JPS61152308A - Small-sized twist drill made of hard sintered material - Google Patents

Small-sized twist drill made of hard sintered material

Info

Publication number
JPS61152308A
JPS61152308A JP59275189A JP27518984A JPS61152308A JP S61152308 A JPS61152308 A JP S61152308A JP 59275189 A JP59275189 A JP 59275189A JP 27518984 A JP27518984 A JP 27518984A JP S61152308 A JPS61152308 A JP S61152308A
Authority
JP
Japan
Prior art keywords
shank
sintered
hard
small
hard sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59275189A
Other languages
Japanese (ja)
Other versions
JPS63161B2 (en
Inventor
Yuichiro Kono
鴻野 雄一郎
Akio Hara
昭夫 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP59275189A priority Critical patent/JPS61152308A/en
Publication of JPS61152308A publication Critical patent/JPS61152308A/en
Publication of JPS63161B2 publication Critical patent/JPS63161B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2222/00Materials of tools or workpieces composed of metals, alloys or metal matrices
    • B23B2222/28Details of hard metal, i.e. cemented carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/31Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/011Micro drills

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Drilling Tools (AREA)

Abstract

PURPOSE:To permit the boring with high quality for a long period by using a small-sized twist drill by improving the radiation of cutting heat by using a shank material having a thermal conductivity over 0.1cal/m.sec. deg.C. CONSTITUTION:A hard sintered part 21 is made of diamond powder in 85wt% and WC-15%Co as the rest, and a supporting part 22 is made of WC-12%Co, and a cylindrical body 23 which is made of composite sintered material and has a diameter of 0.7mm and a length of 15mm is brazed into the hole 26 on a shank 25 and fixed. Then, a small-sized twist drill is formed by working a cutting tip and a cutting groove. Said shank 25 is made of superalloy, and the material which contains WC-6% or WC-15%TiC-6%Co is used, and the thermal conductivity is 0.1cal/cm.sec. deg.C or more, and the hardness is over 25HRc. Since the heat generation at the cutter tip is dispersed through the shank 25, high-speed revolution is permitted, and the life of the cutter tip can be prolonged.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は硬質な頭部を有する複合焼結材料円柱体を超硬
合金などよりなるシャンクに埋め込み、該円柱体の硬質
頭部とその支持部に刃付は及び刃溝加工を行ってドリル
とした硬質焼結体小径ドリルに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is a method of embedding a cylindrical body of a composite sintered material having a hard head in a shank made of cemented carbide, etc. The blade attachment relates to a hard sintered compact small-diameter drill that is made into a drill by processing the blade groove.

更に詳細には本発明は、ダイヤモンド焼結体或いは高圧
相窒化硼素焼結体の如き硬質な頭部と、該頭部と一体に
構成され、例えば超硬合金からなる支持部とを具備する
小径の複合焼結材料円柱体を超硬合金などよりなるシャ
ンクの一端に形成した孔に押し込み、ロウ付けなどの方
法により固着した後、複合焼結材料円柱体部に先端刃付
加工と刃溝加工を行ってドリルとした硬質焼結体小径ド
リルに関する。
More specifically, the present invention provides a small diameter sintered body comprising a hard head such as a diamond sintered body or a high-pressure phase boron nitride sintered body, and a support part formed integrally with the head and made of, for example, a cemented carbide. A cylindrical body of composite sintered material is pushed into a hole formed at one end of a shank made of cemented carbide, etc., and after being fixed by a method such as brazing, the cylindrical body of composite sintered material is machined with a tip and a groove. This invention relates to a small-diameter hard sintered compact drill that has been made into a drill.

従来の技術 超硬合金よりなるドリルが金属、非金属材料の穴あけ用
に多用されている。特に近年急激に需要が伸びているプ
リント基板の穴あけには直径III]II1前後の超硬
合金製ドリルが使われている。
BACKGROUND OF THE INVENTION Drills made of cemented carbide are widely used for drilling holes in metal and non-metal materials. In particular, cemented carbide drills with a diameter of about III] II1 are used for drilling holes in printed circuit boards, for which the demand has been increasing rapidly in recent years.

プリント基板には各種の材料が使われているが、主とし
て用いられているのはガラス繊維にエポキシ樹脂を含浸
させた強化樹脂で、一般にガラエボ基板と称されている
Various materials are used for printed circuit boards, but the main one used is a reinforced resin made by impregnating glass fiber with epoxy resin, which is generally referred to as a glass-evo board.

