JPS61155902A - Interference measuring apparatus - Google Patents

Interference measuring apparatus

Info

Publication number
JPS61155902A
JPS61155902A JP27893584A JP27893584A JPS61155902A JP S61155902 A JPS61155902 A JP S61155902A JP 27893584 A JP27893584 A JP 27893584A JP 27893584 A JP27893584 A JP 27893584A JP S61155902 A JPS61155902 A JP S61155902A
Authority
JP
Japan
Prior art keywords
wave
measured
reflected
beam splitter
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27893584A
Other languages
Japanese (ja)
Inventor
Yojiro Iwamoto
岩本 洋次郎
Takashi Noguchi
俊 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP27893584A priority Critical patent/JPS61155902A/en
Publication of JPS61155902A publication Critical patent/JPS61155902A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/0207Error reduction by correction of the measurement signal based on independently determined error sources, e.g. using a reference interferometer
    • G01B9/02071Error reduction by correction of the measurement signal based on independently determined error sources, e.g. using a reference interferometer by measuring path difference independently from interferometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2290/00Aspects of interferometers not specifically covered by any group under G01B9/02
    • G01B2290/60Reference interferometer, i.e. additional interferometer not interacting with object

Abstract

PURPOSE:To achieve highly accurate measurement, by controlling a reference mirror by measuring not only the shape of an article to be measured by a coherent beam source and a beam splitter but also the minute change in the reference phase of the reference mirror. CONSTITUTION:The beam of a coherent light source 30 is incident not only to an article 38 to be measured through a first beam splitter 34 but also to a reference mirror 32 through a second beam splitter 36 and the interference fringe obtained by interfering respective reflected beams by the first beam splitter 34 is read by an image pick-up apparatus 40. Further, data are inputted to an interference fringe phase analytical system 42 and receives operational processing by an electronic calculator 44 to measure the shape of the article 38 to be measured. Next. the minute change of the reference mirror 32 having a drive apparatus 46 such as a piezoelectric element attached thereto is detected as phase change by the beam of beam source 30 and beam interference through the second beam splitter 36, reflective mirrors 48, 50 and a third beam splitter 52 in a beam receiving apparatus 54 and a successive fringe phase measuring apparatus 56 and receives operational processing by the calculator 44 before the drive apparatus 46 is controlled through a drive circuit 58.

Description

【発明の詳細な説明】 この発明は、縞走査方式による干渉計測装置において、
干渉縞の位相変調を高精度に行なうことにより、被測定
物の表面形状・光学素子の収差等を精度よく測定するこ
とのできる装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an interference measurement device using a fringe scanning method.
The present invention relates to an apparatus that can accurately measure the surface shape of an object to be measured, aberrations of an optical element, etc. by performing phase modulation of interference fringes with high precision.

まず第1図により干渉計測装置の概要について説明する
。可干渉性光源、例えばレーザ光源1oから照射された
レーザ光は、コリメータレンズ12により平行ビーム(
イ)となり、ビームスプリッタ14により光路(ロ)お
よび光路(ハ)に分離される。光路(ロ)の平行ビーム
は、参照鏡16により入射方向と反対方向に反射され、
参照波として再びビームスプリッタ14に帰還する。ま
た、光路(ハ)の平行ビームは、被測定物18の被検面
により入射方向と反対方向に反射され、被検波として再
びビームスプリッタ14に帰還する。ビームスプリッタ
14においては上記の参照波と被検波とが光路(ニ)で
干渉され、その干渉縞20はテレビカメラ等の撮像装置
22によって読取られる。この干渉縞20の明暗はレー
ザ光の波長を入とすれば参照波と被検波との位相差が入
/2ごとに現われる。初期の干渉計測法においては、こ
の干渉縞20のピーク位置の情報にのみ注目していたた
め、その測定感度は人ないしλ/2であり、それ以上の
測定精度を期待することは出来なかりた。そこで干渉縞
のピーク位置以外の中間の濃度分布にまで注目し、測定
精度をλ1500とか、さらにはλ/1000程度まで
高める方式として、縞走査方式とか、あるいはフリンジ
・スキャニング方式と呼ばれる干渉計測法が従来上り提
案されている。
First, the outline of the interference measurement device will be explained with reference to FIG. Laser light emitted from a coherent light source, for example, a laser light source 1o, is converted into a parallel beam (
The beam splitter 14 separates the light into an optical path (b) and an optical path (c). The parallel beam on the optical path (b) is reflected by the reference mirror 16 in the opposite direction to the incident direction,
It returns to the beam splitter 14 again as a reference wave. Further, the parallel beam on the optical path (c) is reflected by the test surface of the object to be measured 18 in a direction opposite to the direction of incidence, and returns to the beam splitter 14 again as a test wave. In the beam splitter 14, the reference wave and the test wave interfere with each other in the optical path (d), and the interference fringes 20 are read by an imaging device 22 such as a television camera. The brightness of the interference fringes 20 is determined by the phase difference between the reference wave and the test wave every 2 times when the wavelength of the laser beam is input. In the early interferometry methods, only the information on the peak position of this interference fringe 20 was focused, so the measurement sensitivity was only human or λ/2, and no higher measurement precision could be expected. . Therefore, an interferometric measurement method called the fringe scanning method or fringe scanning method is a method that focuses on the intermediate concentration distribution other than the peak position of the interference fringes and increases the measurement accuracy to λ1500 or even λ/1000. It has been proposed upstream.

