JP2517027B2 - Moving amount measuring method and moving amount measuring device - Google Patents

Moving amount measuring method and moving amount measuring device

Info

Publication number
JP2517027B2
JP2517027B2 JP62318727A JP31872787A JP2517027B2 JP 2517027 B2 JP2517027 B2 JP 2517027B2 JP 62318727 A JP62318727 A JP 62318727A JP 31872787 A JP31872787 A JP 31872787A JP 2517027 B2 JP2517027 B2 JP 2517027B2
Authority
JP
Japan
Prior art keywords
light
diffraction grating
diffraction
diffracted
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62318727A
Other languages
Japanese (ja)
Other versions
JPH01161113A (en
Inventor
雅則 鈴木
篤▲のぶ▼ 宇根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP62318727A priority Critical patent/JP2517027B2/en
Publication of JPH01161113A publication Critical patent/JPH01161113A/en
Application granted granted Critical
Publication of JP2517027B2 publication Critical patent/JP2517027B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、測長基準尺を回折とし、1つの回折格子と
その回折格子に対して相対的移動が可能な回折格子とを
用いて回折光を光ヘテロダイン干渉させ、2つの回折格
子からそれぞれ得られる2つのビート信号の位相差によ
り、2つの回折格子間の相対的な移動距離を計測する移
動量測定方法及びそのための装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention uses a length-measuring standard as diffraction and diffracts light using one diffraction grating and a diffraction grating that can move relative to the diffraction grating. The present invention relates to a moving amount measuring method and a device for measuring the relative moving distance between two diffraction gratings by causing light heterodyne interference and measuring the phase difference between two beat signals respectively obtained from the two diffraction gratings. .

〔従来の技術〕[Conventional technology]

長さや位置計測の分野では、従来から純機械的な物差
し、ノギス、マイクロメータ等を用いて人間の目による
計測は依然として行われているが、μm単位を問題とす
るいわゆる精密計測の領域ではそれらの測定用具はその
用をなさない。近年、測定機器の電子化が進み、電子回
路と共に光、磁気等を技術を用いた測定装置が開発さ
れ、加工、検査に多用されている。光を用いるものの一
例としては、レーザー光の波長を基準とした光波干渉測
長器が知られている。この測長器の精度は、現在の工業
水準の要求に十分対応できるものであるが、レーザー光
の光路系の環境変化(気圧、温度、振動等)により検出
精度が劣化する問題がある他に、価格的にも高価であ
る。また、磁気を用いた方式として、帯状、又は棒状の
磁性体に予め寸法の基準としての磁気パタンを記録して
おき、このパタンと磁気ヘッドとの相互の位置関係を求
める磁気スケールが知られている。しかし、この方式は
磁性体に記憶できる基準パタンのピツチにより精度が決
定され、安定に記憶し得るピツチは、5〜10μmであ
り、測定精度は光波干渉測長器と比較して実用上2桁程
度精度が低い。一方、光波干渉測長器と磁気スケールと
の中間的な精度を有する測長装置として回折格子とレー
ザー光を組み合わせた装置の実用化が進められている。
In the field of length and position measurement, measurement with human eyes has traditionally been performed using pure mechanical rulers, calipers, micrometer, etc., but in the area of so-called precision measurement where μm unit is a problem. The measuring tool of does not do that. 2. Description of the Related Art In recent years, electronic measuring devices have been developed, and measuring devices using light, magnetism, and the like as well as electronic circuits have been developed and widely used for processing and inspection. As an example of using light, there is known a light wave interferometer length measuring device based on the wavelength of laser light. The precision of this length measuring instrument can sufficiently meet the requirements of the current industrial level, but there is a problem that the detection precision deteriorates due to the environmental changes (pressure, temperature, vibration, etc.) of the optical path system of the laser beam. The price is expensive. Further, as a method using magnetism, a magnetic scale is known in which a magnetic pattern as a dimensional reference is recorded in advance on a strip-shaped or rod-shaped magnetic body, and the mutual positional relationship between this pattern and the magnetic head is obtained. There is. However, the accuracy of this method is determined by the pitch of the reference pattern that can be stored in the magnetic material, and the pitch that can be stably stored is 5 to 10 μm, and the measurement accuracy is practically two digits compared to the optical wave interferometer. The accuracy is low. On the other hand, a device combining a diffraction grating and a laser beam is being put into practical use as a length measuring device having an intermediate accuracy between a light wave interferometer and a magnetic scale.

従来、この種の装置は一般に第4図、又は第5図に示
すように構成されており、第4図においては、1は回折
格子、2はレーザー光等ほ単色光を発光する光源、3,4
は回折格子1を挾んで光源2と反対側に置かれた反射
鏡、5は干渉光を読み取るために光源2側に配置された
検出器である。光源2から射出された光線Lは、回折格
子1で透過、及び回折される。光線L1は回折格子1で回
折されたn次の回折光とすると、回折格子のピツチを
p、回折格子1の微小変位をΔxとして光線L1には2π
・Δx・n/pの位相情報を含んでいる。一方、回折格子
1を直接的に透過した光線L2には位相情報は含まれてい
ない。光線L1、及びL2は反射鏡3,4でそれぞれ反射さ
れ、往路を逆行し再び回折格子1に入射し回折、及び透
過が行われる。光線L1の透過光と光線L2の−n次回折光
は、空間的に選択され干渉されて検出器5に入射され
る。この時、光線L2の−n次回折光には−2π・Δx・
n/pの位相情報が含まれており、従つて、干渉光には−
2π・Δx・2n/pの位相情報を含むことになり、回折格
子1とその他の光源2、反射鏡3,4等の光学系とが相対
的に動くものとすれば、回折格子1と1周期分の移動に
よつて干渉光の強度変化は2n周期分となる。検出分解能
はp/2nとなる。
Conventionally, this kind of device is generally configured as shown in FIG. 4 or FIG. 5, and in FIG. 4, 1 is a diffraction grating, 2 is a light source for emitting monochromatic light such as laser light, 3 ,Four
Is a reflecting mirror that is placed on the opposite side of the light source 2 across the diffraction grating 1, and 5 is a detector that is placed on the light source 2 side to read the interference light. The light ray L emitted from the light source 2 is transmitted and diffracted by the diffraction grating 1. When light L 1 is an n-th order diffracted light diffracted by the diffraction grating 1, the light beam L 1 the pitch of the diffraction grating p, a small displacement of the diffraction grating 1 as [Delta] x 2 [pi
-It contains the phase information of Δxn / p. On the other hand, the light ray L 2 that has directly transmitted through the diffraction grating 1 does not include phase information. The light rays L 1 and L 2 are reflected by the reflecting mirrors 3 and 4, respectively, travel backward, enter the diffraction grating 1 again, and are diffracted and transmitted. The transmitted light of the light ray L 1 and the −n-th order diffracted light of the light ray L 2 are spatially selected, interfered with each other, and enter the detector 5. At this time, the -nth-order diffracted light of the ray L 2 is -2π · Δx ·
Phase information of n / p is included, and therefore,
Since the phase information of 2π · Δx · 2n / p is included, assuming that the diffraction grating 1 and other optical systems such as the light source 2 and the reflecting mirrors 3 and 4 move relatively, the diffraction gratings 1 and 1 The change in the intensity of the interference light due to the movement of the period is 2n periods. The detection resolution is p / 2n.

また、第5図の装置は、光源2と透過型の回折格子1
との間にビームスプリツター6を配置し、2個の反射鏡
3,4を回折格子1の下側に回折格子1に対して同角度で
対称的に配置してある。検出器5はビームスプリツター
6の反射側に設けてある。従つて、光源2を射出した光
線Lはビームスプリツター6を透過し、他の光学系に対
して移動し得る回折格子1に入射する。この回折格子1
で符号の異なるn次の回折光が形成され、これらを空間
的に選択して光線L1,L2として反射鏡3,4に入射し、これ
らの反射鏡3,4で逆行するように反射し、再び回折格子
1に入射する。1回目の回折で+n次となつた光の+n
次回折光と、1回目の回折で−n次となつた光の−n次
回折光を空間的に選択する。かくすることにより、これ
ら2つの光線L1,L2の進行方向は一致し、互いに干渉し
合いながら光源2の方向に向かつて進み、ビームスプリ
ツター6で反射され検出器5に入射することになる。従
つて、回折格子1により2回回折させることにより、回
折格子1が他の光学系に対して1周期分の移動を行う
と、検出器5に入射する干渉光は4n周期の強度変化を生
じる。検出分解能はp/4nとなり、第4図の例の2倍とな
る。
The device shown in FIG. 5 has a light source 2 and a transmission type diffraction grating 1.
The beam splitter 6 is placed between the two
3, 4 are arranged below the diffraction grating 1 symmetrically with respect to the diffraction grating 1 at the same angle. The detector 5 is provided on the reflection side of the beam splitter 6. Accordingly, the light ray L emitted from the light source 2 is transmitted through the beam splitter 6 and is incident on the diffraction grating 1 which can move with respect to another optical system. This diffraction grating 1
The nth-order diffracted lights with different signs are formed by, and these are spatially selected and are incident on the reflecting mirrors 3 and 4 as the light rays L 1 and L 2, and are reflected by these reflecting mirrors 3 and 4 so as to go backward. Then, the light enters the diffraction grating 1 again. + N of the light that has become the + nth order in the first diffraction
The second-order diffracted light and the -n-th-order diffracted light of the -nth-order diffracted light in the first diffraction are spatially selected. By doing so, the traveling directions of these two light rays L 1 and L 2 coincide with each other, and they travel toward the direction of the light source 2 while interfering with each other, and are reflected by the beam splitter 6 and incident on the detector 5. Become. Therefore, when the diffraction grating 1 is moved twice with respect to another optical system by being diffracted twice by the diffraction grating 1, the interference light incident on the detector 5 changes its intensity by 4n cycles. . The detection resolution is p / 4n, which is twice that of the example in FIG.