このようなプリント基板の穴あけは剛性の高いドリルで
通常回転数5〜6万rpmの条件で行われているが、基
板に含まれるガラス繊維は超硬工具を非常に早く摩耗さ
せ、一般的に3000〜5000ヒツト(ヒツトとは穴
あけ回数のこと)で超硬ドリルは寿命となる。こうした
ドリル盤には自動工具交換装置がついており、寿命とな
ったドリルは自動的に交換されるが、生産効率向上のた
めにはこの自動工具交換のための時間も問題であり、ド
リル寿命をのばして工具交換回数すなわち交換時間を減
少させたいという要求が強い。
Drilling of such printed circuit boards is usually done using a highly rigid drill at a rotation speed of 50,000 to 60,000 rpm, but the glass fibers contained in the board wear out the carbide tool very quickly, and generally A carbide drill reaches the end of its lifespan after 3,000 to 5,000 hits (hits refers to the number of holes drilled). These drill machines are equipped with an automatic tool changer, and the drill that has reached the end of its service life is automatically replaced.However, in order to improve production efficiency, the time required for automatic tool change is also an issue, and the life of the drill is reduced. There is a strong desire to reduce the number of tool changes, that is, the tool change time.

プリント基板の特性からみると、更に耐熱性等を向上さ
せて高機能化を計りたいという要求も強く、このような
基板材料は実際に製造可能で6あるが、一般にこのよう
な高機能材料は難削で、従来の超硬質ドリルでは非常に
短寿命となってしまい、このためこの種の基板材料の実
用化が出来ないのが実情である。
Looking at the characteristics of printed circuit boards, there is a strong demand for higher functionality by further improving heat resistance, etc., and although it is actually possible to manufacture such board materials6, in general, such high-performance materials are It is difficult to cut, and the lifespan of conventional ultra-hard drills is extremely short, so the reality is that this type of substrate material cannot be put to practical use.

更に、通常のガラエポ基板に対しても更に高能率の穴あ
けを行うため穴あけドリルの回転数の上昇が望まれてい
るが、これも従来の超硬合金製ドリルでは切削速度の上
昇と共に急激に寿命が低下してしまうのでドリル回転数
上昇による高能率化を達成できない。
Furthermore, it is desired to increase the rotational speed of the drilling drill in order to drill even more efficiently into ordinary glass epoxy substrates, but this also means that the lifespan of conventional cemented carbide drills rapidly decreases as the cutting speed increases. Since this decreases, it is not possible to achieve high efficiency by increasing the drill rotation speed.

一方、近年使用量が急激に増加しつつある焼結ダイヤモ
ンド工具は超硬工具に対して飛躍的に硬度が高く、耐摩
耗性がすぐれており、上記強化樹脂などの切削に於いて
は非常な高性能を発揮する。
On the other hand, sintered diamond tools, whose usage has been rapidly increasing in recent years, have significantly higher hardness and wear resistance than carbide tools, and are extremely useful when cutting the above-mentioned reinforced resins. Demonstrates high performance.

ところが第1図に示すように、この焼結ダイヤモンド工
具は焼結ダイヤモンド層11が超硬合金の支持部12に
貼り合わされた複合焼結体13をチップとして保持する
。この複合焼結体13を使用してドリルを作製する場合
には第2図に示すようにシャンク15の先端部に複合焼
結体13を何らかの方法により固着させて作らざるを得
ない。
However, as shown in FIG. 1, this sintered diamond tool holds as a chip a composite sintered body 13 in which a sintered diamond layer 11 is bonded to a support portion 12 of cemented carbide. When manufacturing a drill using this composite sintered body 13, the composite sintered body 13 must be fixed to the tip of the shank 15 by some method as shown in FIG.

