JPH03282205A - Thickness measuring apparatus - Google Patents

Thickness measuring apparatus

Info

Publication number
JPH03282205A
JPH03282205A JP8610490A JP8610490A JPH03282205A JP H03282205 A JPH03282205 A JP H03282205A JP 8610490 A JP8610490 A JP 8610490A JP 8610490 A JP8610490 A JP 8610490A JP H03282205 A JPH03282205 A JP H03282205A
Authority
JP
Japan
Prior art keywords
light
sample
thickness
measurement
beat signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8610490A
Other languages
Japanese (ja)
Inventor
Mataichiro Kiso
木曽 又一郎
Hitoshi Teramoto
寺本 仁志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP8610490A priority Critical patent/JPH03282205A/en
Publication of JPH03282205A publication Critical patent/JPH03282205A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate disagreement in focal points due to the thicknesses of samples and to make it possible to measure the thickness highly acurately by arranging two Wollaston prisms in series in the reverse direction to each other, and thereby omitting a convex lens. CONSTITUTION:The output light from a Zeeman laser 4 is split into projecting light 10 and reference light 12 in a first Wollastone prism 8. The light beams becomes the parallel light beams to each other in a reversely dirrected second Wollastone prisim 27. The projecting light 10 is projected on a sample 25, and the reference light 12 is projected on a reference stage 26. The refelcted light beams are returned to the prisim 27 again. The projecting light 10 and the reference light 12 are synthesized and become measuring light 16. The measuring beat signal is inputted into a phase meter 23 through a measuring optical con verter 22. Meanwhile, 4% of the output light is reflected from a planar glass 7 and converted into a reference beat signal in a reference light converter 21. The signal is inputted into the phase meter 23. The thickness of the sample 25 is detected based on the phase difference between both waves.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、高精度仕上部品などの厚さを測定するため
の厚さ測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thickness measuring device for measuring the thickness of highly precisely finished parts.

〔従来の技術〕[Conventional technology]

従来、部品などの厚さを測定するとき、触針式の厚さ計
や、さらには光電式の厚さ計などが用いられているが、
高精度の測定を行なう必要がある場合は、いずれも精度
不足である。
Conventionally, when measuring the thickness of parts, etc., stylus-type thickness gauges and even photoelectric thickness gauges have been used.
In both cases, precision is insufficient when high-precision measurements are required.

また、用途の異なる高精度の表面粗さ測定装置を応用し
て厚さ測定を行なうことも考えられるが、以下に述べる
ように問題点があった。
It is also conceivable to measure the thickness by applying a high-precision surface roughness measuring device for different purposes, but there are problems as described below.

第4図は例えば月刊誌「オブトロニクス」1983年3
月号に示された従来の表面粗さ測定装置の構成を示す説
明図であり、ゼーマンレーザーの干渉現象を利用したも
のである。図において、(1)は粗さ測定を行なう対象
である試料、(2)は試料が取付けられて回転軸(3)
を中心として回転する回転テーブル、(2)はゼーマン
レーザーで、出力光f5]として、照射方向Zに対して
直交する二方向x、yに偏光され、かつ、二方向の周波
数が少し異ったレーザー光を出力する。(7)は出力光
(51を4%程反射させる平面ガラス、因は入射光の偏
光方向により屈折率が異なるウォラストンプリズムで、
試料(1)表面上の測定点(9)を照射するための試料
照射光α0)と回転軸G)上の表面に定めた参照点(l
l)を照射する参照光(12)とに出力光(51を二分
する。 (14)は互いに拡散状にある試料照射光(1
01と参照光(12)を互いに平行すると共に、それぞ
れを測定点(9)と参照点(11)に集光する凸レンズ
である。
Figure 4 shows, for example, the monthly magazine "Obtronics", 1983.
FIG. 1 is an explanatory diagram showing the configuration of a conventional surface roughness measuring device shown in the monthly issue, which utilizes the interference phenomenon of a Zeeman laser. In the figure, (1) is the sample to be measured for roughness, and (2) is the rotating shaft (3) on which the sample is attached.
(2) is a Zeeman laser, and the output light f5] is polarized in two directions x and y perpendicular to the irradiation direction Z, and the frequencies in the two directions are slightly different. Outputs laser light. (7) is a flat glass that reflects about 4% of the output light (51), which is caused by a Wollaston prism whose refractive index differs depending on the polarization direction of the incident light.
The sample irradiation light α0) for irradiating the measurement point (9) on the surface of the sample (1) and the reference point (l) set on the surface on the rotation axis G)
The output light (51) is divided into two parts: the reference light (12) that irradiates the sample irradiation light (12) and the reference light (12) that irradiates the sample
It is a convex lens that makes the 01 and reference light (12) parallel to each other and focuses them on the measurement point (9) and the reference point (11), respectively.