第6図は更に具体的に従来例を示し、回折格子1(8
は格子線)の片側に光源2、2個の検出器5a,5b、レン
ズ系9、偏向鏡10a,10b、偏光ビームスプリツター7を
配置し、他素にダハプリズム11,12、位相差板13,14を配
置する。光源2は発光ダイオードや半導体レーザー等の
半導体発光素子であり、レンズ系9は光源2から射出さ
れる光線Lをほぼ平行光束にするためのものであつて、
偏向鏡10a,10bは偏向鏡10aへの入射光と偏向鏡10bから
の出射光とが平行になるように、これらの相対角度は90
度に設定する。また、位相差板13,14は光源2からの直
線偏光を回折格子1に再入射するときには、右廻り及び
左廻りの円偏光にする働きをしている。
FIG. 6 more specifically shows a conventional example, in which the diffraction grating 1 (8
Is a light source 2, two detectors 5a and 5b, a lens system 9, deflecting mirrors 10a and 10b, and a polarization beam splitter 7 are arranged on one side of the grid line, and other prisms 11 and 12 and a phase difference plate 13 are arranged on the other side. , 14 are placed. The light source 2 is a semiconductor light emitting element such as a light emitting diode or a semiconductor laser, and the lens system 9 is for making a light beam L emitted from the light source 2 into a substantially parallel light flux.
The relative angles of the deflecting mirrors 10a and 10b are 90 so that the incident light to the deflecting mirror 10a and the outgoing light from the deflecting mirror 10b are parallel to each other.
Set every time. Further, the phase difference plates 13 and 14 have a function of converting the linearly polarized light from the light source 2 into right-handed and left-handed circularly polarized light when re-incident on the diffraction grating 1.

従つて、光源2から発光された光線Lはレンズ系9で
平行光束とされ、偏光鏡10aにより回折格子1の点Aに
入射する。そして、回折格子1により回折され、光線
L1,L2としてそれぞれ位相差板13,14を経由して、ダハプ
リズム11,12に入射する。光線L1,L2はダハプリズム11,1
2で入射方向と平行方向に反射され、位相差板13,14によ
り右廻り及び左廻りの円偏光にされ、回折格子1の点A
とX方向に異なる点Bにおいて再び回折され、更に偏向
鏡10bを介して偏光ビームスプリツター7に入射する。
この偏光ビームスプリツター7に入射した右廻り及び左
廻りの円偏光特性を有する光線L1,L2は、偏光ビームス
プリツター7を透過又は反射する。透過光及び反射光は
それぞれ直線偏光になり、互いに干渉し合つて検出器5
a、及び5bに入射することになる。
Accordingly, the light beam L emitted from the light source 2 is collimated by the lens system 9 and is incident on the point A of the diffraction grating 1 by the polarizing mirror 10a. Then, the light beam is diffracted by the diffraction grating 1.
As L 1 and L 2 , they enter the roof prisms 11 and 12 via the phase difference plates 13 and 14, respectively. Rays L 1 and L 2 are roof prisms 11 and 1 .
2 is reflected in the direction parallel to the incident direction, and is made into circularly polarized light to the right and to the left by the phase difference plates 13 and 14, and is reflected by the point A of the diffraction grating 1.
Is again diffracted at a different point B in the X direction and further enters the polarized beam splitter 7 via the deflecting mirror 10b.
Light rays L 1 and L 2 having right-handed and left-handed circularly polarized light incident on the polarized beam splitter 7 are transmitted or reflected by the polarized beam splitter 7. The transmitted light and the reflected light are each linearly polarized light and interfere with each other to form a detector 5
It will be incident on a and 5b.

検出器5a、及び5bは2つの円偏光の直交成分を干渉強
度として検出するため、回折格子1が移動した場合の検
出器5a,5bの出力R、Sは第2図(a),(b)に示す
ように90度の位相差を有する。この2つの信号R、Sを
一定レベルの基に同図(c),(d)に示すように二重
化し、その立ち上がりと立ち下がりのタイミングで同図
(e)に示すようにパルスを発生させ、その数を計測す
ることによつて回折格子1の移動量を計測できる。ま
た、その計測時には回折格子1の移動方向を考慮して、
加算又は減算かを決定すればよい。この場合は、回折格
子1の1周期の移動により干渉縞の出力は4n周期の移動
となり、その出力からパルスを計数すると16n個のパル
スを得ることになる。
Since the detectors 5a and 5b detect the orthogonal components of two circularly polarized lights as interference intensity, outputs R and S of the detectors 5a and 5b when the diffraction grating 1 moves are shown in FIGS. 2 (a) and (b). ) Has a phase difference of 90 degrees. These two signals R and S are duplicated on the basis of a constant level as shown in (c) and (d) of the same figure, and pulses are generated at the rising and falling timings thereof as shown in (e) of the figure. The amount of movement of the diffraction grating 1 can be measured by measuring the number. Also, in the measurement, considering the moving direction of the diffraction grating 1,
It may be determined whether to add or subtract. In this case, the movement of the diffraction grating 1 for one cycle causes the output of the interference fringes to move for 4n cycles, and 16n pulses are obtained by counting the pulses from the output.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

ところで、第4図の光学的配置において、光学系を小
さなスペースに収納するためには、光線L1と光線L2の回
折格子1に対する角度を等しくする必要があるが、この
場合、光学系と回折格子1との相対位置が回折格子1の
面に垂直はY方向に移動した場合においても回折光にそ
の移動量に対応した位相情報が含まれ、回折格子1が格
子の配列方向、即ち、X方向に移動した場合と同様な干
渉光の強度変化を生じるため、測定精度が悪くなるとい
う問題があつた。また、第5図、第6図に示すように光
線Lを垂直入射させると上述の問題は生じないが、干渉
光の強度変化を検出しているため光量の変動、回折効率
の変動等により検出精度が劣化する。これらの変動を補
正するためにはレーザー光の光強度をモニターして検出
信号処理系にフイードバツクする等の処理系が必要であ
り、装置が複雑化する一方、検出信号にはノイズ成分を
含んでいるため光強度変動を完全には除去できない欠点
がある。また、検出信号のS/N比は検出精度に大きく影
響を及ぼすため、検出分解能向上のために施している検
出信号のパルス変換には限界があり、従つて、検出分解
能も回折格子ピツチの数十分の一程度が限界であり、こ
れ以上の検出分解能を得ることは困難である。また、ロ
ータリーエンコーダー等に応用する場合、円周上に回折
格子を形成する必要が有り、回転角の検出分解能を高め
るためには格子ピツチを細かくすれば可能であるが、機
械的なルーリングエンジン、ホトリソグラフイー、電子
ビームリソグラフイー等による格子ライン形成には限界
があるため、円の径を大きくして円周を長くし格子ライ
ンの本数を多くする方法が考えられるが装置自体が大型
化するという問題点がある。さらに、上記ロータリーエ
ンコーダー等の装置では、円盤状の回折格子が回転する
ことによつて生ずる回折光の強度変化を検出し、パルス
信号に変換しているが、検出器、或いはパルス計数等に
用いられている電子回路の周波数応答速度には限界が有
るため、上記ロータリーエンコーダーにおいては高速化
できないという問題があつた。
By the way, in the optical arrangement of FIG. 4, in order to store the optical system in a small space, it is necessary to make the angles of the light rays L 1 and L 2 with respect to the diffraction grating 1 equal. Even when the relative position with respect to the diffraction grating 1 moves in the Y direction perpendicular to the surface of the diffraction grating 1, phase information corresponding to the amount of movement is included in the diffracted light, and the diffraction grating 1 is arranged in the array direction, that is, Since the intensity of the interference light changes similarly to the case of moving in the X direction, there is a problem that the measurement accuracy deteriorates. Further, when the light ray L is vertically incident as shown in FIGS. 5 and 6, the above-mentioned problem does not occur, but since the intensity change of the interference light is detected, it is detected by the change of the light amount, the change of the diffraction efficiency, or the like. Accuracy deteriorates. In order to correct these fluctuations, it is necessary to have a processing system such as monitoring the light intensity of the laser light and feeding back to the detection signal processing system, which complicates the device, while the detection signal contains a noise component. Therefore, there is a drawback that the fluctuation of light intensity cannot be completely removed. In addition, since the S / N ratio of the detection signal greatly affects the detection accuracy, there is a limit to the pulse conversion of the detection signal that is performed to improve the detection resolution.Therefore, the detection resolution also depends on the number of diffraction grating pitches. The limit is about 1/10, and it is difficult to obtain a detection resolution higher than this. Also, when applied to a rotary encoder, etc., it is necessary to form a diffraction grating on the circumference, and it is possible to make the grating pitch fine in order to improve the detection resolution of the rotation angle, but a mechanical ruling engine, Since there is a limit to the formation of grid lines by photolithography, electron beam lithography, etc., it is possible to increase the diameter of the circle to lengthen the circumference and increase the number of grid lines, but the size of the device itself will increase. There is a problem. Further, in the device such as the rotary encoder, the change in the intensity of the diffracted light caused by the rotation of the disc-shaped diffraction grating is detected and converted into a pulse signal, which is used as a detector or a pulse counting device. Since there is a limit to the frequency response speed of the electronic circuit used, there is a problem that the rotary encoder cannot be operated at high speed.

