2容積寮8bによ
り各独立吸気通路6.6・・・相互間が連通している状
態では、各気筒4の吸気行程で生じる負圧波が上記第2
通路13を介して第2容積室8bで反射されてこの負圧
波および反射波の伝播に供される通路長さが短くなるこ
とにより、^回転域で吸気慣性効果が高められるととも
に、この運転域では他の気筒から伝播される圧力波も第
2容積室8bを介して有効に作用することになり、^回
転域での充填効率が大幅に高められる。従って、少なく
とも臨角荷時に、上記低回転域と^回転域との吸気慣性
効果が得られる各回転数の中間回転数に相当する所定回
転数を境に、これより低回転側で制御弁14を閉じ、こ
れより高回転側で制御弁14を開くようにしておくこと
により、全回転域で吸気充填効率が高められて出力を向
上させることができる。特に、^回転域での吸気充填効
率は、従来のように単に吸気通路を短縮させて慣性効果
を高めるようにした場合と比べても、気筒間の圧力伝播
作用でより一層高められることとなる。
Next, to describe the operation of the above embodiment, each control valve 1
4 is closed and the second passage 13 is blocked, thereby causing the second volume chamber 8b to close.
When the communication between each independent intake passage 6.6 is cut off, the negative pressure wave generated during the intake stroke of each cylinder 4 is propagated to the first volume chamber 8a and reflected there. As the negative pressure waves and their reflected waves propagate through a relatively long passage, the oscillation cycle of these pressure waves matches the intake valve opening/closing cycle in the low rotation range, and the inertial effect of intake air in the low rotation range is reduced. is enhanced,
Intake air filling efficiency is improved. On the other hand, when each of the control valves 14 is opened and the second passage 13 is opened, and the independent intake passages 6, 6... are in communication with each other by the second volume chamber 8b, the intake air of each cylinder 4 is The negative pressure wave generated during the stroke causes the second
By shortening the length of the passage that is reflected in the second volume chamber 8b via the passage 13 and provided for the propagation of the negative pressure wave and the reflected wave, the intake inertia effect is enhanced in the rotation range, and the intake inertia effect is increased in this operating range. In this case, the pressure waves propagated from other cylinders also act effectively through the second volume chamber 8b, and the filling efficiency in the rotation range is greatly increased. Therefore, at least when the load is on the side, the control valve 14 is operated on the lower rotation side at a predetermined rotation speed corresponding to the intermediate rotation speed between the low rotation speed range and the rotation speed range where the intake inertia effect is obtained between the low rotation range and the ^ rotation range. By closing the control valve 14 and opening the control valve 14 at higher rotation speeds, the intake air filling efficiency can be increased over the entire rotation range and the output can be improved. In particular, the intake air filling efficiency in the ^ rotation range can be further increased due to the pressure propagation effect between the cylinders, compared to the conventional case where the intake passage was simply shortened to increase the inertia effect. .

なお、以上のような作用を有効に発揮させるに適当な第
1および第2容積室3a 、 8bの大きさとしては、
第1容積室8aは排気量の0.5倍以上の容量とし、第
2容積室8bは排気量の1.5倍以下の容量としておく
ことが望ましい。さらに、上記第2容積室8bは第1容
積室8aよりも容量を小さくし、かつ第2容積室8bの
断面積は各独立吸気通路6の断面積よりも大きくしてお
くことが望ましい。
The sizes of the first and second volume chambers 3a and 8b that are suitable for effectively exerting the above-mentioned functions are as follows:
It is desirable that the first volume chamber 8a has a capacity of 0.5 times or more the displacement, and the second volume chamber 8b has a capacity of 1.5 times or less of the displacement. Further, it is desirable that the second volume chamber 8b has a smaller capacity than the first volume chamber 8a, and that the cross-sectional area of the second volume chamber 8b is larger than the cross-sectional area of each independent intake passage 6.