縞走査方式による干渉計測は、上記した参照波の位相を
微小変化させることによって、つまり参照光の光路長を
、1波長内においてλ/N(λ:レーザ尤の1波長、N
:データサンプリング回数)づつ変化させることによっ
て、その都度上ずる干渉縞の変化を、撮像装置の各画素
の正弦的出力変化として読み取り、その出力から被測定
物上の各測定点における初期位相差を求めて、これを継
ぎ合わせることにより、被測定面の形状を高精度に測定
しようとするものである。
Interferometry using the fringe scanning method is performed by slightly changing the phase of the reference wave mentioned above.
: the number of data sampling), the change in the interference fringes that rises each time is read as a sinusoidal change in the output of each pixel of the imaging device, and the initial phase difference at each measurement point on the object to be measured is calculated from the output. By determining the shapes and piecing them together, the shape of the surface to be measured can be measured with high precision.

第2図によりこの縞走査方式による干渉計測法の原理を
説明する。ビームスプリッタト4、参照鏡16、被測定
物18および平行ビーム(イ)、光路(ロ)、(ハ)、
(ニ)は第1図に同符号を付して説明した場合と全(同
じである。参照鏡16には、例えばピエゾ素子のような
駆動装置24を取付け、その電歪効果を利用して、参照
鏡16をλ/2N(*尾側においてNi116)づつ8
回微動させる。そのときの被測定物18の測定点Aおよ
びBに相当す、る干渉縞上のA゛点およびB゛点の画素
出力は例えば明→暗→明のように一周期分正弦的に変化
する。第3図にその状態を示す。(a)図は、被測定物
18のA点に相当する干渉編上のA゛点の画素出力強度
(I)が、参照鏡16の微小移動(n、、n2・・・・
・・・・n16)に伴なって正弦的に変化していること
を表わしている。また同様に(b)図は被測定物18の
B点に相当する干渉縞上のB゛点画素出力強度(I)が
参照鏡16の微小移動(n、、n2・・・・・・・・n
’s)に伴なって正弦的に変化していることを表わして
いる。各測定点において参照面に対する光路差があると
きには、上記方法によって求められた各画素の正弦曲線
の初期位相は異なる。すなわち第3図の(a)と(b)
とでは、初期位相差はδである。そこで、その他の各測
定点で同様に求められた初期位相差を継ぎ合わせること
により、被測定物の形状等を高精度で測定することがで
きる。
The principle of this interference measurement method using the fringe scanning method will be explained with reference to FIG. Beam splitter 4, reference mirror 16, object to be measured 18 and parallel beam (a), optical path (b), (c),
(D) is the same as the case described with the same reference numerals in FIG. , reference mirror 16 by λ/2N (*Ni116 on the caudal side) 8
Rotate slightly. At that time, the pixel outputs of points A' and B' on the interference fringe, which correspond to measurement points A and B of the object to be measured 18, change sinusoidally for one cycle, for example, from bright → dark → bright. . Figure 3 shows the situation. The figure (a) shows that the pixel output intensity (I) at point A' on the interference track, which corresponds to point A of the object to be measured 18, is caused by the minute movement of the reference mirror 16 (n,, n2...
. . . n16). Similarly, the figure (b) shows that the pixel output intensity (I) at point B on the interference fringe corresponding to point B on the object to be measured 18 is caused by the slight movement of the reference mirror 16 (n,, n2...・n
's). When there is an optical path difference with respect to the reference plane at each measurement point, the initial phase of the sinusoidal curve of each pixel determined by the above method differs. In other words, (a) and (b) in Figure 3
, the initial phase difference is δ. Therefore, by joining together the initial phase differences obtained in the same manner at each of the other measurement points, the shape of the object to be measured, etc. can be measured with high precision.