したがつて、本発明は上述したような問題点を解決
し、回折格子を用いると共に、光源に2波長の単色光を
用いた光ヘテロダイン干渉法を適応し、回折光の強度信
号に代えて位相差信号を検出することにより、従来のも
のよりも高速、高安定性、高分解能であり、しかも小型
の移動量測定方法、及びそのための移動量測定装置を提
供することを目的とするものである。
Therefore, the present invention solves the problems as described above, uses a diffraction grating, and applies an optical heterodyne interferometry method using monochromatic light of two wavelengths to a light source, instead of the intensity signal of the diffracted light. An object of the present invention is to provide a moving amount measuring method and a moving amount measuring device therefor, which are faster, more stable, and have higher resolution than conventional ones by detecting a phase difference signal, and are small in size. .

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記目的を達成するためになされたもので、
その第一の発明の移動量測定方法は、周波数が互いにわ
ずかに異なる2波長の単色光を、第1の物体上に設けた
第1の回折格子と、前記第1の物体に対し相対的移動が
可能な第2の物体上に設けた第2の回折格子とに入射さ
せ、その第1、及び第2の回折格子から生じる2波長の
回折光を、往路を逆行させるような光学系により再び前
記第1、及び第2の回折格子に入射させ、前記第1、及
び第2の回折格子により2回回折して生じた、これら周
波数が互いにわずかに異なる2波長ほ回折光同志を光ヘ
テロダイン干渉させ、前記第1の回折格子から生成した
光ヘテロダイン干渉光から第1のビート信号を検出する
とともに、前記第2の回折格子から生成した光ヘテロダ
イン干渉光から第2のビート信号を検出し、これら第1
のビート信号と第2のビート信号との位相差、及び位相
差信号から生成した位相の周期パルス信号をカウントす
ることによって、前記第1の回折格子からなる第1の物
体に対する前記第2の回折格子からなる第2の物体の移
動距離を測定するようにしたものである。
The present invention has been made to achieve the above object,
In the movement amount measuring method of the first invention, a monochromatic light beam having two wavelengths slightly different from each other is moved relative to the first diffraction grating provided on the first object and the first object. Is made incident on a second diffraction grating provided on a second object, and diffracted light of two wavelengths generated from the first and second diffraction gratings is re-traveled by an optical system that reverses the forward path. Two wavelengths of slightly different frequencies generated by being incident on the first and second diffraction gratings and diffracted twice by the first and second diffraction gratings are optically heterodyne interference. Then, the first beat signal is detected from the optical heterodyne interference light generated from the first diffraction grating, and the second beat signal is detected from the optical heterodyne interference light generated from the second diffraction grating. First
By counting the phase difference between the beat signal and the second beat signal, and the periodic pulse signal having the phase generated from the phase difference signal, the second diffraction on the first object including the first diffraction grating. The moving distance of the second object formed of a grid is measured.

また、第二の発明の移動量測定装置は、第1の物体上
に設けた第1の回折格子と、第2の物体上に設けられ、
前記第1の回折格子に対して相対的移動が可能な第2の
回折格子と、周波数が互いにわずかに異なる2波長の単
色光を発生する光源と、この光源から発せられた2波長
の単色光を前記第1、及び第2の回折格子に所定の角度
を有した方向からそれぞれ入射させる入射角調整手段
と、前記第1、及び第2の回折格子から生じる2波長の
回折光の往路を逆行させ、再び前記第1、及び第2の回
折格子に入射させる反射光調整手段と、前記第1、及び
第2の回折格子により2回回折されて生じた2波長の回
折光をそれぞれ合成し、前記第1の回折格子から第1の
光ヘテロダイン干渉ビート信号を生成する第1の光合成
検出手段と、前記第2の回折格子から第2の光ヘテロダ
イン干渉ビート信号を生成する第2の光合成検出手段
と、前記第1、及び第2の光合成検出手段によつてそれ
ぞれ生成された第1のビート信号と第2のビート信号と
から位相差信号を算出処理し、さらに位相差信号から位
相の周期パルス信号を生成して算出処理することによっ
て、前記第1の回折格子からなる第1の物体に対する、
前記第2の回折格子からなる第2の物体の移動量を換算
する信号処理装置とで構成したものである。
Further, the movement amount measuring device of the second invention is provided on the first diffraction grating provided on the first object and on the second object,
A second diffraction grating movable relative to the first diffraction grating, a light source for generating monochromatic light of two wavelengths having frequencies slightly different from each other, and a monochromatic light of two wavelengths emitted from the light source. Is incident on the first and second diffraction gratings from directions having a predetermined angle, and the outward path of the diffracted light of two wavelengths generated from the first and second diffraction gratings is reversed. Then, the reflected light adjusting means for making the light incident on the first and second diffraction gratings again and the diffracted light of two wavelengths generated by being diffracted twice by the first and second diffraction gratings are respectively combined, First optical composition detection means for generating a first optical heterodyne interference beat signal from the first diffraction grating, and second optical composition detection means for generating a second optical heterodyne interference beat signal from the second diffraction grating. And the first and Calculating a phase difference signal from the first beat signal and the second beat signal respectively generated by the photosynthesis detecting means, and generating and calculating a phase periodic pulse signal from the phase difference signal. For a first object consisting of the first diffraction grating,
And a signal processing device for converting the amount of movement of the second object composed of the second diffraction grating.

〔作用〕[Action]

本発明は回折格子の移動量、即ち、物体の移動量を、
ビート信号の位相変化として連続的に検出するものであ
る。そして、そのビート信号の位相は回折光の強度変動
には影響されることがなく、従つて、本発明では光源の
強度変化や回折格子の回折効率の変化等に起因する検出
誤差が生じることがない。さらに、光ヘテロダイン干渉
により得られる2つのビート信号の検出光学系におい
て、偏光ビームスプリツターにより分離された2波長の
レーザー光が再度偏光ビームスプリツターにより合成さ
れるまでの、2波長のレーザーによつてそれぞれ生成さ
れる2つの回折格子からの光ヘテロダイン干渉光の光路
系がほとんど同じであるため、光学系素子の微小振動、
気圧、温度等の外乱の影響は位相差を検出する段階で打
ち消しあい、安定した位相差信号が得られる。また、本
発明では移動量の検出分解能は位相差の検出精度によつ
て決定され、この位相差の検出精度を高めることによつ
て、回折格子のピツチ、或いは格子の本数等を代えるこ
となく物体の移動量の検出分解能が容易に高められる。
The present invention calculates the movement amount of the diffraction grating, that is, the movement amount of the object,
The phase change of the beat signal is continuously detected. Then, the phase of the beat signal is not affected by the intensity fluctuation of the diffracted light, and accordingly, in the present invention, a detection error may occur due to the intensity change of the light source, the diffraction efficiency of the diffraction grating, or the like. Absent. Furthermore, in the detection optical system for the two beat signals obtained by the optical heterodyne interference, the two-wavelength laser beam is used until the two-wavelength laser beams separated by the polarization beam splitter are combined again by the polarization beam splitter. Since the optical path systems of the optical heterodyne interference lights from the two diffraction gratings generated respectively are almost the same, a small vibration of the optical system element,
The effects of disturbances such as atmospheric pressure and temperature cancel each other out at the stage of detecting the phase difference, and a stable phase difference signal is obtained. Further, in the present invention, the detection resolution of the movement amount is determined by the detection accuracy of the phase difference, and by increasing the detection accuracy of the phase difference, the pitch of the diffraction grating or the number of the gratings is not changed. The detection resolution of the movement amount of is easily increased.