そして、この場合、吸気系構造体16における吸気拡大
室8(第1容積室8aおよび第2容積室8b)を構成す
るタンク部17と各独立吸気通路6の上流側部分6aを
構成する一体吸気管部18と各独立吸気通路6の下流側
部分6bを構成する分岐吸気管部19と各第2通路13
を構成する連通管部20とによって、各独立吸気通路6
が吸気拡大室8の周囲に迂回しながらかつ吸気拡大室8
(タンク部17)の構成壁の一部を利用して一体的に形
成されているとともに、各第2通路13が吸気拡大室8
(第2容積室8b)の構成壁の一部と一体的に形成され
ているので、上記独立吸気通路6の所要長さおよび吸気
拡大室8の第1および第2容積室8a 、 8bの各所
要容積を1qるに当って、これら吸気系をコンパクトに
小型のものに形成することができ、よって限られたスペ
ース(丁ンジンルーム)内で上記所要長さおよび所要容
積を十分に確保することができ、車載性の向上を図るこ
とができる。
In this case, the tank portion 17 that constitutes the intake expansion chamber 8 (the first volume chamber 8a and the second volume chamber 8b) in the intake system structure 16 and the integrated intake that constitutes the upstream portion 6a of each independent intake passage 6 The pipe portion 18, the branch intake pipe portion 19 constituting the downstream portion 6b of each independent intake passage 6, and each second passage 13
Each independent intake passage 6
while detouring around the intake expansion chamber 8 and
(Tank part 17) is integrally formed using a part of the constituent wall, and each second passage 13 is connected to the intake expansion chamber 8.
Since it is formed integrally with a part of the constituent wall of the second volume chamber 8b, the required length of the independent intake passage 6 and each of the first and second volume chambers 8a and 8b of the intake expansion chamber 8 are When the required volume is 1q, these intake systems can be formed compactly and small, so that the above-mentioned required length and required volume can be sufficiently secured within a limited space (a small space). This makes it possible to improve on-vehicle compatibility.

また、燃料噴射弁24が上記分岐吸気管部1つの下流端
近傍つまり独立吸気通路6の下流側においてその噴射燃
料をその霧化を良好にしながら燃焼室5に応答性良く供
給すべく燃焼室5に向けて装着されている関係上、該燃
料噴射弁24の中心延長線p上に近接して吸気系構造体
16のタンク部17(吸気拡大室8)が位置すること、
および上記各第2通路13に制御弁14を配設すること
が必要である。このため、上記吸気系構造体16はその
タンク部17において上記中心延長1119よりも下側
即ち分岐吸気管部19側の位置でかつ仕切板9の位置で
吸気拡大室8の長手方向に沿った分割面で上下に上側分
割体16aと下側分割体16bとに分割され両分割体1
6a、16bが仕切板9を介して結合されてなるので、
下側分割体16bをその7タンク部21にてエンジン本
体1に側方からのボルト22による締付けにより取付け
たのち、該下側分割体16bの各分岐吸気管部19の噴
射弁装着孔23に燃料噴射弁24を中心延長線9方向か
ら挿入し燃料(ハ給管25を下側分割体16bに固定す
ることによって各燃料噴射弁24を取付けるとともに、
下側分割体16bの各連通管部20の第2通路13にそ
の上方から制御弁14を挿入してバルブシャフト15に
固定し、しかる後上記下側分割体16bに対して仕切板
9を介在させて下側分割体16aを接合して下方からの
ボルト26の締付けにより両者16a、16bを一体に
結合することによって、良好な成形性を確保し、かつ上
側および下側分割体16a、16bの組付けを容易に行
い得るのは勿論のこと、制御弁14および燃料噴射弁2
4の組付けを容易に行うことができ、良好な組付は性を
確保することができる。
Further, the fuel injection valve 24 is arranged near the downstream end of one of the branched intake pipe sections, that is, on the downstream side of the independent intake passage 6, so that the injected fuel can be atomized well and supplied to the combustion chamber 5 with good response. The tank portion 17 (intake expansion chamber 8) of the intake system structure 16 is located close to the center extension line p of the fuel injection valve 24 because the fuel injection valve 24 is mounted toward the fuel injection valve 24;
It is also necessary to provide a control valve 14 in each of the second passages 13. Therefore, the intake system structure 16 is located at a position below the center extension 1119 in the tank portion 17, that is, on the branch intake pipe portion 19 side, and along the longitudinal direction of the intake expansion chamber 8 at the position of the partition plate 9. Both divided bodies 1 are vertically divided into an upper divided body 16a and a lower divided body 16b at the dividing plane.
6a and 16b are connected via the partition plate 9,
After attaching the lower divided body 16b to the engine body 1 at its seven tank portions 21 by tightening the bolts 22 from the side, the lower divided body 16b is attached to the injection valve mounting hole 23 of each branch intake pipe portion 19 of the lower divided body 16b. Each fuel injection valve 24 is attached by inserting the fuel injection valve 24 from the direction of the center extension line 9 and fixing the fuel supply pipe 25 to the lower divided body 16b.
The control valve 14 is inserted into the second passage 13 of each communication pipe portion 20 of the lower divided body 16b from above and fixed to the valve shaft 15, and then the partition plate 9 is interposed with respect to the lower divided body 16b. By joining the lower divided body 16a and joining the two parts 16a and 16b together by tightening the bolt 26 from below, good formability is ensured and the upper and lower divided bodies 16a and 16b are joined together. Not only can it be easily assembled, but also the control valve 14 and the fuel injection valve 2 can be easily assembled.
4 can be easily assembled, and good assembly can ensure stability.