(15)は試料(1)上の測定点(9)と参照点(11
)で反射した試料照射光α0)と参照光(12)が凸レ
ンズ(14)とつオラストンプリズム6を通過して一本
のビームに集光された測定光(16)を反射させる小形
ミラーで、試料(1)での反射後の光路は図において破
線で示している。 (17)、(18)は出力光(5]
が平面ガラスmで約4%反射した基準光(19)と小形
ミラー(15)で反射した測定光(16)とがそれぞれ
入射される基準用偏光フィルターおよび測定用偏光フィ
ルター(21)、(22)は基準用および測定用偏光フ
ィルターを通過した基準光(19)および測定光(16
)からそれぞれビート信号を生成する基準光変換器およ
び測定用光変換器、(23)は基準および測定用光変換
器(21)、(22)の出力端に接続された位相計であ
る。
(15) is the measuring point (9) on the sample (1) and the reference point (11).
) is a small mirror that reflects the sample irradiation light α0) and the reference light (12) that pass through the convex lens (14) and the Oraston prism 6, and then reflect the measurement light (16) that is condensed into a single beam. , the optical path after reflection at sample (1) is shown by a broken line in the figure. (17) and (18) are the output light (5)
A reference polarizing filter and a measuring polarizing filter (21), (22) are incident on the reference light (19), which is reflected by about 4% on the flat glass m, and the measurement light (16), which is reflected on the small mirror (15), respectively. ) are the reference light (19) and measurement light (16) that have passed through the reference and measurement polarizing filters.
), respectively, and a reference optical converter and a measuring optical converter generate beat signals from each of them, and (23) is a phase meter connected to the output ends of the reference and measuring optical converters (21) and (22).

次に動作について説明する。ゼーマンレーザー(2)か
ら発せられる出力光(5]は照射方向Zと直交し、かつ
、互いに直交する二方向x、yにそれぞれ偏光されたp
波とS波からなっており、これを第5図のベクトル図に
太矢印で模擬的に示す、ここで、p波とS波の光の振幅
はほぼ同一であり、また、周波数は互いに少し異ってい
る。従って平面ガラス口で反射された基準光(19)も
同様になっている。
Next, the operation will be explained. The output light (5) emitted from the Zeeman laser (2) is polarized in two directions x and y, which are perpendicular to the irradiation direction Z and perpendicular to each other.
It consists of a wave and an S wave, and this is shown schematically by the thick arrow in the vector diagram in Figure 5. Here, the amplitude of the light of the p wave and the S wave is almost the same, and the frequencies are slightly different from each other. It's different. Therefore, the reference light (19) reflected by the flat glass opening is also the same.

基準用偏光フィルタ(17)の偏光方向rは第5図に示
すように45度方向に予め設定されており、p波、S波
ともに点線方向成分のみが基準用偏光フィルタ(17)
の出力として取出されて、基準光変換器(21〉に入力
される。p波とS波の間には周波数の差が少しあるので
両波から正弦波のビート信号が得られ、基準光変換器(
21)から基準ビート信号として位相計(23)に入力
される。
The polarization direction r of the reference polarizing filter (17) is preset to the 45 degree direction as shown in FIG.
It is extracted as the output of the P wave and inputted to the reference optical converter (21). Since there is a slight difference in frequency between the P wave and the S wave, a sine wave beat signal is obtained from both waves, and the reference optical converter (21) vessel(
21) is input to the phase meter (23) as a reference beat signal.

一方、出力光((5)の大部分は平面ガラス(7)を透
過してウォラストンプリズム6へ入射し、偏光方向が互
いに異なるp波とS波に二分されて、それぞれ試料照射
光α0)と参照光(12)になる0両者は互いに拡散状
になって凸レンズ(14)へ入射するが、凸レンズ(1
4)により互いに平行になると共に、それぞれ試料(1
)上の測定点(9)と参照点(11)へ微小な点として
集光される。そして試料(1]で乱反射した試料照射光
aαと参照光(12)は、破線で示すように凸レンズ(
14)により集光されてウォラストンプリズム(へ)に
導かれ、互いに合成されて測定光(16)となる。ウォ
ラストンプリズム日を出た測定光(16)は小形ミラー
(15)で反射し、測定用偏光フィルタ(I8)および
測定用光変換器(22)により、前述の基準光(19)
と同様にしてp波とS波のビート信号を生成し、測定ビ
ート信号として位相計(23)に入力される。
On the other hand, most of the output light ((5) passes through the flat glass (7) and enters the Wollaston prism 6, where it is divided into two waves, p-wave and S-wave with different polarization directions, each of which is the sample irradiation light α0). and reference light (12). Both become diffused and enter the convex lens (14), but the convex lens (14)
4), they become parallel to each other, and each sample (1
) is focused on the measurement point (9) and the reference point (11) as minute points. Then, the sample irradiation light aα diffusely reflected by the sample (1) and the reference light (12) are reflected by the convex lens (
14), the light is guided to the Wollaston prism (to), and is combined with each other to form measurement light (16). The measurement light (16) emerging from the Wollaston prism is reflected by a small mirror (15), and converted into the aforementioned reference light (19) by a measurement polarizing filter (I8) and a measurement light converter (22).
P-wave and S-wave beat signals are generated in the same manner as above, and are input to the phase meter (23) as measurement beat signals.

第6図はビート信号の波形図であり、A、Bはそれぞれ
基準ビート信号、測定ビート信号である。
FIG. 6 is a waveform diagram of a beat signal, and A and B are a reference beat signal and a measurement beat signal, respectively.

第4図において、試料照射光α0)と参照光(12)の
光路長がもし互いに等しければ、両者の波形の相対関係
は基準光(19)におけるp波とS波の相対関係と同じ
になるので、AとBは同相になる。上記光路長間に差が
ある場合は上記二組の相対関係間に差が生じるので、こ
れらの相対関係によって定まるビート信号であるAとB
の間に位相差θが生じ、これが位相計(23)の出力と
して検出できる0位相差θと光路差の関係は使用するレ
ーザー光の波長によって決まり、ヘリウム・ネオンレー
ザ−の場合は360度が316.4ナノメータに相当す
る。
In Figure 4, if the optical path lengths of the sample irradiation light α0) and the reference light (12) are equal, the relative relationship between their waveforms will be the same as the relative relationship between the p-wave and the S-wave in the reference light (19). Therefore, A and B are in phase. If there is a difference between the optical path lengths, there will be a difference between the two sets of relative relationships, so the beat signals A and B determined by these relative relationships will be different.
A phase difference θ is generated between them, which can be detected as the output of the phase meter (23).The relationship between the phase difference θ and the optical path difference is determined by the wavelength of the laser beam used. This corresponds to 316.4 nanometers.

回転テーブル(2)が回転軸(3)を中心に回転し、試
料(1)も同様に回転する場合を考えると、参照点(1
1)は回転軸(3)上にあるので回転にががわらず不変
てあり、よって、参照光(I2)の光路長も不変である
。これに対し、測定点(9)は試料(1)の回転に従っ
てその表面の円周上を移動するので、表面の凹凸に応じ
て試料照射光QOIの光路長が変化し、そのため参照光
(12)と試料照射光α0)の波形の相対関係が変化す
る。従って、測定ビート信号の位相が変化し、第6図の
位相差θの変化として位相計により検出でき、試料(1
)の表面粗さを知ることができる。
Considering the case where the rotary table (2) rotates around the rotation axis (3) and the sample (1) also rotates, the reference point (1)
1) is located on the rotation axis (3), so it remains unchanged regardless of rotation, and therefore the optical path length of the reference light (I2) also remains unchanged. On the other hand, since the measurement point (9) moves on the circumference of the surface of the sample (1) as it rotates, the optical path length of the sample irradiation light QOI changes depending on the surface unevenness, and therefore the reference light (12 ) and the waveforms of the sample irradiation light α0) change. Therefore, the phase of the measurement beat signal changes, which can be detected by the phase meter as a change in the phase difference θ in Figure 6, and the sample (1
) surface roughness can be determined.

上記の表面粗さ測定装置を厚さ測定装置として応用し、
例えば、高精度に加工されたブロツクゲ−ジのようなも
のの厚さを高精度に測定する場合について考える。第4
図で(1)のところを基準台とし、測定点(9)のとこ
ろに被測定物を取付ける。なお、被測定物は参照点(1
1)まで延長させない、つまり、参照点(11)は基準
台上にあるようにする。
Applying the above surface roughness measuring device as a thickness measuring device,
For example, consider the case where the thickness of something like a highly precisely machined block gauge is to be measured with high precision. Fourth
In the figure, point (1) is used as a reference stand, and the object to be measured is attached to measurement point (9). Note that the object to be measured is at the reference point (1
1), that is, the reference point (11) should be on the reference stand.

また、回転は不要である。Further, rotation is not necessary.

以上のようにすると、被測定物の厚さに応じて、試料照
射光αωと参照光(12)の間に光路長の差が生じ、従
って、上記表面粗さの測定と同様にして厚さを測定でき
るようにも思われる。しかし実際には、凸レンズ(14
)によって試料照射光α〔と参照光(12)を同時にそ
れぞれ測定点(9)と参照点(11)に集光しており、
凸レンズ(14)から双方の点までの距離が被測定物の
厚さ分だけ異るため、凸レンズ(14)の焦点を一方の
点に一致させると他方の点で焦点が一致しないという不
具合が生じる。焦点が一致しないと反射したレーザー光
は凸レンズ(14)とウォラストンプリズム矧で集光さ
れてもp波とS波つまり、試料照射光α〔と参照光(1
2)とが重畳、合成されず、そのため測定用光変換器(
22)で測定ビート信号を生成できない、そこで、凸レ
ンズ(14)を設けない方法も考えられるが、その場合
は、つオラストンプリズム8でそれぞれに分かれた試料
照射光α0)と参照光(12)は互いに開き角を有して
いるため、反射された後、再びウォラストンプリズム(
8)に戻らず、光検出ができないという不具合が生じる
In the above manner, a difference in optical path length occurs between the sample irradiation light αω and the reference light (12) depending on the thickness of the object to be measured, and therefore, the thickness It also seems possible to measure. However, in reality, a convex lens (14
), the sample irradiation light α [and the reference light (12) are simultaneously focused on the measurement point (9) and the reference point (11), respectively.
Since the distances from the convex lens (14) to both points differ by the thickness of the object to be measured, there is a problem that when the focus of the convex lens (14) is made to match one point, the focus does not match at the other point. . If the focus does not match, the reflected laser beam will be condensed by the convex lens (14) and the Wollaston prism, but it will still produce p-waves and S-waves, that is, the sample irradiation light α [and the reference light (1
2) are not superimposed or combined, so the measuring optical converter (
22), the measurement beat signal cannot be generated.Therefore, a method may be considered in which the convex lens (14) is not provided, but in that case, the sample irradiation light α0) and the reference light (12) are separated by the Oraston prism 8. have an angle of opening to each other, so after being reflected, they are reflected again into the Wollaston prism (
8), resulting in a problem that light detection cannot be performed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の厚さ測定装置、例えば触針式や光電式の厚さ計な
どは高精度の測定ができない、また、別用途の高精度の
表面粗さ計は上記のように構成されているので、厚さ測
定装置として応用しようとすると、試料照射光と参照光
との間での焦点の不一致や相互間の開き角のために、測
定用ビート信号がうまく生成されず、従って厚さ測定が
できないなどの問題点があった。
Conventional thickness measuring devices, such as stylus and photoelectric thickness gauges, cannot perform highly accurate measurements, and high-precision surface roughness meters for other purposes are configured as described above. When applied as a thickness measurement device, the beat signal for measurement cannot be generated properly due to the mismatch in focus between the sample irradiation light and the reference light and the aperture angle between them, and therefore thickness measurement cannot be performed. There were problems such as:

この発明は上記のような問題点を解消するためになされ
たもので高精度の厚さ測定を行なうことができる厚さ測
定装置を得ることを目的とする。
The present invention was made to solve the above-mentioned problems, and an object of the present invention is to provide a thickness measuring device that can measure thickness with high accuracy.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る厚さ測定装置は、ゼーマンレーザーを用
いたものであり、ウォラストンプリズムを二つ設け、こ
れらを互いに逆向きに直列に配置したものである。
The thickness measuring device according to the present invention uses a Zeeman laser, and has two Wollaston prisms arranged in series in opposite directions.

〔作用〕[Effect]

この発明における厚さ測定装置は、ゼーマンレーザーか
ら発せられたレーザー光を一方のウォラストンプリズム
により試料照射光と参照光とに一分すると共に、互いに
開き角を有する試料照射光と参照光を他方のウォラスト
ンプリズムにより互いに平行にする。
The thickness measuring device according to the present invention divides the laser beam emitted from the Zeeman laser into a sample irradiation light and a reference beam using one Wollaston prism, and divides the sample irradiation light and the reference beam, which have an angle of divergence from each other, into the other. parallel to each other using a Wollaston prism.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明する。第1
図はこの発明の一実施例による厚さ測定装置の構成を示
す説明図であり、図において、(2)、(9、(至)、
θ、α〔、(12)および(15)〜(23)は第4図
の場合と同様であるので説明を省略する。ただし、6は
第1のウォラストンプリズムと称するものとする。 <
25)は厚さ測定を行う対象である試料、(26)は試
料(25)が取付けられる基準台で、試料(25)、基
準台(26)はいずれも高精度に加工され、鏡面仕上げ
されている。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure is an explanatory diagram showing the configuration of a thickness measuring device according to an embodiment of the present invention, and in the figure, (2), (9, (to),
Since θ, α[, (12) and (15) to (23) are the same as in the case of FIG. 4, their explanation will be omitted. However, 6 shall be referred to as the first Wollaston prism. <
25) is the sample whose thickness is to be measured, and (26) is the reference stand on which the sample (25) is mounted. Both the sample (25) and the reference stand (26) are processed with high precision and have a mirror finish. ing.

(27)は第1のウォラストンプリズムとp波、S波の
分離角が同一で、がっ、これとは逆向きに直列配Wされ
た第2のウォラストンプリズム、(29)は基準台(2
6)を搭載してX方向に移動可能な一方面ステージ、(
30)は一方向ステージを支持するベース、(31)は
ベース(30)に対する一方面ステージ(29)の移動
量を検出するポジションセンサ、(32)はポジション
センサ(3I)用の変換アンプ、(33)はX−Yレコ
ーダであり、変換アンプ(32)の出力がX軸へ、そし
て位相計(23)の出力がY軸へそれぞれ入力されてい
る。
(27) is a second Wollaston prism that has the same separation angle of p-wave and S-wave as the first Wollaston prism, and is arranged in series in the opposite direction, (29) is a reference stand. (2
6) and a one-sided stage that can move in the X direction, (
30) is a base that supports the unidirectional stage; (31) is a position sensor that detects the amount of movement of the unidirectional stage (29) with respect to the base (30); (32) is a conversion amplifier for the position sensor (3I); 33) is an X-Y recorder, in which the output of the conversion amplifier (32) is input to the X axis, and the output of the phase meter (23) is input to the Y axis.

次に、動作について説明する。まず、電子式マイクロメ
ーターやガラススケール式寸法測定器(いずれも図示せ
ず)等で試料(25)の厚さを0.1〜0.2ミクロン
以内の精度で求めておき、しかる後に、以下のようにし
て高精度で厚さを測定する。
Next, the operation will be explained. First, the thickness of the sample (25) is determined with an accuracy of 0.1 to 0.2 microns using an electronic micrometer or a glass scale dimension measuring device (none of which are shown). Measure the thickness with high precision as follows.

試料(25)を基準台(26)に取付け、ゼーマンレー
ザー(2)から出力光(51が発せられると、第1のつ
オラストンプリズムθで互いに開き角を有する試料照射
光001と参照光(12)とに二分される。第2のウォ
ラストンプリズム(27)は第1のウォラストンプリズ
ム6とは逆向きに設けられているので、試料照射光α0
)と参照光(12)が入射するとこれらは互いに平行に
なって射出される。そして試料照射光αlは試料(25
)を、参照光(12)は基準台(26)を照射する。資
料(25)と基準台(26)は高精度加工され、鏡面仕
上げされているので試料照射光α0)と参照光(12)
は測点点(9)と参照点(11)で乱反射することなく
、はぼビーム状のままで反射し、破線で示すようにほぼ
往路に沿って第2のつオラストンプリズム(27)へ戻
る。第1、第2のウォラストンプリズム6、(27)の
レーザー光に対する分離、集光作用は、レーザー光が図
において右向きに進行する場合と左向きに進行する場合
とでは互いに対称になるので、試料照射光α0)と参照
光(12)は合成されて測定光(16)となり、第4図
の場合と同様にして小形ミラー(15)、測定用偏光フ
ィルター(18)、測定用光変換器(22)を径で処理
され、測定ビート信号となって位相計(23)へ入力さ
れる。なお、往路と復路の光軸が重ならないようにする
には、第1、第2のウォラストンプリズム(へ)、(2
7)を光軸に対して少し傾けて配置すればよい。
The sample (25) is mounted on the reference stand (26), and when the output light (51) is emitted from the Zeeman laser (2), the sample irradiation light 001 and the reference light (51) having an angle of divergence from each other are separated by the first Oraston prism θ. 12).Since the second Wollaston prism (27) is provided in the opposite direction to the first Wollaston prism 6, the sample irradiation light α0
) and reference light (12) are incident, they are emitted parallel to each other. The sample irradiation light αl is applied to the sample (25
), the reference light (12) illuminates the reference stand (26). The material (25) and the reference stand (26) are processed with high precision and have a mirror finish, so the sample irradiation light α0) and the reference light (12)
The beam is reflected as a round beam at the measuring point (9) and the reference point (11) without being diffusely reflected, and returns to the second Oraston prism (27) almost along the outward path as shown by the broken line. . The separation and focusing effects of the first and second Wollaston prisms 6, (27) on the laser beam are symmetrical when the laser beam travels to the right and to the left in the figure. The irradiation light α0) and the reference light (12) are combined to become the measurement light (16), which is then combined with a small mirror (15), a measurement polarizing filter (18), and a measurement light converter ( 22) is processed by the diameter, becomes a measurement beat signal, and is input to the phase meter (23). In addition, in order to prevent the optical axes of the outward and return paths from overlapping, the first and second Wollaston prisms (to), (2
7) may be arranged with a slight inclination to the optical axis.

一方、基準光(19)も、第4図の場合と同様にして基
準ビート信号となって位相計(23)へ入力される。と
ころで、試料照射光00)の光路長と参照光(11)の
光路長の間には試料(25)の厚さに応じた差があり、
従って、第4図〜第6図で説明したように、基準ビート
信号と測定ビート信号の間には位相差θが生じ、この位
相差θに対応した直流電圧が位相計の出力となってX−
Yレコーダ(33)のY軸へ入力される。また、一方向
ステージ(29)をベース(30)上でX方向に移動さ
せると、それに伴って測定点(9)と参照点(11)も
移動する。一方向ステージ(29)の移動量はポジショ
ンセンサ(31)で検出され、変換アンプ(32)を経
てこの移動量に対応した直流電圧がX−Yレコーダ(3
3)のX軸へ入力される。
On the other hand, the reference light (19) also becomes a reference beat signal and is input to the phase meter (23) in the same manner as in the case of FIG. By the way, there is a difference between the optical path length of the sample irradiation light 00) and the optical path length of the reference light (11) depending on the thickness of the sample (25).
Therefore, as explained in FIGS. 4 to 6, a phase difference θ occurs between the reference beat signal and the measurement beat signal, and the DC voltage corresponding to this phase difference θ becomes the output of the phase meter. −
It is input to the Y axis of the Y recorder (33). Furthermore, when the one-way stage (29) is moved in the X direction on the base (30), the measurement point (9) and reference point (11) also move accordingly. The amount of movement of the one-way stage (29) is detected by a position sensor (31), and a DC voltage corresponding to this amount of movement is sent to an X-Y recorder (3) via a conversion amplifier (32).
3) is input to the X axis.

第2図は測定点の移動を示す説明図であり、方向ステー
ジ(29)が、例えば実線矢印の向きに移動すると、測
定点(9)は二点鎖線矢印のように(9A)から(9B
)、(9C)へと、そして参照点(11)は−点鎖線矢
印のように(IIA)から<IIB) 、(IIC>へ
と移動する。第3図はそのときの位相差θを示すグラフ
であり、破線で示すようにX−Yレコーダ(33)上で
θAから、θB、θCへと変化する。θAとθBまたは
θBとθCの差θにより試料(25)の厚さtを求める
ことができる。その関係を次式に示す。
FIG. 2 is an explanatory diagram showing the movement of the measurement point. When the direction stage (29) moves, for example, in the direction of the solid line arrow, the measurement point (9) moves from (9A) to (9B) as shown by the two-dot chain arrow.
), (9C), and the reference point (11) moves from (IIA) to <IIB) and (IIC> as indicated by the - dotted chain arrow. Figure 3 shows the phase difference θ at that time. This is a graph, which changes from θA to θB and θC on the X-Y recorder (33) as shown by the broken line.The thickness t of the sample (25) is determined from the difference θ between θA and θB or θB and θC. The relationship is shown in the following equation.

ここで、NはOまたは正の整数、λはレーザー光の波長
であり、ヘリウム・ネオン形のときは632.8ナノメ
ーターである。θの一つの値に対してtは1/2λおき
の多数の値が出るが、試料(25)の厚さを予め0.1
〜0.2ミクロン以内の精度で求めているため、上式の
tは一つの値に定めることができ、試料(25)の厚さ
を極めて高精度で求めることができる。実際には数ナノ
メーター以内の精度が得られた。
Here, N is O or a positive integer, and λ is the wavelength of the laser light, which is 632.8 nanometers in the case of helium-neon type. For one value of θ, there are many values of t at intervals of 1/2λ, but the thickness of the sample (25) is set to 0.1 in advance.
Since it is determined with an accuracy within ~0.2 microns, t in the above equation can be set to one value, and the thickness of the sample (25) can be determined with extremely high accuracy. In reality, accuracy within a few nanometers was achieved.

なお、上記実施例では第1、第2のウォラストンプリズ
ムf81、(27)を僅かに傾けて往復の光路をずらせ
、小形ミラー(15)で測定光(16)を捕えるように
したが、往復の光路を一致させハーフミラ−で測定光(
16)を捕えるようにしてもよい、また、一方向ステー
ジ(29)を設けて、X−Yレコーダ(33)により試
料(25)の厚さをX方向に連続的に検知できるように
したが、試料(25)上の一点または数点の厚さが求め
られればよい場合は一方向ステージ(29)やx−yレ
コーダ(33)を省くことができる。
In the above embodiment, the first and second Wollaston prisms f81, (27) are slightly tilted to shift the reciprocating optical path so that the small mirror (15) captures the measurement light (16). Match the optical paths of the measurement light (
16), or a one-way stage (29) may be provided so that the thickness of the sample (25) can be continuously detected in the X direction by the X-Y recorder (33). If the thickness of one or several points on the sample (25) needs to be determined, the one-way stage (29) and the x-y recorder (33) can be omitted.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば二つのつオラストンプ
リズムを互いに逆向きに直列に設けたので、凸レンズが
不要で、試料の厚さに起因する焦点の不一致などが解消
され、高精度の厚さ測定を行うことができる。
As described above, according to the present invention, two Oraston prisms are installed in series in opposite directions, eliminating the need for a convex lens, eliminating focal mismatches caused by sample thickness, and achieving high precision. Thickness measurements can be taken.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による厚さ測定装置の構成
を示す説明図、第2図は第1図の厚さ測定装置における
測定点の移動を示す説明図、第3図は第1図の厚さ測定
装置における位相差を示すグラフ、第4図は従来の表面
粗さ測定装置の構成を示す説明図、第5図はp波とS波
を示すベクトル図、第6図は基準ビート信号と測定ビー
ト信号を示すグラフである。 図において、(2)はゼーマンレーザー、[51は出力
光、(8)、 (27)は第1.第2のウォラストンプ
リズム、α0)は試料照射光、(I2)は参照光、(I
9)は基準光、(21)は基準光変換器、(22)は測
定用光変換器、(23)は位相計、(25)は試料、(
26)は基準台である。 なお、各図中同一符号は同一または相当部分を示す。
FIG. 1 is an explanatory diagram showing the configuration of a thickness measuring device according to an embodiment of the present invention, FIG. 2 is an explanatory diagram showing the movement of measurement points in the thickness measuring device of FIG. 1, and FIG. Figure 4 is an explanatory diagram showing the configuration of a conventional surface roughness measuring device, Figure 5 is a vector diagram showing p-waves and S-waves, and Figure 6 is a standard. It is a graph showing a beat signal and a measured beat signal. In the figure, (2) is the Zeeman laser, [51 is the output light, (8), (27) is the first laser. The second Wollaston prism, α0) is the sample irradiation light, (I2) is the reference light, (I
9) is the reference light, (21) is the reference light converter, (22) is the measurement light converter, (23) is the phase meter, (25) is the sample, (
26) is a reference stand. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 厚さ測定を行なう試料が取付けられる基準台、二方向へ
偏光されたレーザー光を出力するゼーマンレーザー、上
記レーザー光から基準ビート信号を生成する基準光変換
器、上記試料を照射する試料照射光と上記基準台を照射
する参照光とに上記レーザー光を分割する二つの互いに
逆向きに直列配置されたウォラストンプリズム、上記試
料と基準台とでそれぞれ反射した上記試料照射光と参照
光とから測定用ビート信号を生成する測定用光変換器、
および、上記基準ビート信号と測定用ビート信号との位
相差を測定する位相計を備えた厚さ測定装置。
A reference stand on which a sample to be measured for thickness is attached, a Zeeman laser that outputs laser light polarized in two directions, a reference light converter that generates a reference beat signal from the laser light, and a sample irradiation light that irradiates the sample. Two Wollaston prisms arranged in series in opposite directions split the laser beam into a reference beam that irradiates the reference stand, and measurement is performed from the sample irradiation light and the reference beam that are reflected by the sample and the reference stand, respectively. measurement optical converter that generates beat signals for
and a thickness measuring device including a phase meter that measures the phase difference between the reference beat signal and the measurement beat signal.
JP8610490A 1990-03-29 1990-03-29 Thickness measuring apparatus Pending JPH03282205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8610490A JPH03282205A (en) 1990-03-29 1990-03-29 Thickness measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8610490A JPH03282205A (en) 1990-03-29 1990-03-29 Thickness measuring apparatus

Publications (1)

Publication Number Publication Date
JPH03282205A true JPH03282205A (en) 1991-12-12

Family

ID=13877399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8610490A Pending JPH03282205A (en) 1990-03-29 1990-03-29 Thickness measuring apparatus

Country Status (1)

Country Link
JP (1) JPH03282205A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL9202303A (en) * 1992-12-31 1994-07-18 Univ Delft Tech Sailor ellipsometer.
JP2017516089A (en) * 2014-04-30 2017-06-15 ホリバ ジョヴァン イボン エスアーエス Glow discharge spectroscopic method and system for in-situ measurement of sample etching depth

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL9202303A (en) * 1992-12-31 1994-07-18 Univ Delft Tech Sailor ellipsometer.
WO1994016310A1 (en) * 1992-12-31 1994-07-21 Technische Universiteit Delft Zeeman ellipsometer
JP2017516089A (en) * 2014-04-30 2017-06-15 ホリバ ジョヴァン イボン エスアーエス Glow discharge spectroscopic method and system for in-situ measurement of sample etching depth

Similar Documents

Publication Publication Date Title
US4432239A (en) Apparatus for measuring deformation
US5157458A (en) Polarization interferometer spectrometer
JPS5885103A (en) Surface profile interferometer
EP3074777B1 (en) Optical knife-edge detector with large dynamic range
CN1405550A (en) Apparatus and method for measuring equivalent refraction power of optical film and physical thickness
US4456339A (en) Laser heterodyne surface profiler
CN106123769A (en) The differential planar mirror laser interference device of without error
JPH06229922A (en) Very accurate air refractometer
JPS58191907A (en) Method for measuring extent of movement
US5074666A (en) High stability interferometer for measuring small changes in refractive index and measuring method using the interferometer
JPS59116007A (en) Method of measuring surface
US5220397A (en) Method and apparatus for angle measurement based on the internal reflection effect
JPH03146822A (en) Encoder
JPH0256604B2 (en)
JPH03282205A (en) Thickness measuring apparatus
CN1156243A (en) Interferential measuring method for thin transparent layer thickness of rotary oblique fine light beam and its apparatus
US4105335A (en) Interferometric optical phase discrimination apparatus
JPS62200225A (en) Rotary encoder
JPS61155902A (en) Interference measuring apparatus
JPS63128211A (en) Spacing measuring method
JP2592254B2 (en) Measuring device for displacement and displacement speed
JPH05126603A (en) Grating interference measuring device
JP2705752B2 (en) Method of measuring refractive index and method of measuring property characteristics
JP2517027B2 (en) Moving amount measuring method and moving amount measuring device
SU1693371A1 (en) Interference method of thickness determination of transparent flat-parallel object