〔実施例〕〔Example〕

以下、本発明を図面に示す実施例に基づいて詳細に説
明する。
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.

第1図は本発明に係る移動量測定装置の第1実施例を
示すものである。なお、第4図、ないし第6図と同一の
符号は同一の部材を示すものとする。
FIG. 1 shows a first embodiment of the movement amount measuring device according to the present invention. The same reference numerals as in FIGS. 4 to 6 denote the same members.

第1図において、1aは第1の物体(図示せず)上に固
定、或は一体形成によつて設けられた第1の回折格子、
1bは第2の物体(図示せず)上に固定、或いは一体形成
によつて設けられた第1の回折格子に対して相対的移動
が可能な第2の回折格子、3a,3b,3c,3d,3e,3fは反射
鏡、5a,5bは検出器、7は偏光ビームスプリツター、8a,
8bは格子線、15は2波長直交偏光レーザー光源、16a,16
bは偏光板、17a,17bは集光レンズ、18は1/4波長板、19
は円筒レンズ、20は三角状反射ミラーである。
In FIG. 1, 1a is a first diffraction grating fixed or integrally formed on a first object (not shown),
1b is a second diffraction grating 3a, 3b, 3c, which can be moved relative to the first diffraction grating fixed or integrally formed on a second object (not shown). 3d, 3e, 3f are reflectors, 5a, 5b are detectors, 7 is a polarized beam splitter, 8a,
8b is a lattice line, 15 is a dual wavelength orthogonal polarization laser light source, 16a, 16
b is a polarizing plate, 17a and 17b are condenser lenses, 18 is a quarter-wave plate, 19
Is a cylindrical lens, and 20 is a triangular reflection mirror.

この第1実施例の装置では、2波長直交偏光レーザー
光源15から発したレーザー光Lは、2つの回折格子1a,1
bを均一に照射させるため、円筒レンズ19によりそのビ
ーム形状を楕円状に変えられ、偏光ビームスプリツター
7に入射する。偏光ビームスプリツター7により、偏光
方向が水平であるp偏光(周波数をf1とする)と偏光方
向が垂直であるs偏光(周波数をf2とする)に分離さ
れ、それぞれ反射鏡3a,3b及び3cを介してレーザー光L1,
L2として、第1の回折格子1aと第2の回折格子1bとに、
その回折格子面に垂直な法線方向(Y方向)に対して左
右対称はn次回折角の方向から入射する。この回折格子
1a,1bによるレーザー光L1の2つのn次数の反射回折光
と、レーザー光L2の2つのn次数の反射回折光とが回折
格子1a,1bの回折格子面に垂直な法線方向にそれぞれ出
射し、それぞれの回折格子1a,1bからの2波長の回折光
が光学的に合成し、2つのレーザー光となつて1/4波長
板18を介して反射鏡3dに入射する。
In the device of the first embodiment, the laser light L emitted from the two-wavelength orthogonally polarized laser light source 15 has two diffraction gratings 1a and 1a.
In order to irradiate b uniformly, the beam shape is changed into an elliptical shape by the cylindrical lens 19 and is incident on the polarized beam splitter 7. The polarized beam splitter 7 separates the p-polarized light having a horizontal polarization direction (frequency is f 1 ) and the s-polarized light having a vertical polarization direction (frequency is f 2 ) into the reflecting mirrors 3a and 3b, respectively. And laser light L 1 , via 3c
As L 2 , in the first diffraction grating 1a and the second diffraction grating 1b,
Bilateral symmetry with respect to the normal direction (Y direction) perpendicular to the diffraction grating surface enters from the direction of the nth diffraction angle. This diffraction grating
The two n-order reflected diffracted lights of the laser light L 1 and the two n-order reflected diffracted lights of the laser light L 2 by 1a and 1b are directed in the normal direction perpendicular to the diffraction grating surface of the diffraction gratings 1a and 1b. Diffracted lights of two wavelengths emitted from the respective diffraction gratings 1a and 1b are optically combined, and combined into two laser lights, which are then incident on the reflecting mirror 3d via the 1/4 wavelength plate 18.

ここで、2つのレーザー光L1,L2は、それぞれ往路を
逆行するように反射鏡3dで反射され、再び回折格子1a,1
bに、回折格子面に垂直な法線方向から入射する。再
度、回折格子1a,1bに入射したレーザー光の±n次回折
光は、反射鏡3a,3bを介して、及び反射鏡3cを介してそ
れぞれ偏光ビームスプリツター7に入射する。従つて、
p偏光のレーザー光L1の回折光は1/4波長板18を2度通
過することによつて偏光面が90度回転し、s偏光となつ
て偏光ビームスプリツター7に入射するため、偏光ビー
ムスプリツター7により90度反射される。これとは逆
に、s偏光のレーザー光L2の回折光は、1/4波長板18を
2度通過することによつて偏光面が90度回転し、p偏光
となつて偏光ビームスプリツター7に入射するため、偏
光ビームスプリツター7を通過する。即ち、これら回折
格子1a,1bにより2回回折されたレーザー光L1,L2透過回
折光は、偏光ビームスプリツター7によつて光学的に合
成される。回折格子1aからの合成回路光は、三角状反射
ミラー20、反射鏡3eを介して取り出し、この取り出した
レーザー光を集光レンズ17aで集光し、偏光板16aを用い
て光ヘテロダイン干渉させ、検出器5aで検出し、第1の
ビート信号とする。一方、回折格子1bからの合成回折光
は、三角状反射ミラー20、反射鏡3fを介して取り出し、
その取り出したレーザー光を集光レンズ17bで集光し、
偏光板16bを用いて光ヘテロダイン干渉させ、検出器5b
で検出し、第2のビート信号とする。
Here, the two laser beams L 1 and L 2 are respectively reflected by the reflecting mirror 3d so as to go backward in the forward direction, and again the diffraction gratings 1a and 1
It is incident on b from the direction normal to the diffraction grating surface. Again, the ± nth-order diffracted lights of the laser light that have entered the diffraction gratings 1a and 1b enter the polarization beam splitter 7 via the reflection mirrors 3a and 3b and via the reflection mirror 3c, respectively. Therefore,
Since the diffracted light of the p-polarized laser light L 1 passes through the quarter-wave plate 18 twice to rotate the polarization plane by 90 degrees, and becomes s-polarized light and enters the polarization beam splitter 7, It is reflected 90 degrees by the beam splitter 7. On the contrary, the diffracted light of the s-polarized laser light L 2 has its polarization plane rotated by 90 degrees by passing through the quarter-wave plate 18 twice, and becomes the p-polarized beam splitter. Since it is incident on 7, it passes through the polarized beam splitter 7. That is, the laser beam L 1 and L 2 transmitted diffracted light diffracted twice by these diffraction gratings 1 a and 1 b are optically combined by the polarization beam splitter 7. The combined circuit light from the diffraction grating 1a is extracted through the triangular reflection mirror 20 and the reflection mirror 3e, the extracted laser light is condensed by the condensing lens 17a, and optical heterodyne interference is performed by using the polarizing plate 16a. The first beat signal is detected by the detector 5a. On the other hand, the synthetic diffracted light from the diffraction grating 1b is extracted via the triangular reflection mirror 20 and the reflection mirror 3f,
The extracted laser light is condensed by the condenser lens 17b,
The optical heterodyne interference is caused by using the polarizing plate 16b, and the detector 5b
Detected as the second beat signal.

従つて、検出器5aで検出した第1のビート信号と検出
器5bで検出した第2のビート信号との位相差Δφを検出
することにより、第1の回折格子1aからなる第1の物体
に対する第2の回折格子1bからなる第2の物体の相対的
移動量Δxを計測できる。
Therefore, by detecting the phase difference Δφ between the first beat signal detected by the detector 5a and the second beat signal detected by the detector 5b, the first object formed of the first diffraction grating 1a is detected. It is possible to measure the relative movement amount Δx of the second object composed of the second diffraction grating 1b.