しかも、上記下側分割体16aと下側分割体16bとの
結合は、下方からのボルト26の締付けによって行われ
るので、その良好な組付は性を確保しながら、上述の如
くタンク部17(吸気拡大室8)におけるエンジン側の
側辺上部の膨出形成が可能となって、吸気拡大室8の特
に第1容積室8aの容積を十分に確保できる利点もある
。また、上記第2容積室8bは吸気系構造体16のタン
ク部17を仕切板9で上下に分割することによって第1
容積室8aにtIt設され、第1容積室8aの構成壁の
一部(仕切板9)を共用して形成されているので、上記
吸気系のコンパクト化を一層図ることができる。
Moreover, since the connection between the lower divided body 16a and the lower divided body 16b is performed by tightening the bolts 26 from below, the tank portion 17 ( It is possible to form a bulge in the upper part of the side of the intake expansion chamber 8) on the engine side, which has the advantage that a sufficient volume of the intake expansion chamber 8, particularly the first volume chamber 8a, can be secured. Further, the second volume chamber 8b is formed by dividing the tank portion 17 of the intake system structure 16 into upper and lower parts with a partition plate 9.
Since it is provided in the volume chamber 8a and is formed by sharing a part of the constituent wall (partition plate 9) of the first volume chamber 8a, the above-mentioned intake system can be made more compact.

第4図は本発明の第2実施例を示し、上記第1実施例で
は吸気拡大室8を第1容積室8aと第2容積室8bとに
区画して低回転域と高回転域とでそれぞれ吸気慣性効果
を得るとともに、特に高回転域r気筒相互間の圧力波の
伝播により吸気の充填効率を一層高めるようにしたのに
代え、従来例と同様に単に低回転域と高回転域とでそれ
ぞれ吸気慣性効果を高めるようにしたものの例である(
尚、第1実施例(第1図〜第3図)と同一の部分につい
ては同一の符号を付してその詳細な説明は省略する)。
FIG. 4 shows a second embodiment of the present invention. In the first embodiment, the intake expansion chamber 8 is divided into a first volume chamber 8a and a second volume chamber 8b to provide a low rotation range and a high rotation range. In addition to obtaining an intake inertia effect, the intake air filling efficiency is further increased by propagating pressure waves between cylinders in the high rotation range. This is an example of one that increases the intake inertia effect.
Note that the same parts as in the first embodiment (FIGS. 1 to 3) are designated by the same reference numerals, and detailed explanation thereof will be omitted.