ところがこの複合焼結体13から作られるドリルチップ
の径は一般にl mm程度であり、このような小径のも
のではシャンク15と余程強力な接合強度をもたせない
と接合後の刃先研削加工で接合部16からはずれてしま
い、良好なドリルが製造できない。特に焼結ダイヤモン
ドは難研削であり、研削抵抗が高く、通常の銀ロウ付は
程度の強度では強度不足である。接合強度の高い接合方
法として例えば電子ビーム溶接が考えられるが、電子ビ
ーム溶接を実施するとなると、ドリルの製造工程が複雑
且つ原価が高くなり、高性能ドリルの需要の近年の急激
な増加に対応できなかった。
However, the diameter of the drill tip made from this composite sintered body 13 is generally about 1 mm, and if such a small diameter drill tip does not have a very strong bonding strength with the shank 15, it must be joined by grinding the cutting edge after bonding. It will come off from the part 16, making it impossible to manufacture a good drill. In particular, sintered diamond is difficult to grind and has high grinding resistance, and the strength of ordinary silver brazing is insufficient. For example, electron beam welding can be considered as a bonding method with high bonding strength, but if electron beam welding were to be implemented, the drill manufacturing process would be complicated and the cost would be high, making it difficult to meet the rapid increase in demand for high-performance drills in recent years. There wasn't.

これを解決する手段として第3図(a)および(b)に
示すような頭部に焼結ダイヤモンド層21を有し、該焼
結ダイヤモンド層21とほぼ同一径の円柱形支持部22
を有する複合焼結材料円柱体23を作成し、第4図(a
)に示すごとくシャンク25の一端に埋め込み、埋め込
んだ複合焼結材料円柱体23に刃付は及び刃溝加工を行
うことが考案された。この際のシャンク本体25は加工
の容易性、錆対策などよりステンレス鋼が使用されてい
た。
As a means to solve this problem, as shown in FIGS. 3(a) and 3(b), a sintered diamond layer 21 is provided on the head, and a cylindrical support portion 22 with approximately the same diameter as the sintered diamond layer 21 is provided.
A composite sintered material cylindrical body 23 having a
), it was devised to embed it in one end of the shank 25 and to process the embedded cylindrical body 23 of composite sintered material with a blade and a groove. At this time, stainless steel was used for the shank body 25 due to ease of processing and prevention of rust.

しかしながら、ステンレス鋼製のシャンクを使用すると
、熱伝導率が低いため、穴あけ時の刃先の切削熱がシャ
ンクを通じて放散されず、刃先の温度が上昇して穴壁の
品質に悪影響を与えたり、高速回転の使用では刃先の寿
命が低下する。更に、ドリル加工時にシャンク部分をチ
ャフキングするとき、ステンレス鋼では硬度が低く傷が
つくなどの問題があった。
However, when using a stainless steel shank, due to its low thermal conductivity, the cutting heat of the cutting edge during drilling will not be dissipated through the shank, which will increase the temperature of the cutting edge and adversely affect the quality of the hole wall, and the high speed Using rotation reduces the life of the cutting edge. Furthermore, when chaffing the shank portion during drilling, stainless steel has a problem of low hardness and scratches.

発明の解決すべき問題点 本発明は、上記従来技術の問題を解決することを目的と
し、更に詳細には、硬質な頭部を有する小径の複合焼結
材料円柱体を利用した耐摩耗性の優れたドリルで、なお
かつ熱伝導率及び硬度の高いシャンク材を使用すること
によって切削熱の放散性を改善して高品質の穴あけを長
期間行うことができる硬質焼結体小径ドリルを提供する
ことにある。
Problems to be Solved by the Invention The present invention aims to solve the above-mentioned problems of the prior art.More specifically, it is an object of the present invention to solve the problems of the prior art. To provide a small-diameter hard sintered drill which is an excellent drill and can drill high-quality holes for a long period of time by improving cutting heat dissipation by using a shank material with high thermal conductivity and hardness. It is in.

問題点を解決するための手段 上記の目的を達成するため、本発明に従い、ダイヤモン
ド粉末または高圧相窒化硼素粉末のいずれか一方または
双方を50%以上含有し、断面が円形をなす硬質焼結部
と、該硬質焼結部とほぼ同一径の円柱形をなし、その一
端部で該硬質焼結体部と接合している支持部とを具備す
る複合焼結材料□円柱体の支持部をシャンクの一端に形
成された複合焼結材料円柱体とほぼ同一径の孔に押し込
み、固定゛した後、複合焼結材料円柱体部に真直又はね
ぢれ溝と先端刃付けを行って得られる硬質焼結体小径ド
リルにおいて、シャンクが熱伝導率0.1cal 7c
m ” sec、・℃以上の熱伝導率を有する材料から
なることを特徴とする硬質焼結体小径ドリルが提供され
る。
Means for Solving the Problems In order to achieve the above object, according to the present invention, a hard sintered part containing 50% or more of either diamond powder or high-pressure phase boron nitride powder, or both, and having a circular cross section. □ A composite sintered material comprising: a support part that has a cylindrical shape with approximately the same diameter as the hard sintered part and is joined to the hard sintered part at one end □ The support part of the cylindrical body is attached to the shank. A hard material obtained by pushing the composite sintered material into a hole formed at one end and having approximately the same diameter as the composite sintered material cylinder and fixing it. In a sintered compact small diameter drill, the shank has a thermal conductivity of 0.1 cal 7c
A hard sintered small-diameter drill is provided, characterized in that it is made of a material having a thermal conductivity of m'' sec, .degree. C. or more.