ここで、例えば回折格子1a,1bの格子ピッチをP、周
波数f1,f2のレーザー光の波長はそれぞれλ1
し、回折格子1aに対する回折格子1bの格子ラインに垂直
なピツチ方向(X方向)の移動量をΔxとしてn次回折
光の光ヘテロダイン干渉光を検出する場合を考えると、
移動量Δxに対し検出器5bにより検出される光ヘテロダ
イン干渉光の1つであるレーザー光L1の光路長変化量
は、回折格子1bにより2回回折されているため、2・Δ
x・sinθn1だけ長くなる。これとは逆に、光ヘテロダ
イン干渉光のもう1つのレーザー光L2の光路長変化量
は、同様に2・Δx・sinθn2だけ短くなる。ここで、
θn1,θn2は、それぞれ波長λ1のn次回折角であ
り、 sinθn1=n・λ1/P (1) sinθn2=n・λ2/P (2) の関係がある。
Here, for example, the grating pitch of the diffraction gratings 1a and 1b is P, the wavelengths of the laser beams of frequencies f 1 and f 2 are λ 1 and λ 2 , respectively, and the pitch direction perpendicular to the grating line of the diffraction grating 1b with respect to the diffraction grating 1a. Considering the case of detecting the optical heterodyne interference light of the n-th order diffracted light with the movement amount in the (X direction) being Δx,
The change amount of the optical path length of the laser light L 1 which is one of the optical heterodyne interference lights detected by the detector 5b with respect to the movement amount Δx is 2 × Δ because it is diffracted twice by the diffraction grating 1b.
It becomes longer by x · sin θn 1 . On the contrary, the amount of change in the optical path length of the other laser light L 2 of the optical heterodyne interference light is similarly shortened by 2 · Δx · sin θn 2 . here,
θn 1 and θn 2 are nth-order diffraction angles of wavelengths λ 1 and λ 2 , respectively, and have a relationship of sin θn 1 = n · λ 1 / P (1) sin θn 2 = n · λ 2 / P (2).

従つて、第1の物体からなる第1の回折格子1aを基準
回折格子として固定し、光路長変化の生じない第1の回
折格子から得られる第1のビート信号を基準ビート信号
として、第2の回折格子1bから得られる第2のビート信
号との位相差Δφを求めると、 Δφ=2π・2・Δx・sinθn1 −(−2π・2・Δx・sinθn2) =4π・Δx・sinθn1 +4π・Δx・sinθn2) (3) となり、次(3)の(1),(2)式を代入すると、 Δφ=8π・n・Δx/P=2π・Δx/(P/(4n))
(4) となり、位相差Δφと回折格子1aに対する回折格子1bの
相対的移動量Δxとは直線関係にあり、位相差Δφは回
折格子1bに相対的移動量Δxに対し、P/(4n)を周期と
して変化することになる。
Therefore, the first diffraction grating 1a composed of the first object is fixed as the reference diffraction grating, and the first beat signal obtained from the first diffraction grating in which the optical path length does not change is used as the reference beat signal, and the second beat signal is used as the second beat signal. When the phase difference Δφ with the second beat signal obtained from the diffraction grating 1b is calculated, Δφ = 2π · 2 · Δx · sin θn 1 / λ 1 − (− 2π · 2 · Δx · sin θn 2 / λ 2 ) = 4π ・ Δx ・ sin θn 1 / λ 1 + 4π ・ Δx ・ sin θn 2 / λ 2 ) (3) Then, substituting equations (1) and (2) in (3) below, Δφ = 8π ・ n ・ Δx / P = 2π ・ Δx / (P / (4n))
(4) Therefore, there is a linear relationship between the phase difference Δφ and the relative movement amount Δx of the diffraction grating 1b with respect to the diffraction grating 1a, and the phase difference Δφ is P / (4n) with respect to the relative movement amount Δx of the diffraction grating 1b. Will change as the cycle.

第2図は、本発明に係る移動量測定装置の更に具体的
な第2実施例を示すものである。同図において、3a,3b,
3c,3d,3e,3f,3gは反射鏡、18a,18bは1/4波長板、21は信
号処理部である。
FIG. 2 shows a more specific second embodiment of the movement amount measuring device according to the present invention. In the figure, 3a, 3b,
3c, 3d, 3e, 3f and 3g are reflecting mirrors, 18a and 18b are quarter-wave plates, and 21 is a signal processing unit.

この第2実施例の装置では、2波長直交偏光レーザー
光源15から発したレーザー光Lは、2つの回折格子1a,1
bから均一に照射させるため、円筒レンズ19によりその
ビーム形状を楕円状に変えられ、偏光ビームスプリツタ
ー7に入射する。偏光ビームスプリツター7により、偏
光方向が水平であるp偏光(周波数をf1とする)と偏光
方向が垂直であるs偏光(周波数をf2とする)に分離さ
れ、それぞれ反射鏡3a,3b、及び3cを介してレーザー光L
1,L2として、第1の物体(図示せず)上に設けられた第
1の回折格子1aと、前記第1の回折格子に対して相対的
に移動し得る、第2の物体(図示せず)上に設けられた
第2の回折格子1bとに、その回折格子面に垂直な法線方
向(Y方向)に対して左右対称なn次回折角の方向から
入射する。この回折格子1a,1bにより、レーザー光L1
2つのn次数の透過回折光と、レーザー光L2の2つのn
次数の透過回折光とが各回折格子1a,1bの回折格子面に
垂直な法線方向にそれぞれ出射し、レーザー光L1による
回折格子1a,1bからの2つの透過回折光、及びレーザー
光L2による回折格子1a,1bからの2つの透過回折光は、
それぞれ1/4波長板18a,18bを介して反射鏡3e,3dに入射
する。
In the device of the second embodiment, the laser light L emitted from the two-wavelength orthogonal polarization laser light source 15 has two diffraction gratings 1a and 1a.
In order to uniformly irradiate from b, the beam shape is changed into an elliptical shape by the cylindrical lens 19 and is incident on the polarized beam splitter 7. The polarized beam splitter 7 separates the p-polarized light having a horizontal polarization direction (frequency is f 1 ) and the s-polarized light having a vertical polarization direction (frequency is f 2 ) into the reflecting mirrors 3a and 3b, respectively. , And 3c through laser light L
As 1 and L 2 , a first diffraction grating 1a provided on a first object (not shown) and a second object (Fig. The light is incident on the second diffraction grating 1b provided on the diffraction grating 1b from above in a direction of an nth-order diffraction angle that is bilaterally symmetric with respect to a normal direction (Y direction) perpendicular to the diffraction grating surface. By the diffraction gratings 1a and 1b, two n-order transmitted diffracted lights of the laser light L 1 and two n-orders of the laser light L 2 are transmitted.
The transmitted diffracted light of the order is emitted respectively in the normal direction perpendicular to the diffraction grating surface of each diffraction grating 1a, 1b, and the two transmitted diffracted light from the diffraction grating 1a, 1b by the laser light L 1 and the laser light L The two transmitted diffracted lights from the diffraction gratings 1a and 1b by 2 are
The light enters the reflecting mirrors 3e and 3d via the quarter-wave plates 18a and 18b, respectively.

ここで、これら4つの透過回折光は、それぞれ往路を
逆行するように反射鏡3b,3eで反射され、再び回折格子1
a,1bに、その回折格子面に垂直は法線方向から入射す
る。再度、回折格子1a,1bに入射した回折光の±n次透
過回折光は、反射鏡3a,3bを介して、及び反射鏡3cを介
してそれぞれ偏光ビームスプリツター7に入射する。従
つて、p偏光のレーザー光L1の透過回折光は、1/4波長
板18bを2度通過することによつて偏光面が90度回転
し、s偏光となつて偏光ビームスプリツター7に入射す
るため、偏光ビームスプリツター7により90度反射され
る。これとは逆に、s偏光のレーザー光L2の透過回折光
は、1/4波長板18aを2度通過することによつて偏光面が
90度回転し、p偏光となつて偏光ビームスプリツター7
に入射するため、偏光ビームスプリツター7を透過す
る。即ち、これら回折格子1a,1bにより2回回折された
レーザー光L1,L2の4つの透過回折光は、偏光ビームス
プリツター7によつて光学的に合成される。回折格子1a
からの合成回折光は、三角状反射ミラー20、反射鏡3gを
介して取り出し、その取り出したレーザー光を集光レン
ズ17aで集光し、偏光板16aを用いて光ヘテロダイン干渉
させ、検出器5aで検出し、第1のビート信号として信号
処理部21に入力する。一方、回折格子1bからの合成回折
光は、三角状反射ミラー20、反射鏡3fを介して取り出
し、その取り出したレーザー光を集光レンズ17bで集光
し、偏光板16bを用いて光ヘテロダイン干渉させ、検出
器5bで検出し、第2のビート信号として信号処理部21に
入力する。
Here, these four transmitted diffracted lights are reflected by the reflecting mirrors 3b and 3e so as to respectively go backward in the forward path, and again the diffraction grating 1
The light perpendicular to the diffraction grating surface is incident on a and 1b from the normal direction. Again, the ± n-order transmitted diffracted light of the diffracted light that has entered the diffraction gratings 1a and 1b enters the polarized beam splitter 7 via the reflection mirrors 3a and 3b and via the reflection mirror 3c, respectively. Therefore, the transmitted diffracted light of the p-polarized laser light L 1 has its polarization plane rotated by 90 ° by passing through the quarter-wave plate 18b twice, and is converted into s-polarized light by the polarized beam splitter 7. Since it is incident, it is reflected by 90 degrees by the polarized beam splitter 7. On the contrary, the transmitted diffracted light of the s-polarized laser light L 2 has a polarization plane by passing through the quarter-wave plate 18a twice.
Polarized beam splitter 7 rotated 90 degrees and converted to p-polarized light
Is incident on the polarized beam splitter 7 and is transmitted through the polarized beam splitter 7. That is, the four transmitted diffracted lights of the laser lights L 1 and L 2 diffracted twice by the diffraction gratings 1 a and 1 b are optically combined by the polarization beam splitter 7. Diffraction grating 1a
The synthetic diffracted light from is taken out through the triangular reflecting mirror 20 and the reflecting mirror 3g, the taken-out laser light is condensed by the condenser lens 17a, and optical heterodyne interference is caused by using the polarizing plate 16a, and the detector 5a. Detected by the above, and input to the signal processing unit 21 as the first beat signal. On the other hand, the synthetic diffracted light from the diffraction grating 1b is extracted via the triangular reflection mirror 20 and the reflection mirror 3f, the extracted laser light is condensed by the condenser lens 17b, and optical heterodyne interference is performed by using the polarizing plate 16b. Then, it is detected by the detector 5b and input to the signal processing unit 21 as a second beat signal.