すなわら、吸気系構造体16において吸気拡大室8を構
成するタンク部17の下壁に、吸気拡大室8と各独立吸
気通路6の途中部とを連通ずる第2通路13.13・・
・を開口し、該8第2通路13にエンジンの運転状態に
応じて開開する制御弁14を設けて、エンジンの低回転
域では制御弁14を開状態に維持して、各気筒4で生じ
る圧力波を吸気拡大室8との間で比較的長い独立吸気通
路6を介して伝播させ、そのことによりこの圧力波の振
動周期と吸気弁開閉周期とがマツチングして低回転域で
の吸気慣性効果を高める。一方、高回転域では制御弁1
4を問いて各独立吸気通路6の途中部を第2通路13を
介して吸気拡大室8に連通させ、上記圧力波の伝播経路
を比較的短くすることにより、高回転域で圧力波の振動
周期と吸気弁開閉周期とがマツチングして吸気慣性効果
を高めるようにしたものである。
That is, in the intake system structure 16, the second passages 13, 13, .
A control valve 14 is provided in the 8th second passage 13 to open and close according to the operating state of the engine. The generated pressure wave is propagated between the intake expansion chamber 8 and the intake passage 6, which is relatively long, and as a result, the oscillation period of this pressure wave and the intake valve opening/closing period are matched to improve intake air in the low rotation range. Increase inertia effect. On the other hand, in the high rotation range, control valve 1
4, the middle part of each independent intake passage 6 is communicated with the intake expansion chamber 8 via the second passage 13, and the propagation path of the pressure wave is made relatively short, thereby reducing the vibration of the pressure wave in the high rotation range. The period and the intake valve opening/closing period are matched to enhance the intake inertia effect.

この場合にも、図示の如く吸気系Ha造休体6によって
、タンク部17の周囲に各独立吸気通路6゜6・・・が
タンク部17の構成壁の一部を利用して一体的に形成さ
れているとともに、タンク部17の一部に各第2通路1
3.13・・・が一体向に形成されており、該吸気系構
造体16はそのタンク部17〈吸気拡大室8)において
燃料噴射弁24の中心延長線交よりも下側の位置でかつ
L記名第2通路13.13・・・を含む吸気拡大室8の
下部と吸気拡大室8の上部との間でその長手方向に沿っ
た分割面にて上下に分割して形成されており、上記第1
実施例の場合と同様に吸気慣性効果を得るための吸気系
の車載性の向Fと組付は性の向上との両立を図ることが
できる。
In this case as well, as shown in the figure, each independent intake passage 6, 6, etc. is integrally formed around the tank part 17 by the intake system Ha construction body 6, using a part of the wall constituting the tank part 17. In addition, each second passage 1 is formed in a part of the tank part 17.
3.13... are formed in one direction, and the intake system structure 16 is located below the intersection of the center extension lines of the fuel injection valves 24 in the tank portion 17 (intake expansion chamber 8). The lower part of the intake expansion chamber 8 including the L-signed second passage 13, 13... and the upper part of the intake expansion chamber 8 are divided into upper and lower parts along the longitudinal direction thereof, 1st above
As in the case of the embodiment, it is possible to achieve both the in-vehicle mountability of the intake system for obtaining the intake inertia effect and the improvement in assembly.

尚、本発明は以上の実施例の他に、上記第1実施例にお
ける仕切板9に上下の第1容積室8aと第2容積室8b
とを連通ずる連通孔を設けて、さらに低回転域C上下の
両容積室88.8b間での吸気圧力振動を利用して吸気
の充填効率を一層高めるようにした吸気系に対しても適
用可能である。
In addition to the embodiments described above, the present invention provides an upper and lower first volume chamber 8a and a second volume chamber 8b in the partition plate 9 in the first embodiment.
It is also applied to an intake system in which a communication hole is provided to communicate with the engine, and the intake pressure vibration between the upper and lower volume chambers 88.8b of the low rotation range C is used to further increase the intake air filling efficiency. It is possible.