上記したことからも明らかなように、縞走査方式による
干渉計測においては、高精度の測定は、いかに参照波の
位相をA/Nづつ高精度に変化させることが出来るかに
かかっている。そこで従来よりこの参照波の位相を高精
度に変化させる方法、例えば参照鏡16の微小移動を高
精度に行なう方法が種々提案されている。その1つは、
参照鏡16の移動量を浮型容量センサ等により読取り、
その移動を制御する方法である。この方法は、参照鏡の
移動量を直接読取り制御するため、リアルタイムでの計
測制御という点では優れているが、静電容量センサ自体
を、他の高精度な測定器でキャリブレーションしなけれ
ばならないという煩雑さがある上に、ドリフトによる誤
差もあり、必ずしも満足できるものではない。また従来
の他の方法として、ピエゾ素子に対する印加電圧と移動
量との関係を予め求めておき、それにより参照鏡を制御
する方法がある。例えば第2図の被測定物18の位置に
充分精度の良い平面鏡を置き、当該ピエゾ素子に適宜な
印加電圧を与えたときに生ずる印加電圧と参照鏡の移動
量との関係を、撮像装置上の干渉縞の変位から計算して
求め、実際の測定に際しては予め計算によって求められ
た電圧を逐次印加して、参照鏡の微少移動を制御する方
法である。しかし、この方法は、実際に被測定物を測定
しているときの参照鏡の移動量を測定しているものでは
ない。従って、リアルタイムの計測制御が出来ず、また
クローズトループ制御ができないため参照鏡の移動精度
が悪く、被測定物の高精度な測定が出来なかった。
As is clear from the above, in interference measurement using the fringe scanning method, highly accurate measurement depends on how accurately the phase of the reference wave can be changed by A/N. Therefore, various methods have been proposed in the past for changing the phase of this reference wave with high precision, for example, methods of performing minute movements of the reference mirror 16 with high precision. One of them is
The amount of movement of the reference mirror 16 is read by a floating capacitive sensor, etc.
This is a method to control its movement. This method directly reads and controls the amount of movement of the reference mirror, so it is excellent in terms of real-time measurement control, but the capacitance sensor itself must be calibrated using other high-precision measuring instruments. In addition to this complexity, there are also errors due to drift, so it is not always satisfactory. As another conventional method, there is a method in which the relationship between the voltage applied to the piezo element and the amount of movement is determined in advance, and the reference mirror is controlled based on the relationship. For example, when a sufficiently accurate plane mirror is placed at the position of the object to be measured 18 in FIG. In this method, the voltage is calculated from the displacement of the interference fringes of the reference mirror, and during actual measurement, the voltage calculated in advance is sequentially applied to control the minute movement of the reference mirror. However, this method does not measure the amount of movement of the reference mirror when actually measuring the object to be measured. Therefore, since real-time measurement control and closed loop control are not possible, the movement accuracy of the reference mirror is poor, and highly accurate measurement of the object to be measured cannot be performed.

本願発明は、これら従来方法における上記したような欠
点を解決し、参照波の微小変位を正確に行なうことによ
って、干渉縞の位相変調を高精度に行ない、もって被測
定物の高精度な測定を可能とした干渉計測装置を提供す
るものである。
The present invention solves the above-mentioned drawbacks of these conventional methods and accurately performs minute displacement of the reference wave to perform phase modulation of interference fringes with high precision, thereby enabling highly accurate measurement of the object to be measured. The present invention provides an interference measurement device that makes it possible.

以下第4図により、本願発明をトワイマングリーン型と
通称される干渉計に適用した第1実施例について説明す
る。30はレーザ光源、32は参照鏡であって、本願発
明はこれを被測定物の形状を測定するための測定用干渉
計と、参照鏡の微小移動量を測定するための干渉計とに
共用し、参照鏡の微小移動量を測定することによって、
参照鏡を駆動させる駆動装置を制御するよう構成されて
いる。
A first embodiment in which the present invention is applied to an interferometer commonly called a Twyman Green type will be described below with reference to FIG. 30 is a laser light source, and 32 is a reference mirror, which in the present invention is commonly used as a measurement interferometer for measuring the shape of an object to be measured and as an interferometer for measuring minute movements of the reference mirror. By measuring the minute movement of the reference mirror,
The reference mirror is configured to control a drive device that drives the reference mirror.

そこでまず被測定物の形状測定用干渉計について説明す
る。レーザ光源30から照射されたレーザ光は、平行ビ
ーム(イ)となり、第1ビームスプリツタ34により、
光路(ロ)および()))に分離される。
First, an interferometer for measuring the shape of an object to be measured will be explained. The laser light emitted from the laser light source 30 becomes a parallel beam (A), and the first beam splitter 34
The optical path is separated into (b) and ())).

分離された一方の光路(ロ)の平行ビームは、さらに第
2ビームスプリツタ36により、光路(ホ)および(へ
)に分離される。光路(ホ)の平行ビームは、参照11
t32により入射方向と反対方向に反射され、参照波と
して再び$2ビームスプリッタ36に帰還する。この参
照波は、第2ビームスプリツタ36により直進する光路
(ト)と直角に反射されて光路(ロ)上を逆方向に進ん
で、前記第1ビームスプリツタ34に帰還する光路とに
分離される。一方路1ビームスプリッタ34により分離
されて直進した光路(ハ)の平行ビームは、被測定物3
8により入射方向と反対方向に反射され、被検波として
再び第1ビームスプリツタ34に帰還する。第1ビーム
スプリツタ34においては、上記の参照波と被検波とが
光路(ニ)で干渉され、その干渉縞はテレビカメラ等の
撮像装置40によって読取られ、さらに干渉縞位相解析
システム42に干渉縞の各画素のデータが取込まれる。
The parallel beam in one of the separated optical paths (B) is further separated into optical paths (E) and (E) by the second beam splitter 36. The parallel beam of the optical path (e) is shown in reference 11.
It is reflected in the direction opposite to the incident direction by t32 and returns to the $2 beam splitter 36 again as a reference wave. This reference wave is separated into an optical path (g) that travels straight by the second beam splitter 36 and an optical path that is reflected at right angles, travels in the opposite direction on the optical path (b), and returns to the first beam splitter 34. be done. The parallel beam on the optical path (c) that is separated by the one-way beam splitter 34 and goes straight is the object to be measured 3.
8 in the opposite direction to the incident direction, and returns to the first beam splitter 34 again as a test wave. In the first beam splitter 34, the reference wave and the test wave are interfered in the optical path (d), and the interference fringes are read by an imaging device 40 such as a television camera, and further interfere with the interference fringe phase analysis system 42. Data for each pixel of the stripe is captured.