従つて、信号処理部21において、検出器5aで検出した
第1のビート信号と検出器5bで検出した第2のビート信
号との位相差Δφを検出することにより、第1の回折格
子1aに対して相対移動可能な第2の回折格子1bの移動量
Δxを計測できる。n次回折光の光ヘテロダイン干渉ビ
ート信号を用いる場合、位相差Δφと回折格子1bの相対
的移動量Δxとの関係は、第1実施例と同様と上記式
(4)で表される。
Therefore, in the signal processing unit 21, by detecting the phase difference Δφ between the first beat signal detected by the detector 5a and the second beat signal detected by the detector 5b, the first diffraction grating 1a is detected. It is possible to measure the movement amount Δx of the second diffraction grating 1b that is relatively movable. When the optical heterodyne interference beat signal of the n-th order diffracted light is used, the relationship between the phase difference Δφ and the relative movement amount Δx of the diffraction grating 1b is represented by the above formula (4) as in the first embodiment.

第3図(a)は位相差信号Δφの具体例を示した図で
あり、位相差信号Δφは回折格子1bの移動量Δx=−P/
(8n)〜+P/(8n)に対して−π(−180度)〜+π
(+180度)の範囲で直線性を示し、これを周期P/(4
n)で繰り返す。同図(a)の位相差信号に対して、例
えば位相差が+180度から−180度に、或は逆に−180度
から+180度に切り代わるタイミングで同図(b)に示
すようにパルス発生させ、その数を計数することによつ
て回折格子1bの移動量を計測できる。この時の検出分解
能はP/(4n)となる。なお、この場合、回折格子1bの移
動の方向は、位相差値の増減の方向と対応するので容易
に判定できるのでパルス計数時に位相差値の増減を考慮
して加算、または減算かを決定すればよい。
FIG. 3 (a) is a diagram showing a specific example of the phase difference signal Δφ, and the phase difference signal Δφ is the movement amount Δx = −P / of the diffraction grating 1b.
(8n) to + P / (8n) -π (-180 degrees) to + π
It shows linearity in the range of (+180 degrees), and this
Repeat with n). With respect to the phase difference signal of FIG. 9A, for example, a pulse is output at a timing at which the phase difference is changed from +180 degrees to −180 degrees, or vice versa, as shown in FIG. The amount of movement of the diffraction grating 1b can be measured by generating and counting the number. The detection resolution at this time is P / (4n). In this case, since the moving direction of the diffraction grating 1b corresponds to the increasing / decreasing direction of the phase difference value, it can be easily determined. Good.

さらに、位相差信号Δφは回折光の強度信号とは異は
り、光源の強度変動や回折格子の回折効率の変動、ま
た、レーザー光の走行する光路系の光学素子の微小振
動、レーザー光走行雰囲気の気圧、温度等の外乱の影響
を殆ど受けず、回折格子1bの移動量Δxにのみ比例した
信号であり、安定した信号が得られる。このため、通常
の電子回路からなる位相差信号検出処理系等によつて容
易に位相差検出分解能、1度程度を達成できる。従つ
て、同図(c)に示すように、例えば、分解数N=360
として、移動量Δx=−P/(8n)〜+P/(8n)の範囲を
360分割可能である。即ち、回折格子1bの移動量Δxを
検出分解能P/(360・4n)で検出可能である。さらに、
分割数Nの値は、位相差信号検出処理系により容易に設
定でき、任意の検出分解能P/(N・4n)で回折格子1bの
移動量Δxを検出できる特徴を有している。このこと
は、例えばロータリーエンコーダーに適用した場合、円
盤上に形成した回折格子の格子ピツチ、或は格子本数を
変えることなく、容易に小型で且つ、高精度の回転変位
検出分解能を有したロータリーエンコーダーを実現可能
であることを示している。さらに、Nの値を適宜、設定
することにより、検出分解能を損なうことなく、格子ピ
ツチの大きい回折格子の使用が可能であることから、ロ
ータリーエンコーダーの応答回転速度の高速化が可能で
ある。
Further, the phase difference signal Δφ is different from the intensity signal of the diffracted light, and the intensity fluctuation of the light source, the diffraction efficiency of the diffraction grating, the minute vibration of the optical element of the optical path system in which the laser light travels, the laser light traveling atmosphere The signal is almost unaffected by disturbances such as atmospheric pressure and temperature, and is a signal proportional only to the movement amount Δx of the diffraction grating 1b, and a stable signal can be obtained. Therefore, the phase difference detection resolution of about 1 degree can be easily achieved by the phase difference signal detection processing system including an ordinary electronic circuit. Therefore, as shown in FIG.
As the moving amount Δx = −P / (8n) to + P / (8n)
It can be divided into 360. That is, the movement amount Δx of the diffraction grating 1b can be detected with the detection resolution P / (360 · 4n). further,
The value of the division number N can be easily set by the phase difference signal detection processing system, and has a feature that the movement amount Δx of the diffraction grating 1b can be detected with an arbitrary detection resolution P / (N · 4n). When this is applied to a rotary encoder, for example, a rotary encoder that is easily compact and has a highly accurate rotational displacement detection resolution without changing the grating pitch of the diffraction grating formed on the disk or the number of gratings Is shown to be feasible. Furthermore, by appropriately setting the value of N, it is possible to use a diffraction grating with a large grating pitch without impairing the detection resolution, and therefore it is possible to increase the response rotation speed of the rotary encoder.

以上説明したように、回折格子1bの格子の本数に対応
したストロークで回折格子1bの移動量を分解能P/(4n)
のパルス信号によって高速で粗く検出でき、さらにP/
(4n)のパルス信号間を位相差信号によってP/(4n)の
分解能で細かく検出できる。
As described above, the movement amount of the diffraction grating 1b is set to P / (4n) by the stroke corresponding to the number of diffraction gratings 1b.
Can be detected at high speed and roughly by the pulse signal of
Phase difference signals can be used to detect finely between (4n) pulse signals with a resolution of P / (4n).

なお、上記第1,第2の実施例においては、2波長の単
色光光源としていずれも2波長直交偏光レーザー光源15
を用いたが、2波長の単色光としてブラツグセルなどの
音響光学素子を用いて生成した光を用いても同様の効果
を得ることができる。この場合、音響光学素子と半導体
レーザーとを組合わせるとにより、2波長単色光光源の
コンパクト化が可能である。さらに、2波長レーザー光
の入射光学系に偏波面保存光フアイバー等の光フアイバ
ーを用いて、移動量検出光学系本体と2波長単色光光源
とを分離させ、両者を光フアイバーで結合させる等の技
術を適用させることにより、移動量検出光学系をさらに
コンパクト化させることが可能である。
In the first and second embodiments, the two-wavelength orthogonal polarization laser light source 15 is used as the two-wavelength monochromatic light source.
However, the same effect can be obtained by using light generated by using an acoustooptic device such as a Bragg cell as the monochromatic light of two wavelengths. In this case, by combining the acousto-optic element and the semiconductor laser, the two-wavelength monochromatic light source can be made compact. Further, by using an optical fiber such as a polarization-maintaining optical fiber for the incident optical system of the two-wavelength laser light, the movement amount detection optical system main body and the two-wavelength monochromatic light source are separated, and both are coupled by the optical fiber. By applying the technique, the movement amount detection optical system can be made more compact.