また、本発明は以上の実施例の如く4気筒エンジンに限
らず、他の多気筒エンジン、例えば5気i!lエンジン
や6気筒エンジンにも適用することができるのは勿論で
ある。
Further, the present invention is not limited to a four-cylinder engine as in the above embodiments, but can be applied to other multi-cylinder engines, such as a 5-cylinder engine. Of course, the present invention can also be applied to an L engine or a 6-cylinder engine.

(発明の効果) 以上説明したように、本発明によれば、タンクの周囲に
各気筒に至る独立吸気通路をタンク構成壁の一部を利用
して一体的に形成するとともに、各独立吸気通路の途中
をタンク内部の空間に連通し制御弁を有する第2通路を
該タンクの一部と一体的に形成して、限られたスペース
内で、低回転域と高回転域とでそれぞれ吸気慣性効果を
得るための所要の吸気通路長さおよび所要の吸気拡大室
容積を確保しながら、上記各第2通路を含むタンクの一
部をその他のタンク部分とはその長手方向に沿った分割
面で分割して形成したので、上記吸気系のコンパクトな
一体的な形成に拘らず、制御弁を第2通路に容易に取付
けることができ、その組付は性を確保することができる
。よって、吸気慣性効果を発揮する吸気系の車載性の向
上と組付は性の向上との両立を図ることができるもので
ある。
(Effects of the Invention) As explained above, according to the present invention, the independent intake passages leading to each cylinder are integrally formed around the tank by using a part of the wall that constitutes the tank, and each independent intake passage A second passage that communicates with the space inside the tank and has a control valve is formed integrally with a part of the tank, so that the intake inertia can be controlled in the low rotation range and the high rotation range, respectively, within a limited space. While ensuring the necessary intake passage length and intake expansion chamber volume to obtain the effect, the part of the tank containing each of the second passages is separated from the other tank parts by a dividing plane along the longitudinal direction. Since it is formed in parts, the control valve can be easily attached to the second passage, and its assembly can be ensured, regardless of the compact and integral structure of the intake system. Therefore, it is possible to achieve both improvement in vehicle mountability of the intake system that exhibits the intake inertia effect and improvement in ease of assembly.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を例示し、第1図〜第3図は第1
実施例を示し、第1図は第3図のI−I線における縦断
側面図、第2図は第3図の■−■線における縦断側面図
、第3図は一部破断した平面図である。第4図は第2実
施例を示す第1図相当図である。 1・・・エンジン本体、4・・・気筒、6・・・独立吸
気通路、8・・・吸気拡大室、8a・・・第1容積室、
8b・・・第2容積室、13・・・第2通路、14・・
・ili’l 朝弁、16・・・吸気系構造体、16a
・・・上側分割体、16b・・・下側分割体、17・・
・タンク部、18・・・一体吸気管部、19・・・分岐
吸気管部、2o・・・連通管部。
The drawings illustrate embodiments of the invention, and FIGS.
1 is a longitudinal sectional side view taken along line II in FIG. 3, FIG. 2 is a longitudinal sectional side view taken along line ■-■ in FIG. 3, and FIG. be. FIG. 4 is a diagram corresponding to FIG. 1 showing the second embodiment. DESCRIPTION OF SYMBOLS 1... Engine body, 4... Cylinder, 6... Independent intake passage, 8... Intake expansion chamber, 8a... First volume chamber,
8b...Second volume chamber, 13...Second passage, 14...
・ili'l Morning valve, 16... Intake system structure, 16a
...Upper divided body, 16b...Lower divided body, 17...
-Tank part, 18...Integrated intake pipe part, 19...Branch intake pipe part, 2o...Communication pipe part.