硬質焼結部がダイヤモンド粉末を主成分として焼結され
たものであるときは、ダイヤモンド粉末単独、或いは7
0%以上のダイヤモンドを含み、残部がFe、 Coま
たはNiを主成分とする結合材によ、り焼結したもので
ある。このような硬質焼結部の好ましい例としては、7
0%以上のダイヤモンドとWC−5〜15%Coとの焼
結体がある。ダイヤモンド粉末単独で硬質焼結部を製造
するときは、ダイヤモンド粉末を超硬合金等の支持部上
に配置してホットプレスを行い、ホットプレス中に支持
部より結合材をダイヤモンド粉末中に溶浸せしめるとよ
い。
When the hard sintered part is sintered with diamond powder as the main component, diamond powder alone or 7
It is sintered with a binder containing 0% or more of diamond, with the remainder mainly composed of Fe, Co, or Ni. A preferable example of such a hard sintered part is 7
There is a sintered body of 0% or more diamond and WC-5 to 15% Co. When manufacturing a hard sintered part using diamond powder alone, the diamond powder is placed on a support such as cemented carbide, hot pressed, and the binder is infiltrated into the diamond powder from the support during hot pressing. It is better to force it.

硬質焼結部が高圧相窒化硼素粉末を主成分とする場合は
、高圧相窒化硼素粉末単独、或いは50%以上の高圧相
窒化硼素に4a、5a、6a族元素の炭化物、窒化物、
炭窒化物及びアルミニウムおよび/またはシリコンを結
合材として添加して焼結したものがある。なお、高圧相
窒化硼素単独の粉末は結合材を必要とせず、それ自体で
も硬質焼結部の焼結が達成される。ここで、高圧相窒化
硼素とは、立方晶型窒化硼素およびウルツ鉱型窒化硼素
を意味する。
When the hard sintered part is mainly composed of high-pressure phase boron nitride powder, the high-pressure phase boron nitride powder alone, or 50% or more of the high-pressure phase boron nitride and carbides, nitrides of group 4a, 5a, and 6a elements,
Some are sintered with carbonitride and aluminum and/or silicon added as binders. Note that the powder of high-pressure phase boron nitride alone does not require a binder, and sintering of the hard sintered part can be achieved by itself. Here, high-pressure phase boron nitride means cubic boron nitride and wurtzite boron nitride.

複合焼結材料円柱体の支持部は、いわゆる超硬合金、す
なわち、周期律表第4a、5a、6a族元素の炭化物、
窒化物、炭窒化物、硼化物、珪化物又はこれらの相互固
溶体炭化物をFe、 CoまたはN1の鉄族金属で結合
した焼結合金またはサーメットである。サーメットの1
例としては、(Mo、 W) Cの炭化物をN1または
Coの鉄族金属で結合したものがある。
The supporting part of the composite sintered material cylinder is made of so-called cemented carbide, that is, carbide of elements of groups 4a, 5a, and 6a of the periodic table,
It is a sintered alloy or cermet made by bonding nitrides, carbonitrides, borides, silicides, or their mutual solid solution carbides with iron group metals such as Fe, Co, or N1. Cermet 1
An example is a carbide of (Mo, W) C bonded with an iron group metal of N1 or Co.

更に別の支持部材料としては、Wを80〜98重量%含
み、残余がNi−FeまたはNi −Fe−Cuからな
るいわゆるヘビー・メタルといわれる焼結合金がある。
Still another support material is a sintered alloy called a so-called heavy metal, which contains 80 to 98% by weight of W and the remainder is Ni-Fe or Ni-Fe-Cu.

更に、本発明の1つの態様に従うと、第3図(b)に示
す如く、複合焼結材料円柱体の硬質焼結部21と支持部
22とは、厚さ0.5mm以下の中間接合層24を介し
て接合されている。
Further, according to one aspect of the present invention, as shown in FIG. 3(b), the hard sintered part 21 and the support part 22 of the cylindrical body of the composite sintered material are formed by an intermediate bonding layer having a thickness of 0.5 mm or less. They are joined via 24.

中間接合層としては、70%未満の高圧相窒化硼素と残
部が周期律表第4a族のTi、 Zr、 Hfの炭化物
、窒化物、炭窒化物あるいはホウ化物の1種もしくはこ
れらの混合物または相互固溶体化合物を主体としたもの
と、これにAIおよび/またはSiを0.1重量%以上
含有するものが好ましい。
The intermediate bonding layer is made of less than 70% high-pressure phase boron nitride and the remainder is one of carbides, nitrides, carbonitrides, or borides of Ti, Zr, or Hf in group 4a of the periodic table, or a mixture thereof, or a mixture thereof. Preferably, the material is mainly composed of a solid solution compound, and the material contains 0.1% by weight or more of AI and/or Si.

更に、本発明の1つの態様に従うと、支持部が軸方向に
2以上の材料層から構成されてもよい。
Further, according to one aspect of the invention, the support may be composed of two or more layers of material in the axial direction.

このような1例として、第2の材料層の支持側の層がW
C−Co焼結合金であり、硬質な頭部側の層が(Mo、
W)Cの炭化物をNiまたはCOの鉄族金属で結合した
サーメットからなるものがある。
As one such example, the supporting side layer of the second material layer is W
It is a C-Co sintered alloy, and the hard head side layer is (Mo,
W) Some are made of cermets in which C carbide is bonded with iron group metals such as Ni or CO.

シャンク材料は熱伝導率0.1cal 7cm−sec
、 ・’t:以上で、硬度HRc25以上のものが望ま
しい。熱伝導率がO,1cal / cm−sec、・
を以上の金属材料としては超硬合金、W合金、Mo合金
、銅等があるが、これらのうち硬度がHRc25以上の
ものは超硬合金、W合金、Mo合金である。
The thermal conductivity of the shank material is 0.1cal 7cm-sec
, 't: Above, hardness HRc25 or more is desirable. Thermal conductivity is O, 1 cal/cm-sec,
Examples of the above metal materials include cemented carbide, W alloy, Mo alloy, copper, etc. Among these, those with hardness of HRc25 or more are cemented carbide, W alloy, and Mo alloy.

超硬合金としてはWE’−Co合金でCoが5〜15%
のものが好ましい。又、W合金としてはWを80〜98
重量%含み、残余がNi−FeまたはNi −Pe−C
uからなるいわゆるヘビーメタルといわれる焼結合金が
好ましく、Mo合金としてはMoを60〜90重量%含
み、残部が銅系合金であるものが好ましい。
As a cemented carbide, WE'-Co alloy contains 5 to 15% Co.
Preferably. In addition, as a W alloy, W is 80 to 98
Contains weight%, the balance is Ni-Fe or Ni-Pe-C
A sintered alloy called a so-called heavy metal made of u is preferable, and an Mo alloy containing 60 to 90% by weight of Mo, with the balance being a copper-based alloy is preferable.

11男 シャンク材として熱伝導率が0.O1〜0.2の範囲の
ステンレス鋼、高速度鋼、WC−6%Co、 WC−1
5%TiC−6%Coを用意した。
11 As a shank material, the thermal conductivity is 0. Stainless steel in the range of O1-0.2, high speed steel, WC-6%Co, WC-1
5% TiC-6% Co was prepared.

他方、硬質焼結部がダイヤモンド粉末85%と残部がW
C−15%Coからなり、支持部がWC−12%C。
On the other hand, the hard sintered part is made up of 85% diamond powder and the rest is W.
It is made of C-15%Co, and the support part is WC-12%C.

からなり、直径0.7mm、長さ15mmの複合焼結材
料円柱体を第4図(a) に示す如く上記シャンクの端
部の孔に押し込み、ロウ付げにより固定した後、刃先お
よび刃溝加工して第4図(b) に示す形状の小径ドリ
ルを作成した。
A cylindrical body of composite sintered material with a diameter of 0.7 mm and a length of 15 mm is pushed into the hole at the end of the shank as shown in Figure 4(a), and after being fixed by brazing, the cutting edge and groove are A small-diameter drill having the shape shown in Fig. 4(b) was fabricated by processing.

これらの小径ドリルを用いてプリント基板の穴あけテス
トを行った後穴内面の評価を行ったところ、熱伝導率0
.1以下のステンレス鋼、高速度鋼のシャンクを用いた
小径ドリルでは穴壁面の粗れが観察され、焼き付きの発
生が多かった。更に、ステンレス鋼のシャンクでは刃先
および刃溝加工の際に工具で把持されて外表面に疵が付
いていた。
After performing a drilling test on a printed circuit board using these small diameter drills, we evaluated the inner surface of the hole and found that the thermal conductivity was 0.
.. In small-diameter drills using shanks made of stainless steel or high-speed steel with a rating of 1 or less, roughness of the hole wall surface was observed, and seizure occurred frequently. Furthermore, the stainless steel shank was gripped by a tool during machining of the cutting edge and groove, resulting in scratches on the outer surface.

他方、肛−6%CoまたはWC−15%TiC−6%C
oのシャンク・を用いた小径ドリルでは穴壁面は美麗に
切削され、焼き付きの発生もなく、シャンクの外表面に
疵も付いていなかった。
On the other hand, anal-6%Co or WC-15%TiC-6%C
In the case of the small diameter drill using the shank No. 1, the hole wall surface was cut beautifully, there was no seizure, and there were no scratches on the outer surface of the shank.

発明の効果 以上詳述の如(本発明は、ダイヤモンドまたは高圧相窒
化硼素を含有する硬質焼結部と、この硬質焼結部の一端
部で接合している支持部とを具備する複合焼結材料円柱
体の支持部をシャンクに固定し、複合焼結材料円柱体部
に真直又はねぢれ溝と先端刃付けを行って得られる硬質
焼結体小径ドリルにおいて、熱伝導率が01lcal 
7cm−sec、−を以上であり、好ましくは硬度がH
Rc25以上である材料でシャンクを構成したことを特
徴とする。
Effects of the Invention As detailed above (the present invention provides a composite sintered body comprising a hard sintered part containing diamond or high-pressure phase boron nitride, and a support part joined at one end of this hard sintered part) A hard sintered compact small-diameter drill obtained by fixing the supporting part of the cylindrical material to the shank and adding a straight or curved groove and a cutting edge to the cylindrical part of the composite sintered material has a thermal conductivity of 01 lcal.
7 cm-sec, - or more, preferably with a hardness of H
It is characterized in that the shank is made of a material with an Rc of 25 or more.

このような特性を有する材質のシャンクを使用すること
により、穴あけ時の刃先の切削熱がシャンクを通じて伝
導、放散されて、刃先の温度の上昇が防止され、良好な
品質の穴壁の穴明けが可・能となり、高速回転での使用
を行っても刃先の寿命が低下しない。更に、硬度の高い
材質のシャンクを用いることによりドリル加工時にシャ
ンク部分をチャッキングしてもシャンク表面に傷がつき
難く、商品価値の高い硬質焼結体小径ドリルを提供する
ことができる。
By using a shank made of a material with these characteristics, the cutting heat of the cutting edge during drilling is conducted and dissipated through the shank, preventing the temperature of the cutting edge from rising, and allowing for drilling of good quality hole walls. This makes it possible, and the life of the cutting edge does not decrease even when used at high speeds. Furthermore, by using a shank made of a material with high hardness, the shank surface is less likely to be damaged even if the shank portion is chucked during drilling, and a hard sintered compact small diameter drill with high commercial value can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は焼結ダイヤモンド層と超硬合金の支持部からな
る複合焼結体の斜視図である。 第2図は第1図に示す複合焼結体をシャンクに接合した
状態を示す。 第3図(a)および(b)は本発明の硬質焼結体小径ド
リルを作製するのに用いる複合焼結材料円柱体を示す。 第4図(a)は、第3図に示す複合焼結材料円柱体をシ
ャンクに固定した状態を示し、第4図(b)はこれを刃
付けおよび刃溝加工して得られた硬質焼結体小径ドリル
を示す。 (主な参照番号) 11、21・・・焼結ダイヤモンド層、12.22・・
・超硬合金の支持部、 13.23・・・複合焼結体、 15.25・・・シャンク、16・・・接合部、。
FIG. 1 is a perspective view of a composite sintered body consisting of a sintered diamond layer and a cemented carbide support. FIG. 2 shows a state in which the composite sintered body shown in FIG. 1 is joined to a shank. FIGS. 3(a) and 3(b) show a cylindrical body of a composite sintered material used for producing the hard sintered small-diameter drill of the present invention. Fig. 4(a) shows the state in which the cylindrical body of the composite sintered material shown in Fig. 3 is fixed to the shank, and Fig. 4(b) shows the hard sintered material obtained by sharpening and cutting the blade groove. A compact small diameter drill is shown. (Main reference numbers) 11, 21...Sintered diamond layer, 12.22...
- Cemented carbide support part, 13.23... Composite sintered body, 15.25... Shank, 16... Joint part.

Claims (5)

【特許請求の範囲】[Claims] (1)ダイヤモンド粒子または高圧相窒化硼素粒子のい
ずれか一方または双方を50%以上含有し、断面が円形
をなす硬質焼結部と、該硬質焼結部とほぼ同一径の円柱
形をなし、その一端部で該硬質焼結体部と接合している
支持部とを具備する複合焼結材料円柱体の支持部をシャ
ンクの一端に形成された複合焼結材料円柱体とほぼ同一
径の孔に押し込み、固定した後、複合焼結材料円柱体部
に真直又はねぢれ溝と先端刃付けを行って得られる硬質
焼結体小径ドリルにおいて、シャンクが熱伝導率0.1
cal/cm・sec.・℃以上の熱伝導率を有する材
料からなることを特徴とする硬質焼結体小径ドリル。
(1) a hard sintered part containing 50% or more of either diamond particles or high-pressure phase boron nitride particles and having a circular cross section, and a cylindrical shape having approximately the same diameter as the hard sintered part; The support part of the composite sintered material column, which has a support part joined to the hard sintered body part at one end thereof, is connected to a hole having approximately the same diameter as the composite sintered material column formed at one end of the shank. In a hard sintered compact small-diameter drill obtained by inserting and fixing the cylindrical body of the composite sintered material into a straight or curved groove and cutting the tip, the shank has a thermal conductivity of 0.1.
cal/cm・sec. - A hard sintered small-diameter drill characterized by being made of a material with a thermal conductivity of ℃ or higher.
(2)前記シャンクの硬度がHRc25以上であること
を特徴とする特許請求の範囲第1項記載の硬質焼結体小
径ドリル。
(2) The hard sintered small-diameter drill according to claim 1, wherein the shank has a hardness of HRc25 or more.
(3)前記シャンクが超硬合金であることを特徴とする
特許請求の範囲第1項または第2項記載の硬質焼結体小
径ドリル。
(3) The hard sintered compact small diameter drill according to claim 1 or 2, wherein the shank is made of cemented carbide.
(4)前記シャンクはWを80〜98重量%含み、残部
がNi−FeまたはNi−Fe−Cuからなる合金であ
ることを特徴とする特許請求の範囲第1項または第2項
記載の硬質焼結体小径ドリル。
(4) The hard material according to claim 1 or 2, wherein the shank contains 80 to 98% by weight of W, and the remainder is an alloy consisting of Ni-Fe or Ni-Fe-Cu. Sintered compact small diameter drill.
(5)前記シャンクがMoを60〜90重量%含み、残
部がCu系合金であることを特徴とする特許請求の範囲
第1項または第2項記載の硬質焼結体小径ドリル。
(5) The hard sintered compact small-diameter drill according to claim 1 or 2, wherein the shank contains 60 to 90% by weight of Mo, and the remainder is a Cu-based alloy.
JP59275189A 1984-12-27 1984-12-27 Small-sized twist drill made of hard sintered material Granted JPS61152308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59275189A JPS61152308A (en) 1984-12-27 1984-12-27 Small-sized twist drill made of hard sintered material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59275189A JPS61152308A (en) 1984-12-27 1984-12-27 Small-sized twist drill made of hard sintered material

Publications (2)

Publication Number Publication Date
JPS61152308A true JPS61152308A (en) 1986-07-11
JPS63161B2 JPS63161B2 (en) 1988-01-06

Family

ID=17551920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59275189A Granted JPS61152308A (en) 1984-12-27 1984-12-27 Small-sized twist drill made of hard sintered material

Country Status (1)

Country Link
JP (1) JPS61152308A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63260712A (en) * 1987-04-15 1988-10-27 Sumitomo Electric Ind Ltd Rotary machining tool
EP0726330A1 (en) * 1995-02-10 1996-08-14 Fuji Die Co., Ltd. Heat sinks and process for producing the same
US20140271003A1 (en) * 2013-03-15 2014-09-18 Sandvik Intellectual Property Ab Method of joining sintered parts of different sizes and shapes
CN111215631A (en) * 2020-03-16 2020-06-02 济南市冶金科学研究所有限责任公司 Tungsten-cobalt hard alloy product thermal connection method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008051588A2 (en) * 2006-10-25 2008-05-02 Tdy Industries, Inc. Articles having improved resistance to thermal cracking

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5879879A (en) * 1981-11-09 1983-05-13 住友電気工業株式会社 Composite diamond sintered body
JPS58102633A (en) * 1981-12-03 1983-06-18 Sumitomo Electric Ind Ltd Hard composite sintered body
JPS58160008A (en) * 1982-03-17 1983-09-22 Sumitomo Electric Ind Ltd Small diameter cemented carbide solid drill and manufature thereof
JPS5932310U (en) * 1982-08-23 1984-02-28 住友電気工業株式会社 Composite small diameter drill
JPS5943248A (en) * 1982-04-02 1984-03-10 ウツドワ−ド・ガバナ−・カンパニ− Control system of car and method of controlling car

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932310B2 (en) * 1979-12-07 1984-08-08 凸版印刷株式会社 makeup sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5879879A (en) * 1981-11-09 1983-05-13 住友電気工業株式会社 Composite diamond sintered body
JPS58102633A (en) * 1981-12-03 1983-06-18 Sumitomo Electric Ind Ltd Hard composite sintered body
JPS58160008A (en) * 1982-03-17 1983-09-22 Sumitomo Electric Ind Ltd Small diameter cemented carbide solid drill and manufature thereof
JPS5943248A (en) * 1982-04-02 1984-03-10 ウツドワ−ド・ガバナ−・カンパニ− Control system of car and method of controlling car
JPS5932310U (en) * 1982-08-23 1984-02-28 住友電気工業株式会社 Composite small diameter drill

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63260712A (en) * 1987-04-15 1988-10-27 Sumitomo Electric Ind Ltd Rotary machining tool
EP0726330A1 (en) * 1995-02-10 1996-08-14 Fuji Die Co., Ltd. Heat sinks and process for producing the same
US20140271003A1 (en) * 2013-03-15 2014-09-18 Sandvik Intellectual Property Ab Method of joining sintered parts of different sizes and shapes
US10265813B2 (en) * 2013-03-15 2019-04-23 Sandvik Intellectual Property Method of joining sintered parts of different sizes and shapes
CN111215631A (en) * 2020-03-16 2020-06-02 济南市冶金科学研究所有限责任公司 Tungsten-cobalt hard alloy product thermal connection method

Also Published As

Publication number Publication date
JPS63161B2 (en) 1988-01-06

Similar Documents

Publication Publication Date Title
CA1286510C (en) Stick of composite materials and process for preparation thereof
EP0157625B1 (en) Composite tool
KR100749994B1 (en) Composite rotary tool and tool fabrication method
JPH0776135B2 (en) Abrasion resistant polycrystalline diamond thermal resistor
EP1609551A1 (en) Support pads for drill heads
JP2006528077A (en) Uncoated cutting tool with brazed ultra-hard blank
JPS5918472B2 (en) Cutting tools
JPS61152308A (en) Small-sized twist drill made of hard sintered material
US5178647A (en) Wear-resistant member
JPS62142704A (en) Composite sintered material
CN214602099U (en) A bore integrative cutter of ream for carbon fiber reinforced composite
JPS6195808A (en) Boring tool
JPS61506A (en) Manufacture of rod-shaped body of composite sintered material
JPH0525617B2 (en)
JP2720951B2 (en) Cutting tool with high hardness composite sintered body as cutting edge
JP2746344B2 (en) Cutting tool with high hardness composite sintered body as cutting edge
JPH06226522A (en) End mill
JPS5879879A (en) Composite diamond sintered body
CN2179797Y (en) Centre
JPH049754B2 (en)
JP2002127102A (en) Cutter
JPH04217414A (en) Throw away drill
JP5327740B2 (en) Cutting tip
WO2005105349A1 (en) Drill to which cbn sintered body is joined
JPS63260712A (en) Rotary machining tool