また、回折格子1a,1bへの入射光の方向、及び回折格
子1a,1bからの回折光の方向が回折格子面に垂直なXY平
面に含まれる例について説明したが、回折格子1a,1bへ
の入射光の方向、及び回折格子からの回折光の方向とし
て、回折格子面に垂直なXY平面に含まれない斜め入射、
及び斜め出射の2波長の回折光を光学的に合成して光ヘ
テロダイン干渉ビート信号を検出するようにしても同様
の効果を得ることができる。
Further, an example in which the direction of the incident light to the diffraction grating 1a, 1b and the direction of the diffracted light from the diffraction grating 1a, 1b are included in the XY plane perpendicular to the diffraction grating surface has been described. Direction of the incident light, and as the direction of the diffracted light from the diffraction grating, oblique incidence not included in the XY plane perpendicular to the diffraction grating surface,
Also, the same effect can be obtained by optically combining two obliquely emitted diffracted lights and detecting the optical heterodyne interference beat signal.

さらに、本発明における回折格子1a,1bとしては、吸
収型回折格子、位相型回折格子のいずれかを用いてもよ
く、またバイナリー回折格子に限られず正弦波状回折格
子、フレーズ回折格子等、種々の回折格子を用いること
が可能であるし、透過型の他の反射型回折格子を用いる
ことも可能である。
Further, as the diffraction grating 1a, 1b in the present invention, any of an absorption type diffraction grating and a phase type diffraction grating may be used, and not limited to a binary diffraction grating, a sinusoidal diffraction grating, a phrase diffraction grating, etc. It is possible to use a diffraction grating, and it is also possible to use other reflective diffraction gratings of transmission type.

さらにまた、上記第1,第2の実施例においては、2波
長のレーザー光Lを予め偏光ビームスプリツター7によ
り分離させ、それぞれ2つの回折格子1a,1bに入射させ
る方法について述べているが、2波長直交偏光レーザー
光源15からのレーザー光Lを直接、2つの回折格子1a,1
bに入射させ、回折光から光ヘテロダイン干渉光を生成
する時に、例えば符号の異なる2つの同次数の回折光か
ら所望の波長レーザー光のみを、例えば偏光ビームスプ
リツター7、偏光板16a,16b等でそれぞれ取り出し、光
ヘテロダイン干渉させてビート信号を検出しても同様の
効果を得ることができる。
Furthermore, in the first and second embodiments described above, the method of separating the laser light L of two wavelengths by the polarization beam splitter 7 in advance and making them incident on the two diffraction gratings 1a and 1b, respectively, is described. The laser light L from the two-wavelength orthogonal polarization laser light source 15 is directly reflected by the two diffraction gratings 1a, 1
When incident on b and generate optical heterodyne interference light from diffracted light, for example, only laser light of a desired wavelength from diffracted light of two same orders having different signs, for example, polarization beam splitter 7, polarization plates 16a, 16b, etc. The same effect can be obtained by taking out the respective signals and detecting the beat signal by causing optical heterodyne interference.

〔発明の効果〕〔The invention's effect〕

以上詳細に説明したように、本発明による移動量測定
方法およびその測定装置によれば、2つの回折格子に周
波数がわずかに異なる2波長の単色光をそれぞれ入射
し、それら2波長の単色光の2回の回折によつて生じる
各回折格子からの2波長の回折光を光学的に合成して光
ヘテロダイン干渉ビートを検出するようにしたので、検
出した回折光ビート信号の位相変化から位相差信号を算
出処理し、さらに位相差信号から位相の周期パルス信号
を生成して算出処理することによって移動量(即ち、物
体の移動量)を測定できる。しかも、光源の強度変動や
回折格子の回折効率の変動等に起因して回折光強度が変
動した場合であつても、回折光ビート信号の振幅が変化
するだけでビート信号の位相変化には全く影響が及ば
ず、従つて、高精度に移動量を検出することができる。
また、位相差信号が高安定であるため、位相差を例えば
1゜以下の精度で検出可能であり、高分解能を得ること
ができる。
As described in detail above, according to the movement amount measuring method and the measuring apparatus thereof according to the present invention, monochromatic light beams of two wavelengths having slightly different frequencies are respectively incident on two diffraction gratings, and the monochromatic light beams of the two wavelengths are respectively incident. Since the optical heterodyne interference beat is detected by optically combining the diffracted light of two wavelengths from each diffraction grating generated by two times of diffraction, the phase difference signal is detected from the phase change of the detected diffracted light beat signal. The moving amount (that is, the moving amount of the object) can be measured by performing the calculation processing, and further generating the periodic pulse signal of the phase from the phase difference signal and performing the calculation processing. Moreover, even when the diffracted light intensity fluctuates due to fluctuations in the intensity of the light source, fluctuations in the diffraction efficiency of the diffraction grating, etc., the amplitude of the diffracted light beat signal only changes and there is no phase change in the beat signal. This has no influence, and accordingly, the movement amount can be detected with high accuracy.
Further, since the phase difference signal is highly stable, the phase difference can be detected with an accuracy of, for example, 1 ° or less, and high resolution can be obtained.

さらに、2つの回折格子を入射光の同一ビームスポツ
トにより照射するように配置して、これら両回折格子に
よりそれぞれ生成された、2つの光ヘテロダイン干渉ビ
ート信号間の位相差を検出することにより、レーザー光
の走行する光路系における気圧、温度、或いは光学素子
の微小振動等の外乱の影響がキヤンセルされ、高安定に
両回折格子間の相対変位量を検出できる。
Furthermore, by arranging two diffraction gratings so that they are irradiated by the same beam spot of incident light, and detecting the phase difference between the two optical heterodyne interference beat signals generated by these diffraction gratings respectively, The influence of disturbance such as atmospheric pressure, temperature, or minute vibration of the optical element in the optical path system in which light travels is canceled, and the relative displacement amount between both diffraction gratings can be detected with high stability.