Claims (1)

【特許請求の範囲】[Claims] (1)タンク内部の少なくとも一つの空間と各気筒とを
互いに独立した気筒別の各独立吸気通路で接続するとと
もに、該各独立吸気通路の途中をそれぞれタンク内部の
空間に連通する第2通路を設け、該各第2通路にエンジ
ンの運転状態に応じて開閉する制御弁を設けた多気筒エ
ンジンの吸気装置において、上記各独立吸気通路は上記
タンクの周囲に上記空間を構成するタンク構成壁の一部
を利用して一体的に形成されているとともに、上記各第
2通路はタンクの一部と一体的に形成されており、該各
第2通路を含むタンクの一部とタンクの他の部分とはそ
の長手方向に沿つた分割面で分割されて形成されている
ことを特徴とする多気筒エンジンの吸気装置。
(1) At least one space inside the tank and each cylinder are connected by independent intake passages for each cylinder, and a second passage is provided in the middle of each independent intake passage to communicate with the space inside the tank. In an intake system for a multi-cylinder engine in which each of the second passages is provided with a control valve that opens and closes depending on the operating state of the engine, each of the independent intake passages is connected to a tank-constituting wall that constitutes the space around the tank. Each of the second passages is formed integrally with a part of the tank, and the part of the tank including the second passage and the other part of the tank are integrally formed using a part of the tank. An intake system for a multi-cylinder engine, characterized in that the parts are divided by dividing planes along the longitudinal direction of the parts.
JP59275490A 1984-12-29 1984-12-29 Air intake device of multicylinder engine Granted JPS61157719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59275490A JPS61157719A (en) 1984-12-29 1984-12-29 Air intake device of multicylinder engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59275490A JPS61157719A (en) 1984-12-29 1984-12-29 Air intake device of multicylinder engine

Publications (2)

Publication Number Publication Date
JPS61157719A true JPS61157719A (en) 1986-07-17
JPH0353455B2 JPH0353455B2 (en) 1991-08-15

Family

ID=17556238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59275490A Granted JPS61157719A (en) 1984-12-29 1984-12-29 Air intake device of multicylinder engine

Country Status (1)

Country Link
JP (1) JPS61157719A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56115819A (en) * 1980-02-19 1981-09-11 Nissan Diesel Motor Co Ltd Suction device for inertia supercharging type internal-combustion engine
JPS5791365A (en) * 1980-11-28 1982-06-07 Toyota Motor Corp Intake passage unit for engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56115819A (en) * 1980-02-19 1981-09-11 Nissan Diesel Motor Co Ltd Suction device for inertia supercharging type internal-combustion engine
JPS5791365A (en) * 1980-11-28 1982-06-07 Toyota Motor Corp Intake passage unit for engine

Also Published As

Publication number Publication date
JPH0353455B2 (en) 1991-08-15

Similar Documents

Publication Publication Date Title
KR890001733B1 (en) Intake system for internal combustion engine
US6250272B1 (en) Internal combustion engine suction system utilizing resonance
JPS61116021A (en) Engine intake-air device
JPS61226516A (en) Intake device of multicylinder engine
JPS627922A (en) Intake structure of engine
JPS61157717A (en) Air intake device of multicylinder engine
JPS61157719A (en) Air intake device of multicylinder engine
JPH02233824A (en) Intake system for engine
JP4006789B2 (en) Intake device for internal combustion engine
JPH0643462Y2 (en) Engine intake system
JPH04214923A (en) Intake device for multiple cylinder engine
JP2500856B2 (en) Multi-cylinder engine intake system
JPH0343380Y2 (en)
JPH0320498Y2 (en)
JP2529548B2 (en) Multi-cylinder engine intake system
JPH0320495Y2 (en)
JPH0343378Y2 (en)
JPH0315779Y2 (en)
JPS61157716A (en) Air intake device of multicylinder engine
JPH0343379Y2 (en)
JPS61157718A (en) Air intake device of multicylinder engine
JP2500855B2 (en) Multi-cylinder engine intake system
JPH064029Y2 (en) Multi-cylinder engine intake system
JPH0738660Y2 (en) Engine intake system
JPS59226264A (en) Suction device for engine