干渉縞位相解析システム42において、後述する方法に
より参照鏡32が微小移動する毎に生ずる変調された干
渉縞のデータが逐次取込まれると、電子計Kfi44に
よりそのデータが演算処理されて、各測定点における初
期位相差が求められ、これを継ぎ合わせることにより被
測定物38の形状等を知ることができる。
In the interference fringe phase analysis system 42, when the data of the modulated interference fringes generated each time the reference mirror 32 moves minutely is sequentially captured by the method described later, the data is processed by the electronic meter Kfi 44, and each measurement The initial phase difference at each point is determined, and by piecing these together, the shape of the object to be measured 38 can be determined.

次に参照鏡32の微小移動量を測定するための干渉計に
ついて説明する。参照鏡32には、これを微小移動させ
るための例えばピエゾ素子のような駆動装置46が取付
けられている。レーザ光源30からの平行ビームは、光
路(イ)、(ロ)を通って、前述のように第2ビームス
プリツタ36により直進する    ゛光路(へ)と光
路(ホ)を通って参照flt32により反射されて直進
する光路(ト)に分離される。光路(へ)の平行ビーム
は、第1の充分に精度のよい反射鏡48により直角に反
射されて、光路(チ)となって第3ビームスプリツタ5
2に入射される。また、光路(ト)の平行ビームは、第
2の充分に精度のよい反射鏡50により直角に反射され
て、光路(す)となって第3ビームスプリツタ52に入
射される。第3ビームスプリツタ52によって、上記の
反射鏡48の被検波たる光路(チ)の平行ビームと参照
鏡32の参照波たる光路(す)の平行ビームとが、光路
(ヌ)で干渉されて、その干渉縞は受光装置54によっ
て読取られる。受光装置54としては、例えば公知のモ
アし縞測定装置のように、受光素子を2つ、もしくは4
つ干渉縞が移動する方向に対し90°づつ位相をずらせ
て配置されたものが使用される。この受光装置54から
は参照鏡32が微小移動したときに生ずる干渉縞の変化
が、逐次縞位相測定装置56に出力され、その信号によ
って参照fi32の移動量が測定される。この測定値は
、電子計算@44に入力され、電子計算機において予め
設定された量だけ参照鏡32が移動したか否か等が演算
され、その結果により、駆動装置ドライブ回路58を介
して、参照鏡32を駆動する駆動装置46への印加電圧
の制御が行なわれる。
Next, an interferometer for measuring the minute movement of the reference mirror 32 will be explained. A driving device 46, such as a piezo element, is attached to the reference mirror 32 to move it minutely. The parallel beam from the laser light source 30 passes through the optical paths (A) and (B), and travels straight through the second beam splitter 36 as described above. It is reflected and separated into an optical path (g) that travels straight. The parallel beam on the optical path (H) is reflected at right angles by the first sufficiently accurate reflecting mirror 48, forming an optical path (H) and passing through the third beam splitter 5.
2. Further, the parallel beam on the optical path (T) is reflected at right angles by the second sufficiently accurate reflecting mirror 50 and enters the third beam splitter 52 as an optical path (S). By the third beam splitter 52, the parallel beam in the optical path (H) which is the test wave of the reflecting mirror 48 and the parallel beam in the optical path (S) which is the reference wave of the reference mirror 32 are interfered in the optical path (N). , the interference fringes are read by the light receiving device 54. The light-receiving device 54 may include two or four light-receiving elements, such as a known mower stripe measuring device.
The two interference fringes used are arranged so as to be shifted in phase by 90 degrees with respect to the moving direction. The light receiving device 54 sequentially outputs changes in the interference fringes that occur when the reference mirror 32 moves minutely to the fringe phase measuring device 56, and the amount of movement of the reference fi 32 is measured based on the signal. This measured value is input to the electronic calculation@44, and the electronic computer calculates whether or not the reference mirror 32 has moved by a preset amount. The voltage applied to the drive device 46 that drives the mirror 32 is controlled.

なお、上記においては、参照波の位相を微小変化させる
方法として、ピエゾ素子のような駆動装置46を直接参
照@32に取付け、参照鏡32を微動させる場合を例に
説明したが、本願発明はこれに限られるものではない。
In addition, in the above, as a method of slightly changing the phase of the reference wave, a case was explained in which the driving device 46 such as a piezo element is directly attached to the reference @ 32 and the reference mirror 32 is slightly moved. It is not limited to this.

すなわち、例えば参照鏡32は固定とし、光路(ホ)の
中間に2平面がわずかに傾斜した楔状〃ラス板を介装し
、この楔状〃ラス板を光路(ホ)に対し直角方向に微小
移動させて、光路長を変化させることによって参照波の
位相を変化させる方式において、楔状〃ラス板にピエゾ
索子を取付けて微小移動させる場合にも勿論適用可能で
ある。
That is, for example, the reference mirror 32 is fixed, a wedge-shaped lath plate with two planes slightly inclined is inserted between the optical path (E), and this wedge-shaped lath plate is slightly moved in a direction perpendicular to the optical path (E). In a method of changing the phase of the reference wave by changing the optical path length, it is of course applicable to the case where a piezo probe is attached to a wedge-shaped lath plate and moved minutely.

次に第5図により本願発明をフィゾー型と通称される干
渉計に適用した第2実施例について説明する。第2実施
例の場合においても同一のレーザ光源および参照鏡を被
測定物の形状を測定するための測定用干渉計と、参照波
の位相を微小変化させるための参照鏡の微小移動量を測
定するための干渉計とに共用する。αは同じである。な
お、図において!@4図と同一符号を付しているものは
全く同一の機能を有するものである。レーザ光源30か
ら照射されたレーザ光は、平行ビームとなって第1ビー
ムスプリツタ60、第2ビームスプリツタ64を透過し
て参照鏡としてのハーフミラ66に入射する。ハーフミ
ラ66は光路に対しわずかに傾斜した参照面を有してお
り、この参照面を光路に対し直角に微動させることによ
り、光路長を変えることが出来るようになっている。こ
の参照面に入射された平行ビームの一部は、入射方向と
反対方向に反射されて参照波となる。またハーフミラ6
6を透過した一部の平行ビームは、被測定物38により
反射されて被検波となって、前記ハーフミラ66に帰還
し、ここで前記参照波と干渉して干渉縞が生ずる。この
干渉縞は前記@2ビームスプリッタ64を介して撮像装
置40によって読取られ、干渉縞位相解析システム42
、電子計算[44により被測定物38の形状等として測
定されることは第1実施例の場合と全く同様である。
Next, a second embodiment in which the present invention is applied to an interferometer commonly called a Fizeau type will be described with reference to FIG. In the case of the second embodiment, the same laser light source and reference mirror are used to measure the measurement interferometer to measure the shape of the object to be measured, and to measure the minute movement of the reference mirror to minutely change the phase of the reference wave. It is also used as an interferometer. α is the same. In addition, in the figure! Components with the same reference numerals as those in Figure @4 have exactly the same functions. The laser light emitted from the laser light source 30 becomes a parallel beam, passes through the first beam splitter 60 and the second beam splitter 64, and enters the half mirror 66 as a reference mirror. The half mirror 66 has a reference surface slightly inclined with respect to the optical path, and by slightly moving this reference surface perpendicular to the optical path, the optical path length can be changed. A part of the parallel beam incident on this reference surface is reflected in a direction opposite to the direction of incidence and becomes a reference wave. Also Half Mira 6
A part of the parallel beam that has passed through the half mirror 66 is reflected by the object to be measured 38, becomes a test wave, and returns to the half mirror 66, where it interferes with the reference wave to generate interference fringes. This interference fringe is read by the imaging device 40 via the @2 beam splitter 64, and is read by the interference fringe phase analysis system 42.
The shape and the like of the object to be measured 38 are measured by electronic calculation [44] in exactly the same way as in the first embodiment.

次に、参照鏡の微小移動量を測定するための干渉計につ
いて説明する。前記した、光路に対し傾斜した参照面を
有するバー7ミ266には、これを光路に対し直角方向
に微小移動させるための、例えばピエゾ素子のような駆
動装置46が取付けられている。前記したレーザ光源3
0からの平行ビームは、第1ビームスプリツタ60によ
って直角に反射される光路と直進する光路に分離される
。直角に反射された平行ビームは、充分に精度のよい反
射鏡70により、入射方向と反対方向に反射されて、反
射@70の被検波として第1ビームスプリツタ60に帰
還する。また前記fPJ1ビームスプリッタ60を直進
する平行ビームは、前記したハーフミラ66により入射
方向と反対方向に反射され、参照波となって、第1ビー
ムスプリツタ60に帰還する。上記の反射鏡70の被検
波とハーフミラ66の参照波とは、1iビームスプリツ
タ60を介して干渉し、その干渉縞は受光装置54によ
って読取られる。この受光装置54によって読取られた
干渉縞の変化から、縞位相測定装置56によりハーフミ
ラ66の移動量が測定され、さらに電子計に磯44によ
り駆動装置ドライブ回路58を介して駆動装置46の制
御が行なわれる、αは第1実施例の場合と同様である。
Next, an interferometer for measuring the minute movement of the reference mirror will be described. A driving device 46, such as a piezo element, for example, is attached to the bar 7mi 266, which has the reference surface inclined with respect to the optical path, to move it minutely in a direction perpendicular to the optical path. Laser light source 3 described above
The parallel beam from 0 is split by the first beam splitter 60 into an optical path that is reflected at right angles and an optical path that travels straight. The parallel beam reflected at right angles is reflected in a direction opposite to the incident direction by a sufficiently accurate reflecting mirror 70, and returns to the first beam splitter 60 as a reflected test wave @70. Further, the parallel beam traveling straight through the fPJ1 beam splitter 60 is reflected by the half mirror 66 in a direction opposite to the direction of incidence, and returns to the first beam splitter 60 as a reference wave. The test wave from the reflecting mirror 70 and the reference wave from the half mirror 66 interfere with each other via the 1i beam splitter 60, and the interference fringes are read by the light receiving device 54. Based on the change in the interference fringes read by the light receiving device 54, the movement amount of the half mirror 66 is measured by the fringe phase measuring device 56, and the drive device 46 is controlled by the electronic meter via the drive device drive circuit 58 by the rock 44. α is the same as in the first embodiment.

上記の実施例において、参照波の位相を微小変化させる
ための駆動装置としては、光路に対し直角な参照面を有
するハーフミラを用い、このハーフミラをピエゾ素子等
で光路に沿って移動させるようにしても勿論可能である
。なお第5図において偏光板62とλ/4板68は、被
測定物38の被検波が撮像装置40には入射するが、受
光装置54には入射しないためのものである。すなわち
直線偏光レーザ30からの平行ビームは、偏光板62を
透過することにより偏光面が一つに制限された直線偏光
ビームとなる。
In the above embodiment, a half mirror having a reference surface perpendicular to the optical path is used as the driving device for minutely changing the phase of the reference wave, and this half mirror is moved along the optical path using a piezo element or the like. Of course, it is also possible. In FIG. 5, the polarizing plate 62 and the λ/4 plate 68 are provided so that the detection wave of the object to be measured 38 enters the imaging device 40 but does not enter the light receiving device 54. That is, the parallel beam from the linearly polarized laser 30 becomes a linearly polarized beam whose polarization plane is limited to one by passing through the polarizing plate 62.

この直線偏光ビームはλ/4板6板金8過すると円偏光
ビームとなりさらに被測定物38によって反射された後
再びλ/4板6板金8過すると、元の直線偏光ビームに
対して偏光面が90°ずれた直線偏光ビームとなる。従
ってこの偏光面が90°ずれた直線偏光ビームは偏光板
62を透過せず、受光装置54には入射しないようにな
っている。
When this linearly polarized beam passes through the λ/4 plate 6 sheet metal 8, it becomes a circularly polarized beam and is further reflected by the object to be measured 38. When it passes through the λ/4 plate 6 sheet metal 8 again, the plane of polarization changes with respect to the original linearly polarized beam. This results in a linearly polarized beam shifted by 90°. Therefore, this linearly polarized beam whose polarization plane is shifted by 90 degrees does not pass through the polarizing plate 62 and does not enter the light receiving device 54.

以上説明した本願発明の作用を、参照波の位相・を微小
変化させる方法として、参照鏡を光路と同一方向に微小
移動させる第4図の場合を例として説明する。いま駆動
装置46により参照鏡32を徐々に移動させると、その
移動量は参照鏡の微小移動量を測定するための干渉計を
介して、縞位相測定装置56により測定される。参照鏡
32の移動量が所定量に達しないとき、例えば第3図に
おいて、0位置から移動を始めてn、位置まで達してい
ないときには、電子計算機44の指令により駆動装置ド
ライブ回路58を介して駆動装置46が制御され、参照
鏡32は移動を継続する。参照鏡32が所定量移動し、
n1位置に達したことが測定されると、指令により参照
鏡32の移動は停止する。このときの参照鏡32の参照
波と被測定物38の被検波とが干渉して出来る干渉縞の
データは、被測定物の形状を測定するための測定用干渉
計により、撮像装置40を介して干渉縞位相解析システ
ム42により取込まれる。次いで再び指令により駆動装
置46が駆動し、参照鏡32は移動を開始し、参照I!
32がn2位置に達すると停止して、上記の場合と同様
、位相変調された干渉縞のデータが、干渉縞位相解析シ
ステム42により取込まれる。こうして第3図の例にお
いては16回(n+、1□・・・・・・・・n16)均
等に参照鏡が微小移動されたときの変g4された干渉縞
のデータがすべて取込まれると、電子計算機44により
演算処理された各測定点の初期位相差が求められ、これ
から被測定物の形状等を高精度に測定することができる
The operation of the present invention explained above will be explained by taking as an example the case of FIG. 4 in which the reference mirror is slightly moved in the same direction as the optical path as a method of slightly changing the phase of the reference wave. Now, when the reference mirror 32 is gradually moved by the driving device 46, the amount of movement is measured by the fringe phase measuring device 56 via an interferometer for measuring minute amounts of movement of the reference mirror. When the amount of movement of the reference mirror 32 does not reach a predetermined amount, for example, in FIG. Device 46 is controlled and reference mirror 32 continues to move. The reference mirror 32 moves by a predetermined amount,
When it is determined that the n1 position has been reached, the movement of the reference mirror 32 is stopped by a command. At this time, data on interference fringes created by interference between the reference wave from the reference mirror 32 and the test wave from the object to be measured is collected via the imaging device 40 by a measurement interferometer for measuring the shape of the object to be measured. is captured by the interference fringe phase analysis system 42. Next, the drive device 46 is driven again by a command, the reference mirror 32 starts moving, and the reference I!
32 stops when it reaches the n2 position, and as in the case above, phase modulated interference fringe data is captured by the interference fringe phase analysis system 42. In this way, in the example of Fig. 3, when the reference mirror is evenly moved minutely 16 times (n+, 1□...n16), all the data of the interference fringes that have been changed g4 are captured. The initial phase difference of each measurement point is calculated by the electronic computer 44, and the shape etc. of the object to be measured can be measured with high precision from this.

以上詳述したように本願発明によれば、被測定物の形状
測定用の干渉計と、参照波の位相を微小変化させるため
の駆動装置の微小移動量を画定するための干渉計とを有
し、かつ1つのレーザ光源と1つの参照波を両干渉計に
共用する構成としたことを特徴とするものであり、これ
により参照波の微小変化を、当該参照波を微小変化させ
るための駆動装置を組込んだレーザ干渉計で直接測定す
ることができること、その測定結果によりリアルタイム
で参照波の位相変化をクローズトループ制御で行なえる
こと、従って参照鏡等の精度の高い位置決めが可能であ
ること、静電容量センサを用いた場合のようにキャリブ
レーションする必要がないこと、また上記した2つの干
渉計は、レーザ光源と参照鏡以外は互いに独立した光学
系から成り立っており、相互に悪影響を与えることがな
いこと等の優れた効果を奏することが出来だ。
As described in detail above, the present invention includes an interferometer for measuring the shape of the object to be measured and an interferometer for determining the minute movement amount of the drive device for minutely changing the phase of the reference wave. It is characterized by having a structure in which one laser light source and one reference wave are shared by both interferometers, so that minute changes in the reference wave can be caused by driving for making minute changes in the reference wave. It is possible to perform direct measurement with a laser interferometer that incorporates the device, and the phase change of the reference wave can be performed in real time using closed loop control based on the measurement results. Therefore, highly accurate positioning of the reference mirror, etc. is possible. , there is no need for calibration like when using a capacitance sensor, and the two interferometers mentioned above are composed of independent optical systems except for the laser light source and reference mirror, so there is no possibility of any negative effects on each other. It can produce excellent effects such as not giving anything.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は干渉計測の原理説明図、!@2図は縞走査方式
による干渉計測の原理説明図。第3図はその出力波形図
、第4図は本願発明の詳細な説明図、第5図は本願発明
の他の実施例説明図。 30:レーザ光源  32:参照[38:被測定物40
:撮像装置  44:電子計算機46:駆動装置52.
60:ビームスブリツタ  54:受光装置56:縞位
相測定装置  66:ハー7ミラ70:反射鏡
Figure 1 is a diagram explaining the principle of interference measurement! @Figure 2 is a diagram explaining the principle of interference measurement using the fringe scanning method. FIG. 3 is an output waveform diagram thereof, FIG. 4 is a detailed explanatory diagram of the present invention, and FIG. 5 is an explanatory diagram of another embodiment of the present invention. 30: Laser light source 32: Reference [38: Object to be measured 40
: Imaging device 44: Electronic computer 46: Drive device 52.
60: Beam splitter 54: Light receiving device 56: Fringe phase measuring device 66: Herr 7 mirror 70: Reflector

Claims (3)

【特許請求の範囲】[Claims] (1) 可干渉性光源からの平行ビームの光路上に設け
られた参照鏡と、前記可干渉性光源からの平行ビームの
光路上に設置された被測定物と、前記参照鏡により反射
される参照波の位相を微小変化させる装置と、前記参照
鏡により反射された参照波と前記被測定物により反射さ
れた被検波とを干渉せしめる装置とからなり、前記参照
波の位相を微小変化させたときに前記被検波との間に生
ずる干渉縞の位相変調情報を撮像装置を介して取込み、
それを解析することにより被測定物の表面形状等を測定
するよう構成された縞走査方式による干渉計測装置にお
いて、前記可干渉性光源からの平行ビームおよび前記参
照鏡により反射された参照波を入射するビームスプリッ
タと、前記ビームスプリッタを介して前記平行ビームと
前記参照波とを干渉せしめて生ずる干渉縞を読取る読取
装置とからなる参照波の位相変化量を測定する干渉計を
備え、前記干渉計により測定された参照波の位相変化量
により、前記参照波の位相を微小変化させる装置を制御
することを特徴とする干渉計測装置。
(1) A reference mirror installed on the optical path of the parallel beam from the coherent light source, an object to be measured installed on the optical path of the parallel beam from the coherent light source, and the beam reflected by the reference mirror. The device includes a device that slightly changes the phase of a reference wave, and a device that causes interference between the reference wave reflected by the reference mirror and the test wave reflected by the object to be measured, and the device slightly changes the phase of the reference wave. Capturing phase modulation information of interference fringes that sometimes occurs between the test wave and the test wave through an imaging device,
A parallel beam from the coherent light source and a reference wave reflected by the reference mirror are input to an interference measuring device using a fringe scanning method, which is configured to measure the surface shape, etc. of the object to be measured by analyzing it. an interferometer for measuring the amount of phase change of a reference wave, the interferometer comprising a beam splitter that measures the amount of phase change of a reference wave, and a reading device that reads interference fringes generated by interfering the parallel beam and the reference wave through the beam splitter; An interferometric measurement device characterized by controlling a device that slightly changes the phase of the reference wave based on the amount of phase change of the reference wave measured by the method.
(2) 前記参照鏡により反射された参照波と前記被測
定物により反射された被検波とを干渉せしめる装置が、
可干渉性光源からの平行ビームをビームスプリッタによ
り分離し、分離された一方の平行ビームを参照鏡により
反射させて参照波として前記ビームスプリッタに帰還さ
せ、分離された他の一方の平行ビームを被測定物により
反射させて被検波として前記ビームスプリッタに帰還さ
せ、前記ビームスプリッタにおいて前記参照波と前記被
検波とを干渉せしめる装置であることを特徴とする特許
請求の範囲第1項記載の干渉計測装置。
(2) A device for causing interference between a reference wave reflected by the reference mirror and a test wave reflected by the object to be measured,
A parallel beam from a coherent light source is separated by a beam splitter, one of the separated parallel beams is reflected by a reference mirror and returned to the beam splitter as a reference wave, and the other separated parallel beam is reflected by a reference mirror. The interference measurement according to claim 1, characterized in that it is a device that reflects the reflected wave from a measurement object and returns it to the beam splitter as a test wave, and causes the reference wave and the test wave to interfere in the beam splitter. Device.
(3) 前記参照鏡により反射された参照波と前記被測
定物により反射された被検波とを干渉せしめる装置が、
可干渉性光源からの平行ビームの光路上に設けられたハ
ーフミラにより反射される参照波と、前記ハーフミラを
透過して被測定物により反射され、前記ハーフミラを再
び透過する被検波とを干渉せしめる装置であることを特
徴とする特許請求の範囲第1項記載の干渉計測装置。
(3) A device for causing interference between a reference wave reflected by the reference mirror and a test wave reflected by the object to be measured,
A device that causes interference between a reference wave reflected by a half mirror provided on the optical path of a parallel beam from a coherent light source and a test wave that passes through the half mirror, is reflected by an object to be measured, and passes through the half mirror again. An interference measuring device according to claim 1, characterized in that:
JP27893584A 1984-12-28 1984-12-28 Interference measuring apparatus Pending JPS61155902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27893584A JPS61155902A (en) 1984-12-28 1984-12-28 Interference measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27893584A JPS61155902A (en) 1984-12-28 1984-12-28 Interference measuring apparatus

Publications (1)

Publication Number Publication Date
JPS61155902A true JPS61155902A (en) 1986-07-15

Family

ID=17604121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27893584A Pending JPS61155902A (en) 1984-12-28 1984-12-28 Interference measuring apparatus

Country Status (1)

Country Link
JP (1) JPS61155902A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63138204A (en) * 1986-11-29 1988-06-10 Toshiba Corp Shape measuring method
JPH04297808A (en) * 1991-03-27 1992-10-21 Mitsutoyo Corp Error correction of phase shift fizeau interferometer
JPH04297807A (en) * 1991-03-27 1992-10-21 Mitsutoyo Corp Phase shift micro fizeau interferometer
JP2008116293A (en) * 2006-11-02 2008-05-22 Olympus Corp Fringe scan interference pattern measurement method, and interferometer
JP2011123018A (en) * 2009-12-14 2011-06-23 Olympus Corp Fringe scanning interference fringe measuring method, and interferometer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63138204A (en) * 1986-11-29 1988-06-10 Toshiba Corp Shape measuring method
JPH04297808A (en) * 1991-03-27 1992-10-21 Mitsutoyo Corp Error correction of phase shift fizeau interferometer
JPH04297807A (en) * 1991-03-27 1992-10-21 Mitsutoyo Corp Phase shift micro fizeau interferometer
JP2008116293A (en) * 2006-11-02 2008-05-22 Olympus Corp Fringe scan interference pattern measurement method, and interferometer
JP2011123018A (en) * 2009-12-14 2011-06-23 Olympus Corp Fringe scanning interference fringe measuring method, and interferometer

Similar Documents

Publication Publication Date Title
US5469259A (en) Inspection interferometer with scanning autofocus, and phase angle control features
US3871771A (en) Optical apparatus for determining deviations from a predetermined form of a surface
US4884697A (en) Surface profiling interferometer
CN104215176A (en) High accuracy optical interval measurement device and method
CN104833486A (en) Multi-reflection laser differential confocal long focal length measuring method and multi-reflection laser differential confocal long focal length measuring device
US3767307A (en) Real time interferometer
US4334778A (en) Dual surface interferometer
US4678337A (en) Laser based gaging system and method of using same
US4764014A (en) Interferometric measuring methods for surfaces
JPS61155902A (en) Interference measuring apparatus
US5786896A (en) Oblique incidence interferometer with fringe scan drive
JPS63193003A (en) Apparatus for measuring depth of recessed part and thickness of film
JP4100663B2 (en) Absolute thickness measuring device
JPS61155903A (en) Interference measuring apparatus
JP2557377B2 (en) Depth measuring device
JPH09196619A (en) Method and instrument for measuring minute displacement
JPH03156305A (en) Aspherical-shape measuring apparatus
JP2591143B2 (en) 3D shape measuring device
JPH02228512A (en) Highly accurate laser measurement method and apparatus for surface of solid
EP0144338A1 (en) Dynamic mirror alignment control
JP2705752B2 (en) Method of measuring refractive index and method of measuring property characteristics
JP2527176B2 (en) Fringe scanning shearing interferometer
JPH03282205A (en) Thickness measuring apparatus
JPH02300618A (en) Three-dimensional shape measuring instrument
JPH10170340A (en) Measuring apparatus for interference efficiency of interferometer for ft