さらにまた、ロータリーエンコーダー等に適用する場
合、位相差検出による高検出分解能を利用して、検出分
解能を劣化させることなく、円盤上に配置する回折格子
の本数を少なくして装置の小型化、或は回折格子のピツ
チを大きくして回転移動検出の高速化が可能である。
Furthermore, when it is applied to a rotary encoder or the like, the high detection resolution of phase difference detection is used to reduce the number of diffraction gratings arranged on the disk without degrading the detection resolution, or to downsize the device, or Can increase the pitch of the diffraction grating to speed up rotational movement detection.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る移動量測定方法、及びその測定位
置の第1実施例を示す構成図、第2図は本発明の第2実
施例を示す構成図、第3図(a),(b),(c)は本
発明の実施例から得られる信号のタイムチヤート図、第
4図,第5図および第6図はそれぞれ従来の移動量測定
方法の一例を示す構成図、第7図(a)〜(e)は第6
図の測定方法から得られる信号のタイムチヤート図であ
る。 1,1a,1b……回折格子、2……光源、3,3a〜3g,4……反
射鏡、5,5a,5b……検出器、6……ビームスプリツタ
ー、7……偏光ビームスプリツター、8,8a,8b……格子
線、9……レンズ系、10a,10b……偏向鏡、11,12……ダ
ハプリズム、13,14……位相差板、15……2波長直交偏
光レーザー光源、16a,16b……偏光板、17a,17b……集光
レンズ、18a,18b……1/4波長板、19……円筒レンズ、20
……三角状反射ミラー、21……信号処理部。
FIG. 1 is a configuration diagram showing a first embodiment of a movement amount measuring method according to the present invention and its measurement position, FIG. 2 is a configuration diagram showing a second embodiment of the present invention, FIG. 3 (a), (B) and (c) are time charts of signals obtained from the embodiment of the present invention, and FIGS. 4, 5, and 6 are configuration diagrams showing an example of a conventional movement amount measuring method, respectively. Figures (a)-(e) are the sixth
It is a time chart of the signal obtained from the measuring method of the figure. 1,1a, 1b …… Diffraction grating, 2 …… Light source, 3,3a to 3g, 4 …… Reflector, 5,5a, 5b …… Detector, 6 …… Beam splitter, 7 …… Polarized beam split Zutter, 8,8a, 8b …… Lattice line, 9 …… Lens system, 10a, 10b …… Deflecting mirror, 11,12 …… Dach prism, 13,14 …… Phase retarder, 15 …… 2-wavelength orthogonal polarization laser Light source, 16a, 16b ... Polarizing plate, 17a, 17b ... Condensing lens, 18a, 18b ... 1/4 wavelength plate, 19 ... Cylindrical lens, 20
...... Triangular reflection mirror, 21 …… Signal processing unit.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】回折格子を測長基準尺として用い、この回
折格子に単色光を入射して生じる回折光を干渉させて、
他の光学系に対する回折格子の相対的な移動距離を求め
る測長装置において、光源に周波数が互いにわずかに異
なる2波長の単色光を用い、前記単色光を偏光ビームス
プリッターで2つの偏光に分離し、入射角調整手段を介
して所望の角度で前記2つの偏光を第1の物体上に設け
られた第1の回折格子と、前記第1の物体に対し相対的
移動が可能な第2の物体上に設けられた第2の回折格子
とに入射させ、前記第1、及び第2の回折格子から生じ
る2波長の回折光を、1/4波長板に1回通過させた往路
を逆行させるような光学系により再度、1/4波長板を通
過させて、再び前記第1、及び第2の回折格子に入射さ
せ、前記第1、及び第2の回折格子により2回回折して
生じた回折光を、前記入射角調整手段を介して前記偏光
ビームスプリッタに入射させて、周波数が互いにわずか
に異なる2波長の回折光どうしを光ヘテロダイン干渉さ
せ、前記第1の回折光から生成した光ヘテロダイン干渉
光から第1のビート信号を検出するとともに、前記第2
の回折光から生成した光ヘテロダイン干渉光から第2の
ビート信号を検出し、これら第1のビート信号と第2の
ビート信号との位相差、及び位相差信号から生成した位
相の周期パルス信号をカウントすることによって、前記
第1の回折格子からなる第1の物体に対する前記第2の
回折格子からなる第2の物体の移動距離を測定すること
を特徴とする移動量測定方法。
1. A diffraction grating is used as a length measuring standard, and diffracted light produced by making monochromatic light incident on this diffraction grating interferes with each other.
In a length measuring device for obtaining a relative moving distance of a diffraction grating with respect to another optical system, monochromatic light having two wavelengths having slightly different frequencies is used as a light source, and the monochromatic light is separated into two polarized lights by a polarization beam splitter. A first diffraction grating provided on the first object with the two polarized lights at a desired angle via an incident angle adjusting means, and a second object movable relative to the first object Let the second diffractive grating provided above enter and let the diffracted light of two wavelengths generated from the first and second diffractive gratings travel backward through the quarter wave plate once. Diffracted by passing through the quarter-wave plate again by the optical system and again entering the first and second diffraction gratings and diffracted twice by the first and second diffraction gratings. Light is allowed to enter the polarization beam splitter through the incident angle adjusting means. By the diffraction light each other of 2 different wavelengths frequencies slightly from each other by an optical heterodyne interference, and detects the first beat signal from the optical heterodyne interference light generated from the first diffraction light, the second
The second beat signal is detected from the optical heterodyne interference light generated from the diffracted light, and the phase difference between the first beat signal and the second beat signal, and the periodic pulse signal of the phase generated from the phase difference signal are detected. A movement amount measuring method characterized by measuring a moving distance of a second object made of the second diffraction grating with respect to a first object made of the first diffraction grating by counting.
【請求項2】第1の物体上に設けられた第1の回折格子
と、第2の物体上に設けられ、前記第1の回折格子に対
して相対的移動が可能な第2の回折格子と、周波数が互
いにわずかに異なる2波長の単色光を発生する光源を有
し、偏光ビームスプリッタおよび入射角調整手段を、前
記光源と前記第1、及び第2の回折格子との間に設け、
前記入射角調整手段が前記第1、及び第2の回折格子お
よび前記偏光ビームスプリッターに入射する光の入射角
を設定し、前記第1、及び第2の回折格子から生じる2
波長の回折光の往路を逆行させ、再び前記第1、及び第
2の回折格子に入射させる反射光調整手段と、前記第
1、及び第2の回折格子と前記反射光調整手段との間で
回折光が2回通過するように1/4波長板を設け、前記第
1、及び第2の回折格子により2回回折されて生じた2
波長の回折光を前記入射角調整手段を介して再び前記偏
光ビームスプリッターに入射してそれぞれ合成し、前記
第1の回折格子から第1の光ヘテロダイン干渉ビート信
号を生成する第1の光合成検出手段と、前記第2の回折
格子から第2の光ヘテロダイン干渉ビート信号を生成す
る第2の光合成検出手段と、前記第1、及び第2の光合
成検出手段によってそれぞれ生成された第1のビート信
号、及び第2のビート信号とから位相差信号を算出処理
し、さらに位相差信号から位相の周期パルス信号を生成
して算出処理することによって、前記第1の回折格子か
らなる第1の物体に対する、前記第2の回折格子からな
る第2の物体の移動距離を換算する信号処理装置とを具
備してなることを特徴とする移動量測定装置。
2. A first diffraction grating provided on a first object, and a second diffraction grating provided on a second object and movable relative to the first diffraction grating. And a light source for generating monochromatic light of two wavelengths whose frequencies are slightly different from each other, and a polarization beam splitter and an incident angle adjusting means are provided between the light source and the first and second diffraction gratings.
The incident angle adjusting means sets an incident angle of light that is incident on the first and second diffraction gratings and the polarization beam splitter, and is generated from the first and second diffraction gratings.
Between the reflected light adjusting means for reversing the outward path of the diffracted light of the wavelength and for making it enter the first and second diffraction gratings again, and between the first and second diffraction gratings and the reflected light adjusting means. A 1/4 wavelength plate is provided so that the diffracted light passes twice, and the light is generated by being diffracted twice by the first and second diffraction gratings.
First light combining / detecting means for generating diffracted light having a wavelength into the polarization beam splitter via the incident angle adjusting means and combining them to generate a first optical heterodyne interference beat signal from the first diffraction grating. A second photosynthesis detecting means for generating a second optical heterodyne interference beat signal from the second diffraction grating, and a first beat signal generated by each of the first and second photosynthetic detecting means, And a second beat signal, a phase difference signal is calculated, and a phase periodic pulse signal is further generated from the phase difference signal to perform a calculation process, so that a first object including the first diffraction grating is obtained. A moving amount measuring device, comprising: a signal processing device for converting a moving distance of a second object composed of the second diffraction grating.
JP62318727A 1987-12-18 1987-12-18 Moving amount measuring method and moving amount measuring device Expired - Fee Related JP2517027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62318727A JP2517027B2 (en) 1987-12-18 1987-12-18 Moving amount measuring method and moving amount measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62318727A JP2517027B2 (en) 1987-12-18 1987-12-18 Moving amount measuring method and moving amount measuring device

Publications (2)

Publication Number Publication Date
JPH01161113A JPH01161113A (en) 1989-06-23
JP2517027B2 true JP2517027B2 (en) 1996-07-24

Family

ID=18102282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62318727A Expired - Fee Related JP2517027B2 (en) 1987-12-18 1987-12-18 Moving amount measuring method and moving amount measuring device

Country Status (1)

Country Link
JP (1) JP2517027B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4559056B2 (en) * 2003-10-17 2010-10-06 ソニーマニュファクチュアリングシステムズ株式会社 Displacement detector

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5953209U (en) * 1982-10-01 1984-04-07 ソニ−マグネスケ−ル株式会社 optical length measurement scale
JPH0749926B2 (en) * 1986-05-07 1995-05-31 日本電信電話株式会社 Alignment method and alignment device

Also Published As

Publication number Publication date
JPH01161113A (en) 1989-06-23

Similar Documents

Publication Publication Date Title
JP2603305B2 (en) Displacement measuring device
US4930895A (en) Encoder for forming interference fringes by re-diffracted lights from an optical type scale and photoelectrically converting the interference fringes to thereby detect the displacement of the scale
US7375820B2 (en) Interference measuring apparatus for detecting a plurality of stable phase difference signals
JP2586120B2 (en) encoder
JP2004144581A (en) Displacement detecting apparatus
JP6427399B2 (en) Displacement detection device
JPS58191907A (en) Method for measuring extent of movement
CN111043991A (en) Straightness measuring interferometer system without nonlinear error and measuring method
JP2683117B2 (en) encoder
JPH046884B2 (en)
JP2517027B2 (en) Moving amount measuring method and moving amount measuring device
JP2675317B2 (en) Moving amount measuring method and moving amount measuring device
JPS62200225A (en) Rotary encoder
JP4404184B2 (en) Displacement detector
KR100531693B1 (en) Optical displacement measurement system
JPH05126603A (en) Grating interference measuring device
JPH0799325B2 (en) Minute displacement measuring method and minute displacement measuring device
JP2020085606A (en) Displacement detector
JP2020051782A (en) Optical angle sensor
JP4404185B2 (en) Displacement detector
JPH02298804A (en) Interferometer
JP2683098B2 (en) encoder
JPH03115809A (en) Encoder
JPS62163921A (en) Rotary encoder
JP2775000B2 (en) Moving amount measuring method and moving amount measuring device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees