JPH049754B2 - - Google Patents

Info

Publication number
JPH049754B2
JPH049754B2 JP59120218A JP12021884A JPH049754B2 JP H049754 B2 JPH049754 B2 JP H049754B2 JP 59120218 A JP59120218 A JP 59120218A JP 12021884 A JP12021884 A JP 12021884A JP H049754 B2 JPH049754 B2 JP H049754B2
Authority
JP
Japan
Prior art keywords
sintered
composite
cemented carbide
hard
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59120218A
Other languages
Japanese (ja)
Other versions
JPS60264371A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP59120218A priority Critical patent/JPS60264371A/en
Priority to EP85304135A priority patent/EP0168953B2/en
Priority to CA000483612A priority patent/CA1286510C/en
Priority to KR1019850004091A priority patent/KR920001585B1/en
Priority to AT85304135T priority patent/ATE49147T1/en
Priority to DE8585304135T priority patent/DE3575092D1/en
Publication of JPS60264371A publication Critical patent/JPS60264371A/en
Priority to US07/231,644 priority patent/US4880707A/en
Publication of JPH049754B2 publication Critical patent/JPH049754B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Impact Printers (AREA)
  • Drilling Tools (AREA)
  • Ceramic Products (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は硬質な頭部を有する複合焼結材料円柱
体に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a cylinder of composite sintered material with a hard head.

更に詳細には本発明は、ダイヤモンド焼結体或
いは高圧相窒化硼素焼結体の如き硬質な頭部と、
該頭部と一体に構成され、例えば超硬合金からな
る支持部とを具備する小径の複合焼結材料円柱体
に関する。
More specifically, the present invention includes a hard head such as a diamond sintered body or a high-pressure phase boron nitride sintered body;
The present invention relates to a small-diameter cylindrical body of composite sintered material that is integrally formed with the head and includes a support made of, for example, cemented carbide.

このような本発明の対象となる小径の複合焼結
材料円柱体は、高性能な小径ドリルの素材或いは
ドツトプリンタのヘツド部として用いることがで
きる。
Such a small-diameter cylindrical body of composite sintered material, which is the object of the present invention, can be used as a material for a high-performance small-diameter drill or as a head portion of a dot printer.

従来技術 超硬合金よりなるドリルが金属、非金属材料の
穴あけ用に多用されている。特に近年急激に需要
が伸びているプリント基板の穴あけには直径1mm
前後の超硬合金製ドリルが使われている。
Prior Art Drills made of cemented carbide are often used for drilling holes in metal and non-metal materials. Especially for drilling holes in printed circuit boards, the demand for which has been growing rapidly in recent years, the diameter is 1 mm.
The front and rear cemented carbide drills are used.

プリント基板には各種の材料が使われている
が、主として用いられているのはガラス繊維にエ
ポキシ樹脂を含浸させた強化樹脂で、一般にガラ
エポ基板と称されている。
Various materials are used for printed circuit boards, but the main one used is a reinforced resin made by impregnating glass fiber with epoxy resin, which is generally referred to as a glass-epoxy board.

このようなプリント基板の穴あけは剛性の高い
ドリルで通常回転数5〜6万rpmの条件で行われ
ているが、基板に含まれるガラス繊維は超硬工具
を非常に早く摩耗させ、一般的に3000〜5000ヒツ
ト(ヒツトとは穴あけ回数のこと)で超硬ドリル
は寿命となる。こうしたドリル盤には自動工具交
換装置がついており、寿命となつたドリルは自動
的に交換されるが、生産効率向上のためにはこの
自動工具交換のための時間も問題であり、ドリル
寿命をのばして工具交換回数すなわち交換時間を
減少させるという要求が強い。
Drilling of such printed circuit boards is usually done using a highly rigid drill at a rotation speed of 50,000 to 60,000 rpm, but the glass fibers contained in the board wear out the carbide tools very quickly, and generally Carbide drills reach the end of their life after 3000 to 5000 hits (hits refers to the number of holes drilled). These drill machines are equipped with an automatic tool changer, and the drill that has reached the end of its service life is automatically replaced.However, in order to improve production efficiency, the time required for automatic tool change is also an issue, and the drill life is reduced. There is a strong demand to reduce the number of tool changes, that is, the tool change time.

プリント基板の特性からみると、更に耐熱性等
を向上させて高機能化を計りたいという要求も強
く、このような基板材料は実際に製造可能である
が、一般にこのような高機能材料は難削で、従来
の超硬質ドリルでは非常に短寿命となつてしま
い、このためこの種の基板材料の実用化が出来な
いのが実情である。
Looking at the characteristics of printed circuit boards, there is a strong demand for higher functionality by further improving heat resistance, etc., and although it is actually possible to manufacture such board materials, it is generally difficult to produce such high-performance materials. Due to cutting, conventional ultra-hard drills have a very short lifespan, and the reality is that this type of substrate material cannot be put to practical use.

更に、通常のガラエポ基板に対しても更に高能
率の穴あけを行うため穴あけドリルの回転数の上
昇が望まれているが、これも従来の超硬合金製ド
リルでは切削速度の上昇と共に急激に寿命が低下
してしまうのでドリル回転数上昇による高能率化
を達成できない。
Furthermore, it is desired to increase the rotational speed of the drilling drill in order to drill even more efficiently into ordinary glass epoxy substrates, but this also means that the lifespan of conventional cemented carbide drills rapidly decreases as the cutting speed increases. Since this decreases, it is not possible to achieve high efficiency by increasing the drill rotation speed.

一方、近年使用量が急激に増加しつつある焼結
ダイヤモンド工具は超硬工具に対して飛躍的に硬
度が高く、耐摩耗性がすぐれており、上記強化樹
脂などの切削に於いては非常な高性能を発揮す
る。
On the other hand, sintered diamond tools, whose usage has been rapidly increasing in recent years, have significantly higher hardness and wear resistance than carbide tools, and are extremely useful when cutting the above-mentioned reinforced resins. Demonstrates high performance.

ところが第1図に示すように、この焼結ダイヤ
モンド工具は焼結ダイヤモンド層11が超硬合金
の支持部12に貼り合わされた複合焼結体13を
チツプとして保持する。
However, as shown in FIG. 1, this sintered diamond tool holds as a chip a composite sintered body 13 in which a sintered diamond layer 11 is bonded to a support portion 12 of cemented carbide.

この複合焼結体13を使用してドリルを作製す
る場合には第2図に示すようにシヤンク15の先
端部に複合焼結体13を何らかの方法により固着
させて作らざるを得ない。
When manufacturing a drill using this composite sintered body 13, the composite sintered body 13 must be fixed to the tip of the shank 15 by some method as shown in FIG.

ところがこの複合焼結体13から作られるドリ
ルチツプの径は一般に1mm程度であり、このよう
な小径のものではシヤンク15と余程強力な接合
強度をもたせないと接合後の刃先研削加工で接合
部16からはずれてしまい、良好なドリルが製造
できない。特に焼結ダイヤモンドは難研削であ
り、研削抵抗が高く、通常の銀ロウ付け程度の強
度では強度不足である。接合強度の高い接合方法
として例えば電子ビーム溶接が考えられるが、電
子ビーム溶接を実施するとなると、ドリルの製造
工程が複雑且つ原価が高くなり、高性能ドリルの
需要の近年の急激な増加に対応できなかつた。
However, the diameter of the drill tip made from this composite sintered body 13 is generally about 1 mm, and if such a small diameter drill tip does not have a very strong bonding strength with the shank 15, the joint 16 will be damaged by grinding the cutting edge after bonding. The drill will fall off, making it impossible to manufacture a good drill. In particular, sintered diamond is difficult to grind, has high grinding resistance, and is insufficient in strength to the level of normal silver brazing. For example, electron beam welding can be considered as a bonding method with high bonding strength, but if electron beam welding were to be implemented, the drill manufacturing process would be complicated and the cost would be high, making it difficult to meet the rapid increase in demand for high-performance drills in recent years. Nakatsuta.

発明の目的 本発明は、上記従来技術の問題を解決すること
を目的とし、更に詳細には、硬質な頭部を有する
小径の複合焼結材料円柱体を提供し、これより耐
摩耗性および剛性の優れたドリルを容易に製造可
能とすることを目的とする。
OBJECTS OF THE INVENTION The present invention aims to solve the problems of the prior art described above, and more specifically, to provide a small-diameter composite sintered material cylinder having a hard head, which has improved wear resistance and rigidity. The purpose of this invention is to make it possible to easily manufacture an excellent drill.

更に本発明の目的は、ガラエポ基板の如き難削
性の基板の穴あけを容易且つ高性能で実現する、
長寿命のドリルを低価格で提供することにある。
A further object of the present invention is to easily and efficiently drill holes in difficult-to-cut substrates such as glass epoxy substrates.
Our goal is to provide long-life drills at low prices.

更に、本発明の目的は、ドツトプリンタのヘツ
ドの如き超硬質の先端部を必要とする細長の部材
を容易に製造し得る中間製品としての小径の複合
焼結材料円柱体を提供することにある。
A further object of the present invention is to provide a small diameter cylindrical body of composite sintered material as an intermediate product from which elongated members requiring ultra-hard tips, such as heads of dot printers, can be easily manufactured.

発明の構成 本発明は、ダイヤモンド粉末または立方晶窒化
硼素粉末のいずれか一方または双方を50%以上含
有し且つ断面が円形をなす硬質焼結部と、1端部
がこの硬質焼結部に接合され且つこの硬質焼結部
とほぼ同一径の円柱形を有する支持部とを具備す
る複合焼結材料円柱体を提供する。
Structure of the Invention The present invention comprises a hard sintered part containing 50% or more of either diamond powder or cubic boron nitride powder and having a circular cross section, and one end joined to the hard sintered part. A cylindrical body of a composite sintered material is provided, which is provided with a supporting part having a cylindrical shape having approximately the same diameter as the hard sintered part.

本発明の特徴は、この複合焼結材料円柱体が、
平均粒度が10μm以下であるダイヤモンド粉末ま
たは立方晶窒化硼素粉末のいずれか一方または双
方を50%以上含有する第1の材料層と、周期律表
第4a、5a、6a族元素の炭化物又はこれらの相互
固溶体炭化物を鉄族金属で結合した超硬合金ブロ
ツクよりなる第2の材料層とを同一のホツトプレ
スコンテナ中に加圧方向に積層して収容した後、
高温・高圧下でホツトプレスして硬質焼結部と支
持部とが接合された断面積の大きな複合焼結体ブ
ロツクを製造し、得られた複合焼結体ブロツクを
放電加工によつて上記材料の積層方向に切断する
ことによつて作られたものであり、この複合焼結
材料円柱体の硬質焼結部の軸方向長さは0.3〜2
mmであり、支持部の軸方向長さは硬質焼結部の軸
方向長さの5倍以上であり、しかも、複合焼結材
料円柱体は直径が3mm以下で且つその全長が10mm
以上である点にある。
The feature of the present invention is that this composite sintered material cylinder is
A first material layer containing 50% or more of either diamond powder or cubic boron nitride powder with an average particle size of 10 μm or less, and carbides of elements of groups 4a, 5a, and 6a of the periodic table, or carbides of elements of groups 4a, 5a, and 6a of the periodic table. A second material layer consisting of a cemented carbide block in which mutual solid solution carbide is bonded with an iron group metal is stacked and housed in the same hot press container in the pressing direction, and then
A composite sintered body block with a large cross-sectional area in which a hard sintered part and a supporting part are joined is produced by hot pressing under high temperature and high pressure, and the obtained composite sintered body block is processed by electric discharge machining to form the above material. It is made by cutting in the stacking direction, and the axial length of the hard sintered part of this composite sintered material cylinder is 0.3 to 2.
mm, the axial length of the support part is at least 5 times the axial length of the hard sintered part, and the composite sintered material cylinder has a diameter of 3 mm or less and a total length of 10 mm.
That's all for now.

ダイヤモンド粉末を使用して切削工具のチツプ
を作製するときは、平均粒度が10μmを越えるダ
イヤモンド粉末を原料として使用すると、この複
合焼結材料円柱体を加工して得た切削工具の切刃
が鋭利に成形できず、このため高性能とならない
ので、硬質焼結部は10μm以下のダイヤモンドま
たは高圧相窒化硼素からなるのが好ましい。
When making chips for cutting tools using diamond powder, if diamond powder with an average particle size exceeding 10 μm is used as a raw material, the cutting edge of the cutting tool obtained by processing this composite sintered material cylinder will be sharp. The hard sintered part is preferably made of diamond or high-pressure phase boron nitride with a diameter of 10 μm or less, since the hard sintered part cannot be molded into a material with a diameter of 10 μm or less, and therefore does not have high performance.

硬質焼結部がダイヤモンド粉末を主成分として
焼結されたものであるときは、ダイヤモンド粉末
単独、或いは70%以上のダイヤモンドを含み、残
部がFe、CoまたはNiを主成分とする結合材によ
り焼結したものである。このような硬質焼結部の
好ましい例としては、70%以上のダイヤモンドと
WC−5〜15%Coとの焼結体がある。
When the hard sintered part is sintered with diamond powder as the main component, it may be sintered with diamond powder alone or with a binder containing 70% or more of diamond, with the remainder being Fe, Co, or Ni as the main component. It is a result of the following. A preferable example of such a hard sintered part is one with a diamond content of 70% or more.
There is a sintered body of WC-5 to 15% Co.

尚、硬質焼結部の材料としてダイヤモンド単独
の粉末を使用する場合は、硬質焼結部の焼結時に
支持部材料中の結合材成分が硬質焼結部材料粉末
中に溶浸することによつて硬質焼結部の焼結が達
成される。
In addition, when using diamond powder alone as the material for the hard sintered part, the binder component in the support part material will infiltrate into the hard sintered part material powder during sintering of the hard sintered part. Thus, sintering of the hard sintered part is achieved.

硬質焼結部が高圧相窒化硼素粉末を主成分とす
る場合は、高圧相窒化硼素粉末単独、或いは50%
以上の高圧相窒化硼素に4a、5a、6a族元素の炭
化物、窒化物、炭窒化物及びアルミニウムおよ
び/またはシリコンを結合材として添加して焼結
したものがある。なお、高圧相窒化硼素単独の粉
末は結合材を必要とせず、それ自体でも硬質焼結
部の焼結が達成される。ここで、高圧相窒化硼素
とは、立方晶型窒化硼素およびウルツ鉱型窒化硼
素を意味する。
If the hard sintered part is mainly composed of high-pressure phase boron nitride powder, high-pressure phase boron nitride powder alone or 50%
There is a product obtained by adding carbides, nitrides, carbonitrides of elements of groups 4a, 5a, and 6a, and aluminum and/or silicon as binders to the above-mentioned high-pressure phase boron nitride and sintering them. Note that the powder of high-pressure phase boron nitride alone does not require a binder, and sintering of the hard sintered part can be achieved by itself. Here, high-pressure phase boron nitride means cubic boron nitride and wurtzite boron nitride.

支持部は、いわゆる超硬合金、すなわち、周期
律表第4a、5a、6a族元素の炭化物、窒化物、炭
窒化物、硼化物、珪化物又はこれらの相互固溶体
炭化物をFe、CoまたはNiの鉄族金属で結合した
焼結合金またはサーメツトである。サーメツトの
1例としては、(Mo、W)Cの炭化物をNiまた
はCoの鉄族金属で結合したものがある。
The support part is made of so-called cemented carbide, that is, carbides, nitrides, carbonitrides, borides, silicides of elements of Groups 4a, 5a, and 6a of the periodic table, or mutual solid solution carbides of these elements, Fe, Co, or Ni. It is a sintered alloy or cermet bonded with iron group metals. An example of a cermet is a carbide of (Mo,W)C bonded with an iron group metal such as Ni or Co.

更に別の支持部材料としては、Wを80〜98重量
%含み、残余がNi−FeまたはNi−Fe−Cuからな
るいわゆるヘビー・メタルといわれる焼結合金が
ある。
Still another support material is a sintered alloy called heavy metal, which contains 80 to 98% by weight of W and the remainder is Ni-Fe or Ni-Fe-Cu.

本発明の複合焼結材料円柱体の重要な特徴の1
つは、硬質焼結部と支持部との接合が硬質焼結部
の焼結過程で形成されたものである点にある。従
つて、支持部の成分は、硬質焼結部の焼結過程で
硬質焼結部と接合し得る材質であることが必要で
ある。しかしながら、上記した硬質焼結部と支持
部との成分の範囲ではこのような組み合わせは無
限にあり、ダイヤモンドまたは高圧相窒化硼素の
高圧力および高温度下のホツトプレスによる焼結
過程で、上記したように支持部材中の鉄系金属の
結合材が溶浸して硬質焼結部と支持部との接合は
容易に生ずる。従つて、このような硬質焼結部と
支持部の成分の選択は当業者が上記した範囲内で
必要に応じて可能であることは云うまでもない。
更に高圧相窒化硼素粉末は上記したように単独で
も焼結可能であり、支持部との接続はその焼結過
程で達成される。
One important feature of the composite sintered material cylinder of the present invention
First, the bond between the hard sintered part and the support part is formed during the sintering process of the hard sintered part. Therefore, the component of the support part needs to be a material that can be bonded to the hard sintered part during the sintering process of the hard sintered part. However, within the range of the components of the hard sintered part and the support part mentioned above, such combinations are infinite, and in the sintering process of diamond or high-pressure phase boron nitride by hot pressing under high pressure and high temperature, the above-mentioned combinations are possible. The ferrous metal binding material in the support member is infiltrated, and the hard sintered part and the support part are easily joined. Therefore, it goes without saying that those skilled in the art can select the components of the hard sintered part and the supporting part as needed within the above-mentioned range.
Further, the high-pressure phase boron nitride powder can be sintered alone as described above, and the connection with the support part is achieved during the sintering process.

更に、本発明の1つの態様に従うと、硬質焼結
部と支持部とは、厚さ0.5mm以下の中間接合層を
介して接合されている。
Furthermore, according to one embodiment of the present invention, the hard sintered part and the support part are joined via an intermediate joining layer having a thickness of 0.5 mm or less.

中間接合層としては、70%未満の高圧相窒化硼
素と残部が周期律表第4a族のTi、Zr、Hfの炭化
物、窒化物、炭窒化物あるいはホウ化物の1種も
しくはこれらの混合物または相互固溶体化合物を
主体としたものと、これにAlおよび/またはSi
を0.1重量%以上含有するものが好ましい。
The intermediate bonding layer is made of less than 70% high-pressure phase boron nitride and the remainder is one of carbides, nitrides, carbonitrides, or borides of Ti, Zr, and Hf in group 4a of the periodic table, or a mixture thereof. Those mainly composed of solid solution compounds and those containing Al and/or Si.
Those containing 0.1% by weight or more are preferable.

更に、本発明の1つの態様に従うと、支持部が
軸方向に2以上の材料層から構成されてもよい。
このような1例として、第2の材料層の支持側の
層がWC−Co焼結合金であり、硬質な頭部側の層
が(Mo、w)Cの炭化物をNiまたはCoの鉄族金
属で結合したサーメツトからなるものがある。
Further, according to one aspect of the invention, the support may be composed of two or more layers of material in the axial direction.
As an example of this, the support side layer of the second material layer is a WC-Co sintered alloy, and the hard head side layer is a (Mo,w)C carbide with a Ni or Co iron group. Some are made of cermets bonded with metal.

上記した如く、本発明に於いては硬質焼結部と
支持部の接合が硬質焼結部の焼結時に形成される
ことが肝要である。このために、硬質焼結部のホ
ツトプレス(焼結処理)時に硬質焼結部の材料粉
末を支持部材料の上に配置してホツトプレスを行
うことが必要である。このとき、支持部となる材
料は、既に焼結済みの固形超硬合金であつてもよ
く、或いは超硬合金材料の粉末であつてもよい。
As described above, in the present invention, it is important that the bond between the hard sintered part and the support part be formed during sintering of the hard sintered part. For this reason, when hot pressing (sintering) the hard sintered part, it is necessary to place the material powder of the hard sintered part on the support part material and perform hot pressing. At this time, the material serving as the support portion may be a solid cemented carbide that has already been sintered, or may be a powder of a cemented carbide material.

以上、本発明の複合焼結材料円柱体をその硬質
焼結部のホツトプレス前の成分に基づき説明した
が、焼結後の硬質焼結部、支持部およびそれらの
接合部分については特定していない。しかしなが
ら、焼結後の硬質焼結部、支持部およびそれらの
接合部分の成分は、それらの組み合わせ自体およ
びホツトプレスの温度、圧力、持続時間によつて
微妙に変動するものであり、当業者が本発明を実
施するに際し、ホツトプレス前の成分に基づいた
方がより容易且つ正確に発明の内容を理解出来る
ものである。従つて、焼結後の硬質焼結部、支持
部およびそれらの接合部分の成分自体については
これ以上の説明を省略する。
The composite sintered material cylindrical body of the present invention has been described above based on the components of its hard sintered part before hot pressing, but the hard sintered part after sintering, the support part, and their joint parts have not been specified. . However, the composition of the hard sintered part, the support part, and their joint parts after sintering varies slightly depending on the combination itself and the temperature, pressure, and duration of the hot press, and those skilled in the art will be able to understand this. When carrying out the invention, it is easier and more accurate to understand the content of the invention if it is based on the ingredients before hot pressing. Therefore, further explanation of the components of the hard sintered part, the support part, and their joint parts after sintering will be omitted.

次ぎに、本発明の複合焼結材料円柱体の寸法上
の特徴を説明する。
Next, the dimensional characteristics of the composite sintered material cylinder of the present invention will be explained.

本発明の複合焼結材料円柱体は3mm以下の直径
であることが必要である。3mmを越える直径の複
合焼結材料円柱体はプリント基板の穴あけドリル
用素材としては不適格である。また研削して使用
するにしても研削代が大きくなり不経済である。
The cylindrical body of the composite sintered material of the present invention needs to have a diameter of 3 mm or less. Cylindrical bodies of composite sintered material with a diameter exceeding 3 mm are unsuitable as materials for drilling holes in printed circuit boards. Moreover, even if it is used after grinding, the grinding allowance becomes large and it is uneconomical.

また、硬質焼結部の軸方向の長さは0.3〜2mm
の範囲である。0.3mm末満では、ドリル先端部と
して使用した場合には必要な切羽を形成できず、
2mmを超える長さでは高価なダイヤモンド粉末等
を多量に使用することになり不経済である。
In addition, the axial length of the hard sintered part is 0.3 to 2 mm.
is within the range of At the end of 0.3mm, the required face cannot be formed when used as the tip of a drill.
If the length exceeds 2 mm, a large amount of expensive diamond powder etc. will be used, which is uneconomical.

更に、本発明の複合焼結材料円柱体の支持部の
長さは硬質焼結部の長さの5倍以上であることが
必要である。ドリルを作製する場合に、ドリルの
刃先長さを確保し、末端をシヤンクに埋込む必要
があるので、上記の通り、硬質焼結部の長さの5
倍以上の長さの支持部が必要となる。
Further, the length of the supporting part of the cylindrical body of the composite sintered material of the present invention needs to be at least five times the length of the hard sintered part. When making a drill, it is necessary to ensure the length of the cutting edge of the drill and embed the end in the shank.
A support part that is more than twice as long is required.

以上説明の如き本発明の細長の複合焼結材料円
柱体は従来存在しなかつたものである。その理由
は、本発明の複合焼結材料円柱体の如く断面積に
対し軸方向長さの大きい材料では軸方向に加圧し
てホツトプレスを行つても、粉末材料層による圧
力損失が大きく、軸方向中央部分に必要な圧力が
かからず、強固な焼結体が得られないからであ
る。更に、小断面積で且つ軸方向長さの大きい材
料では軸方向に加圧して更に高圧力のホツトプレ
スを行いダイヤモンドまたは高圧相窒化硼素の安
定な温度および圧力を維持するようにすると、ホ
ツトプレスのコンテナ内の圧力分布が極めて変則
的となるので曲がりなどの変形を起こし易く十分
な寸法精度を持つ焼結体が得られないからであ
る。
The elongated composite sintered material cylinder of the present invention as described above has never existed before. The reason for this is that for materials such as the cylindrical body of the composite sintered material of the present invention, which has a large axial length relative to its cross-sectional area, even if hot pressing is performed by applying pressure in the axial direction, the pressure loss due to the powder material layer is large. This is because the necessary pressure is not applied to the central portion, and a strong sintered body cannot be obtained. Furthermore, for materials with a small cross-sectional area and a large axial length, hot pressing can be performed at a higher pressure by applying pressure in the axial direction to maintain a stable temperature and pressure of diamond or high-pressure phase boron nitride. This is because the pressure distribution inside becomes extremely irregular, which tends to cause deformation such as bending, making it impossible to obtain a sintered body with sufficient dimensional accuracy.

そのため、細長の焼結材料のホツトプレスでは
焼結材料の軸方向が加圧方向と直角となるよう焼
結材料を配置していた。このようなホツトプレス
で、本発明の如き細長の複合材料を焼結すると、
異つた材料層間の境界面に垂直な方向での圧力は
小さく、十分な強度の接合が得られなかつた。
Therefore, in hot pressing of elongated sintered material, the sintered material is arranged so that the axial direction of the sintered material is perpendicular to the pressing direction. When an elongated composite material like the one of the present invention is sintered using such a hot press,
The pressure in the direction perpendicular to the interface between different material layers was small, and a bond of sufficient strength could not be obtained.

これに対し、本発明者らは後述する如く、断面
積の大きな複合材料ブロツクのホツトプレスを行
つて複合焼結体ブロツクを製造し、これを放電ワ
イヤカツテイングで小径の円柱体に切断すること
により小径で細長の、硬質な頭部を有する複合焼
結材料円柱体を与えることに成功したものであ
る。
In contrast, as will be described later, the present inventors manufactured a composite sintered body block by hot pressing a composite material block with a large cross-sectional area, and then cut this into a small-diameter cylindrical body using electric discharge wire cutting. A cylindrical body of a composite sintered material having a small diameter, elongated, and hard head was successfully provided.

添付図面の第3図a及びbは、それぞれ本発明
の複合焼結材料円柱体の外観を示す。
Figures 3a and 3b of the accompanying drawings each show the external appearance of the composite sintered material cylinder of the present invention.

第3図aに示す複合焼結材料円柱体23は硬質
焼結部21と支持部22とからなり、硬質焼結部
21と支持部22とは硬質焼結部21の焼結過程
で一体に接合されている。
The composite sintered material cylindrical body 23 shown in FIG. It is joined.

他方、第3図bに示す複合焼結材料円柱体23
では、硬質焼結部21と支持部22とは、それら
の間に中間接合層24を介在させて接合してい
る。
On the other hand, the composite sintered material cylinder 23 shown in FIG. 3b
Here, the hard sintered part 21 and the support part 22 are joined with an intermediate joining layer 24 interposed therebetween.

次に本発明の複合焼結材料円柱体の製造方法を
説明する。
Next, a method for manufacturing a cylindrical composite sintered material according to the present invention will be explained.

本出願と同日付けの特許出願「複合焼結材料棒
状体の製造方法」に記載の如く、本発明者らは、
まず断面積の大きな複合材料ブロツクのホツトプ
レスを行つて複合焼結体ブロツクを製造し、これ
を放電ワイヤカツテイングで小径の円柱体に切断
することにより小径で細長の、硬質な頭部を有す
る複合焼結材料円柱体を与えることに成功したも
のである。
As described in the patent application "Method for manufacturing composite sintered material rod-shaped body" dated the same date as this application, the present inventors
First, a composite material block with a large cross-sectional area is hot-pressed to produce a composite sintered body block, which is then cut into a small-diameter cylindrical body using electrical discharge wire cutting. We succeeded in providing a cylindrical body of sintered material.

すなわち、この同日付けの特許出願「複合焼結
材料棒状体の製造方法」に記載の方法では、ダイ
ヤモンド粉末または高圧相窒化硼素粉末を50%以
上含有する硬質焼結体用の第1の材料層と、該第
1の材料層の焼結過程で該第1の材料の硬質焼結
体と接合する第2の材料層とを同一のホツトプレ
スコンテナ内に加圧方向に重ねて装入し、高温高
圧下でホツトプレスして該第1の材料層を焼結す
ると同時に、得られた硬質焼結体を該第2の材料
層側と接合せしめて、所定厚さの硬質焼結体の層
を有する複合材料ブロツクを形成し、該複合材料
ブロツクを放電ワイヤカツテイング方法により材
料層厚方向に切断して、該複合材料ブロツクの材
料層厚方向厚さに対して1/5以下で且つ3mm以下
の相当直径DEの断面を有し、頭部に硬質焼結体
を備える細長の複合材料棒状体を2本以上切り取
る。
That is, in the method described in the patent application "Method for manufacturing rod-shaped composite sintered material" dated the same date, a first material layer for a hard sintered body containing 50% or more of diamond powder or high-pressure phase boron nitride powder is used. and a second material layer to be bonded to the hard sintered body of the first material in the sintering process of the first material layer, and stacked in the pressing direction in the same hot press container, At the same time, the first material layer is sintered by hot pressing under high temperature and high pressure, and the obtained hard sintered body is joined to the second material layer to form a layer of hard sintered body with a predetermined thickness. Form a composite material block having the following properties, and cut the composite material block in the material layer thickness direction by a discharge wire cutting method to obtain a composite material block with a thickness of 1/5 or less and 3 mm or less with respect to the material layer thickness direction of the composite material block. Two or more elongated composite material rods having a cross section with an equivalent diameter DE and having a hard sintered body at the head are cut out.

この複合材料をホツトプレスして焼結するに際
し、本発明に従うと、複合材料ブロツクの軸方向
長さは相当直径DEの3倍、好ましくは2倍以下
の必要がある。3倍を越える軸方向長さの複合材
料ブロツクのホツトプレスを行うと複合材料ブロ
ツク内の圧力分布が変則的となり、曲がりなどを
生ずるからである。本発明書中で、相当直径とは
断面積の等しい円の直径に換算した値を意味す
る。
When hot-pressing and sintering this composite material, according to the invention, the axial length of the composite material block must be no more than 3 times, preferably no more than 2 times, the equivalent diameter DE. This is because if a composite material block with an axial length exceeding three times is hot-pressed, the pressure distribution within the composite material block will become irregular, resulting in bending or the like. In the present invention, the term "equivalent diameter" refers to a value converted to the diameter of a circle having the same cross-sectional area.

第3図に示す複合材料円柱体の切り出し方法を
説明する。上述の如くホツトプレスして得られた
複合焼結体ブロツク33は、第4図aに示す如
く、厚さ1mmのダイヤモンド焼結体層31と、こ
れに接合した超硬合金層32とからなり、中間接
合層を含む場合では第4図bに示す如くダイヤモ
ンド焼結体層31と超硬合金32とが中間接合層
34を介して接合されている。図示の例では円柱
状の複合焼結体ブロツクを示しているが、複合焼
結体ブロツクは円柱状でも角柱体でもよいことは
勿論である。
A method of cutting out the composite material cylinder shown in FIG. 3 will be explained. The composite sintered body block 33 obtained by hot pressing as described above, as shown in FIG. In the case where an intermediate bonding layer is included, the diamond sintered body layer 31 and the cemented carbide 32 are bonded via the intermediate bonding layer 34, as shown in FIG. 4b. Although the illustrated example shows a cylindrical composite sintered body block, it goes without saying that the composite sintered body block may be cylindrical or prismatic.

これらの複合焼結体ブロツクを第5図に示す如
く、複合焼結体ブロツクと同軸方向の相当直径3
mm以下の断面の棒状体に放電ワイヤカツテイング
法により切断して第3図aおよびbに示す如き硬
質の頭部を有する複合材料棒状体に切断する。
As shown in Fig. 5, these composite sintered blocks have an equivalent diameter of 3 in the coaxial direction with the composite sintered blocks.
A rod-shaped body having a cross section of 1 mm or less is cut by the electric discharge wire cutting method to obtain a composite material rod-shaped body having a hard head as shown in FIGS. 3a and 3b.

この放電ワイヤカツテイング法では、ワイヤと
複合焼結体ブロツクとの間に高電圧をかけ、ワイ
ヤを緊張した状態で走行させてブロツクを切断す
るものであり、その方法の詳細は例えば米国特許
第4103137号を参照されたい。
In this electric discharge wire cutting method, a high voltage is applied between the wire and the composite sintered block, and the wire is run under tension to cut the block. Please refer to No. 4103137.

以下、本発明の頭部に硬質な焼結体を有する複
合焼結材料円柱体の具体的な製造例を説明する。
Hereinafter, a specific manufacturing example of a cylindrical body of a composite sintered material having a hard sintered body at the head of the present invention will be described.

製造例 1 外径18mm、内径14mm、高さ15mmのWC−12%Co
超硬合金製リング、外径14mm、高さ12mmのWC−
12%Co超硬合金製円柱ブロツク、外径14mm、厚
さ0.5mmのWC−12%Co超硬合金製円板と粒径0.5μ
mのダイヤモンド粉末85%と残余が粒径0.5μm以
下のWC−15%Co超硬合金粉末よりなる混合粉末
を用意した。
Manufacturing example 1 WC-12%Co with an outer diameter of 18 mm, an inner diameter of 14 mm, and a height of 15 mm.
Cemented carbide ring, outer diameter 14mm, height 12mm WC−
12%Co cemented carbide cylinder block, outer diameter 14mm, thickness 0.5mm WC-12%Co cemented carbide disc and grain size 0.5μ
A mixed powder was prepared, consisting of 85% diamond powder with a particle diameter of 0.5 μm or less and WC-15% Co cemented carbide powder with a particle size of 0.5 μm or less.

超合金リングの内径に超合金円柱ブロツクを挿
入し、超硬合金リング内面と超硬合金円柱ブロツ
クの上面とで形成される直径14mm、深さ3mmの凹
所に前記混合ダイヤモンド粉末を充填後加圧し
て、混合粉末の高さを1.5μmとし、超硬合金円板
で蓋をした後、超高圧焼結装置中に配置し、圧力
55kb、温度1370℃の条件で15分間焼結を行つた。
冷却後、減圧して取り出した封入容器の上部超硬
合金円板を研削により除去すると高さ12mmの超硬
合金支持部の上面に厚さ1mmの焼結ダイヤモンド
層が接合して形成され周囲に超硬合金製リングが
やはり支持部及び焼結ダイヤモンド層に結合した
複合体ブロツクが得られた。
A superalloy cylindrical block is inserted into the inner diameter of the superalloy ring, and the mixed diamond powder is filled into a recess with a diameter of 14 mm and a depth of 3 mm formed by the inner surface of the cemented carbide ring and the top surface of the cemented carbide cylindrical block, and then processed. The mixed powder was pressed to a height of 1.5 μm, and after being covered with a cemented carbide disk, it was placed in an ultra-high pressure sintering device and heated under pressure.
Sintering was performed for 15 minutes at a temperature of 55 kb and 1370°C.
After cooling, the upper cemented carbide disk of the enclosure was removed by depressurization and removed by grinding, and a 1 mm thick sintered diamond layer was bonded to the top surface of the 12 mm high cemented carbide support and formed around it. A composite block was obtained in which the cemented carbide ring was also bonded to the support and to the sintered diamond layer.

この複合体ブロツクを第5図に示すように、放
電ワイヤカツト加工機に装着し、放電ワイヤカツ
テイングして、、複合体ブロツクの軸方向より直
径1mm、長さ13mmの丸棒で支持体部はWC−12%
Co超硬合金よりなり、その一端に長さ1mmの焼
結ダイヤモンド層が固着形成された円柱体を得
た。
As shown in Fig. 5, this composite block was mounted on an electric discharge wire cutting machine, and after cutting the electric discharge wire, a round bar with a diameter of 1 mm and a length of 13 mm was used to cut the support part from the axial direction of the composite block. WC−12%
A cylindrical body made of Co cemented carbide and having a 1 mm long sintered diamond layer fixedly formed at one end was obtained.

製造例 2 それぞれWC−12%Co超硬合金よりなる外径
18mm、内径14mm、高さ20mmのリング、外径14
mm、高さ18mmの円柱ブロツク、外径14mm、厚さ
0.5mmの円板と、粒径3μmのダイヤモンド粉末90
%と残余がCo粉末よりなる混合粉末、粒径3μm
の高圧相窒化硼素(以下、立方晶型窒化硼素を
CBNと略記する)粉末60%と残余が(TiN−10
重量%Al)の組成の粉末よりなる混合粉末を用
意した。
Manufacturing example 2 Outer diameter made of WC-12%Co cemented carbide
18mm, inner diameter 14mm, height 20mm ring, outer diameter 14
mm, 18 mm height cylindrical block, outer diameter 14 mm, thickness
0.5mm disk and 90 diamond powder with particle size of 3μm
Mixed powder consisting of % and remainder Co powder, particle size 3μm
High-pressure phase boron nitride (hereinafter referred to as cubic boron nitride)
60% powder (abbreviated as CBN) and the remainder (TiN−10
A mixed powder consisting of a powder having a composition of (wt% Al) was prepared.

超硬合金製円柱ブロツクの上面に前記CBN混
合粉末を溶媒に溶かしたものを厚さ50μmに塗付
した後、溶媒を加熱除去し、この処理を行つた超
硬合金円柱ブロツクを超硬リング内径に挿入し
た。
After applying a solution of the CBN mixed powder in a solvent to a thickness of 50 μm on the top surface of a cemented carbide cylindrical block, the solvent was removed by heating, and the cemented carbide cylindrical block subjected to this treatment was made into a cemented carbide ring with an inner diameter of 50 μm. inserted into.

次に、超硬合金リング内面とCBN混合粉末を
塗布した超硬合金円柱ブロツクの上面とで形成さ
れる凹所に前記ダイヤモンド混合粉末を充填した
後、加圧成型して厚さ1.8mmのダイヤモンド混合
粉末層を形成した後、超硬合金円板で蓋をした。
Next, after filling the recess formed by the inner surface of the cemented carbide ring and the top surface of the cemented carbide cylindrical block coated with the CBN mixed powder, the diamond mixed powder is press-molded to form a diamond with a thickness of 1.8 mm. After forming the mixed powder layer, it was covered with a cemented carbide disk.

次にこの容器を超高圧焼結装置中に配置し、圧
力55kb、温度1400℃で10分間焼結を行つた後、
冷却、減圧して容器を取り出した。容器の上部超
硬合金円板を研削除去すると高さ18mmの超硬合金
支持体の上面に厚さ1.2mmの焼結ダイヤモンド層
が厚さ25μmの焼結CBN層を介して接合され、周
囲に超硬合金リングが支持体及び焼結ダイヤモン
ド層に結合した複合体ブロツクが得られた。
Next, this container was placed in an ultra-high pressure sintering device and sintered at a pressure of 55kb and a temperature of 1400℃ for 10 minutes.
After cooling and reducing the pressure, the container was taken out. When the upper cemented carbide disk of the container is removed by grinding, a 1.2 mm thick sintered diamond layer is bonded to the top surface of the 18 mm high cemented carbide support via a 25 μm thick sintered CBN layer, and the surrounding A composite block was obtained in which the cemented carbide ring was bonded to the support and to the sintered diamond layer.

この複合体ブロツクを放電ワイヤカツト、加工
機に装着し、放電ワイヤカツテイングにより複合
体の軸方向より直径2mm、長さ19.2mmの丸棒で支
持体部はWC−12%Co超硬合金よりなり、その一
端に長さ1.2mmの焼結ダイヤモンド層が厚さ25μm
の焼結CBN界面層を介して接合形成された円柱
体を得た。
This composite block was mounted on a discharge wire cutter and a processing machine, and the support part was made of WC-12%Co cemented carbide using a round bar with a diameter of 2 mm and a length of 19.2 mm from the axial direction of the composite body. , at one end there is a sintered diamond layer 1.2 mm long and 25 μm thick.
A cylindrical body was obtained which was bonded through the sintered CBN interface layer.

製造例 3 (Mo7、W3)C−11%Co超硬合金よりなり、
上面に直径20mm、深さ3mmの円形凹所を有する外
径24mm、高さ25mmの円柱ブロツク、外径20mm、厚
さ0.5mmのWC−12%Co超硬合金製円板と粒径0.5μ
mのダイヤモンド粉末80%と残余が粒径0.5μm以
下のWC−15%Co超硬合金粉末よりなるダイヤモ
ンド混合粉末を用意した。
Manufacturing example 3 (Mo 7 , W 3 ) Made of C-11%Co cemented carbide,
A cylindrical block with an outer diameter of 24 mm and a height of 25 mm with a circular recess of 20 mm in diameter and 3 mm in depth on the top surface, a WC-12% Co cemented carbide disk with an outer diameter of 20 mm and a thickness of 0.5 mm, and a grain size of 0.5 μ.
A mixed diamond powder was prepared, consisting of 80% diamond powder of m and the remainder WC-15% Co cemented carbide powder with a particle size of 0.5 μm or less.

このダイヤモンド混合粉末を前記超硬合金円柱
ブロツクの上面凹所に充填後加圧して高さ2.3mm
のダイヤモンド混合粉末層を形成した。次にこの
上に超硬合金円板で蓋をした後、超高圧焼結装置
内に配置し、圧力55kb、温度1400℃で15分間焼
結した。
This diamond mixed powder was filled into the recess on the upper surface of the cemented carbide cylindrical block and then pressurized to a height of 2.3 mm.
A layer of diamond mixed powder was formed. Next, this was covered with a cemented carbide disk, placed in an ultra-high pressure sintering device, and sintered at a pressure of 55 kb and a temperature of 1400°C for 15 minutes.

焼結後、封入容器を取り出し、上面の超硬合金
蓋を研削除去すると上面円形凹所に厚さ1.5mmの
焼結ダイヤモンド層を有し、これが周囲の
(Mo7、W3)C−11%Co合金容器に強固に接合
した複合体ブロツクが得られた。
After sintering, the sealed container is taken out and the cemented carbide lid on the top surface is ground and removed to reveal a sintered diamond layer with a thickness of 1.5 mm in the circular recess on the top surface. A composite block was obtained that was firmly bonded to the %Co alloy container.

この複合体ブロツクを放電ワイヤカツト加工機
に装着し、放電ワイヤカツテイングにより複合体
ブロツクの軸方向より直径2mm、長さ23.5mmの丸
棒で支持体部は(Mo7,W3)C−11%Co超硬合
金よりなり、その一端に長さ1.5mmの焼結ダイヤ
モンド層が固着形成された円柱体が得られた。
This composite block was mounted on an electrical discharge wire cutting machine, and the supporting body part was (Mo 7 , W 3 ) C-11 with a round bar having a diameter of 2 mm and a length of 23.5 mm from the axial direction of the composite block. A cylindrical body made of %Co cemented carbide and having a 1.5 mm long sintered diamond layer fixedly formed on one end was obtained.

製造例 4 外径18mm、内径14mm、高さ15mmのWC−12%Co
超硬合金リング、外径14mm、高さ12mmの96重量%
W−3重量%Ni−1重量%Cu合金よりなる円柱
ブロツク、外径14mm、厚さ0.5mmのWC−12%Co
超硬合金円板と粒径3μmのCBN85%と残余が
TiN0.82粉末とAl粉末を重量比で80:20として混
合した後、1000℃で30分真空炉内で加熱処理を行
つた後、0.3μmに粉砕した粉末とよりなるCBN
混合粉末を用意した。
Manufacturing example 4 WC-12%Co with an outer diameter of 18 mm, an inner diameter of 14 mm, and a height of 15 mm.
Cemented carbide ring, outer diameter 14mm, height 12mm 96% by weight
Cylindrical block made of W-3wt%Ni-1wt%Cu alloy, WC-12%Co with outer diameter 14mm and thickness 0.5mm.
Cemented carbide disc and 85% CBN with grain size 3μm and the remainder
After mixing TiN 0.82 powder and Al powder at a weight ratio of 80:20, heat treatment was performed in a vacuum furnace at 1000℃ for 30 minutes, and the powder was ground to 0.3 μm and CBN was obtained.
A mixed powder was prepared.

超硬合金リングの内径にW合金円柱ブロツクを
挿入して、超硬合金リング内面とW合金円柱ブロ
ツク上面とで形成される直径14mm、深さ3mmの凹
所に前記CBN混合粉末を充填し、加圧して高さ
1.7mmのCBN混合粉末層を形成した。次いで、超
硬合金円板をかぶせて蓋をし、超硬合金容器全体
を超高圧焼結装置中に配置し、しかる後圧力
50kb、温度1250℃で20分間焼結を行つた。
A W alloy cylindrical block is inserted into the inner diameter of the cemented carbide ring, and the CBN mixed powder is filled into a recess with a diameter of 14 mm and a depth of 3 mm formed by the inner surface of the cemented carbide ring and the upper surface of the W alloy cylindrical block. Pressurize to height
A 1.7 mm CBN mixed powder layer was formed. Next, a cemented carbide disk is placed over the lid, and the entire cemented carbide container is placed in an ultra-high pressure sintering device, after which pressure is applied.
Sintering was performed at 50kb and 1250℃ for 20 minutes.

焼結後、超硬合金容器を取り出し、上面のWC
−12%CO超硬合金蓋を研削除去すると高さ12mm
のW合金支持部の上面に厚さ1mmの焼結CBN層
が接合して形成され周囲に超硬合金製リングが支
持体および焼結CBN層に接合した複合体ブロツ
クが得られた。
After sintering, take out the cemented carbide container and remove the WC on the top surface.
-12%CO When the cemented carbide lid is removed by polishing, the height is 12 mm.
A composite block was obtained in which a sintered CBN layer with a thickness of 1 mm was bonded to the upper surface of the W alloy support part, and a cemented carbide ring was bonded to the support body and the sintered CBN layer around the periphery.

この複合体ブロツクを放電ワイヤカツト加工機
に装着し、放電ワイヤカツテイングにより複合体
ブロツクの軸方向より直径1mm、長さ13mmの丸棒
で支持部は96重量%W−3重量%Ni−1重量%
Cu合金よりなり、その一端に長さ1mmの焼結
CBN層が固着形成された円柱体が得られた。
This composite block was mounted on an electrical discharge wire cutting machine, and the supporting part was cut from the axial direction of the composite block using a round bar with a diameter of 1 mm and a length of 13 mm, which was 96% W - 3% Ni - 1% by weight. %
Made of Cu alloy, sintered with a length of 1 mm at one end.
A cylindrical body with a fixed CBN layer was obtained.

製造例 5 外径40mm、内径36mm、高さ40mmのWC−12%Co
超硬合金リング、外径36mm、高さ34mmのWC−12
%CO超硬合金円柱ブロツク、外径36mm、厚さ0.5
mmのWC−12%Co超硬合金円板と粒径3μmの
CBN粉末60体積%と残余(TiN−10重量%Al)
の組成の粉末よりなるCBN混合粉末を用意した。
Manufacturing example 5 WC-12%Co with outer diameter 40mm, inner diameter 36mm, and height 40mm
Cemented carbide ring, outer diameter 36mm, height 34mm WC-12
%CO cemented carbide cylindrical block, outer diameter 36mm, thickness 0.5
mm WC-12%Co cemented carbide disk and grain size 3μm
CBN powder 60% by volume and remainder (TiN-10% by weight Al)
A CBN mixed powder consisting of powder with the following composition was prepared.

まずCBN混合粉末を直径36mm、厚さ2.5mmの円
板に加圧成型し、前記超硬合金リングの内径に下
部より超硬合金円板、CBN成型体、超硬合金円
柱ブロツク、CBN成型体、超硬合金円板の順に
積層配置し、セツトした容器全体を超高圧焼結装
置中に配置して圧力40kb、温度1200℃で20分間
焼結した。
First, the CBN mixed powder was pressure-molded into a disk with a diameter of 36 mm and a thickness of 2.5 mm, and the inner diameter of the cemented carbide ring was molded from the bottom to the cemented carbide disk, CBN molded body, cemented carbide cylindrical block, and CBN molded body. , cemented carbide disks were stacked in this order, and the entire container was placed in an ultra-high pressure sintering device and sintered at a pressure of 40 kb and a temperature of 1200° C. for 20 minutes.

焼結後取り出し、上下の超硬合金蓋を研削除去
すると高さ34mmの超硬合金円柱ブロツクの上下面
に直径36mm、厚さ1.5mmの焼結CBN層が固着形成
され、更に周囲が超硬合金リングでおおわれた複
合体ブロツクが得られた。
After sintering, when the block is taken out and the top and bottom cemented carbide lids are ground and removed, a sintered CBN layer with a diameter of 36 mm and a thickness of 1.5 mm is firmly formed on the top and bottom surfaces of the 34 mm high cemented carbide cylindrical block, and the surrounding area is made of cemented carbide. A composite block covered with an alloy ring was obtained.

次に、この複合体ブロツクを放電ワイヤカツト
加工機に装着し、放電ワイヤカツテイングにより
複合体ブロツク軸方向より、直径2.5mm、長さ37
mmの丸棒でその両端に長さ1.5mmの焼結CBN層が
固着形成されものが得られた。
Next, this composite block was mounted on an electric discharge wire cutting machine, and by electric discharge wire cutting, a diameter of 2.5 mm and a length of 37 mm were cut from the axial direction of the composite block.
A sintered CBN layer with a length of 1.5 mm was firmly formed on both ends of a round bar of 1.5 mm in length.

この丸棒を更に長さ方向中央部で切断2分する
ことにより直径2.5mm、長さ18mmの丸棒で支持部
はWC−12%Co超硬合金よりなり一端に長さ1.5
mmの焼結CBN層が固着形成された棒状体が得ら
れた。
This round bar was further cut into two parts at the center in the length direction, resulting in a round bar with a diameter of 2.5 mm and a length of 18 mm.The support part was made of WC-12%Co cemented carbide and one end had a length of 1.5 mm.
A rod-shaped body was obtained in which a sintered CBN layer of mm thick was firmly formed.

尚、本明細書中では%の表示は、特別に示さな
い限り体積パーセントで示す。
In this specification, % is expressed in volume percent unless otherwise specified.

発明の効果 以上に説明の如く本発明は、ダイヤモンドまた
は高圧相窒化硼素の硬質焼結部と、これと接合し
ている支持部とからなり、硬質焼結部と支持部と
の接合は硬質焼結部の焼結過程で形成されたこと
を特徴とし、直径が3mm以下の細長の複合焼結材
料円柱体を提供するものである。
Effects of the Invention As explained above, the present invention consists of a hard sintered part made of diamond or high-pressure phase boron nitride and a supporting part joined to the hard sintered part. The present invention provides an elongated cylindrical body of composite sintered material having a diameter of 3 mm or less, which is characterized in that it is formed in the process of sintering a sintered part.

本発明の複合焼結材料円柱体を用いると、耐摩
耗性および剛性の優れた高性能なドリルを容易に
製造することができる。
By using the composite sintered material cylindrical body of the present invention, a high-performance drill with excellent wear resistance and rigidity can be easily manufactured.

例えば、本発明の複合焼結材料円柱体23をド
リルに適用した例を第6図に示す。
For example, FIG. 6 shows an example in which the composite sintered material cylindrical body 23 of the present invention is applied to a drill.

第6図aに示す如く、ドリルのシヤンク25の
先端に、複合焼結材料円柱体とほゞ同一径の孔2
6を穿設する。この孔26に本発明の複合焼結材
料円柱体23の支持部の一端部を押し込み、固定
する。このとき、孔26内にロウ材を滴下してお
き、ロウ付けしてもよい。
As shown in FIG. 6a, a hole 2 having approximately the same diameter as the cylindrical body of the composite sintered material is formed at the tip of the shank 25 of the drill.
Drill 6. One end of the supporting portion of the cylindrical composite sintered material 23 of the present invention is pushed into this hole 26 and fixed. At this time, brazing material may be dropped into the hole 26 and brazing may be performed.

この第6図aに示す如く、シヤンクに固定され
た複合焼結材料円柱体23を刃付け加工し、第6
図bに示す如きドリルを得た。この本発明の複合
焼結材料円柱体を用いて製造したドリルは複雑な
電子ビーム溶接による接合部分を含まず、しかも
全体として強固且つ堅牢な構造である。従つて、
ガラエポ基板の如き高性能のプリント基板に対し
ても高能率の穴あけを行うことが可能である。
As shown in FIG. 6a, the composite sintered material cylindrical body 23 fixed to the shank is processed with a blade,
A drill as shown in Figure b was obtained. A drill manufactured using the cylindrical body of the composite sintered material of the present invention does not include joints made by complicated electron beam welding, and has a strong and robust structure as a whole. Therefore,
It is possible to drill holes with high efficiency even in high-performance printed circuit boards such as glass epoxy boards.

複合焼結材料部21の厚さが1mmで、超硬合金
支持体22の長さが14mmである直径2mmの複合焼
結材料円柱体を上記の本発明方法によつて製造し
た。この複合焼結材料円柱体をシヤンクに固定し
たドリルを用いて、ガラエポプリント基板で孔明
けテストを行つた。
A composite sintered material cylinder having a diameter of 2 mm and having a composite sintered material portion 21 having a thickness of 1 mm and a cemented carbide support 22 having a length of 14 mm was manufactured by the above-described method of the present invention. Using a drill with this composite sintered material cylindrical body fixed to a shank, a hole drilling test was performed on a glass epoxy printed circuit board.

比較のために、複合焼結材料部の厚さが1mmで
超硬合金支持体の厚さが3mmである複合焼結材料
円柱体を、本発明と同じ製造方法で作り、超硬合
金支持体側を直径3mm、長さ9mmの超硬合金に銀
ろう付けおよび電子ビーム溶接したもので、上記
と同じ孔明けテストを行つた。
For comparison, a composite sintered material cylindrical body in which the thickness of the composite sintered material part was 1 mm and the thickness of the cemented carbide support was 3 mm was manufactured using the same manufacturing method as in the present invention, and the cemented carbide support side was was made of cemented carbide with a diameter of 3 mm and a length of 9 mm, silver brazed and electron beam welded, and the same drilling test as above was conducted.

孔明けテストの結果、比較例の銀ろう付けした
ドリルサンプル群は10ヒツト数で接合部が脱落
し、全く実用にはならなかつた。
As a result of the drilling test, the joints of the comparative silver-brazed drill sample group fell off after 10 hits and were completely unusable.

また、電子ビーム溶接したドリルサンプル群の
中の一部は10万ヒツト数以上の孔明けが可能であ
つたが、その約1/3は1000ヒツト数で脱落し、製
品の保証が不可能であつた。
In addition, some of the electron beam welded drill samples were able to drill more than 100,000 hits, but about one-third of them fell off after 1000 hits, making it impossible to guarantee the product. It was hot.

これらの比較例のドリルサンプル群に対して、
本発明のドリルは全て10万ヒツト数以上の寿命が
確認された。
For the drill sample group of these comparative examples,
All of the drills of the present invention were confirmed to have a lifespan of 100,000 hits or more.

更に、本発明の複合焼結材料円柱体は断面が円
形にカツトされているので、第6図aに示す如く
ドリルのシヤンクの先端に穿孔された穴に押し込
む際にも特別な加工を必要とせずに取り付けるこ
とができ、更に刃先加工の削り代も少量であり経
済的である。
Furthermore, since the cylindrical body of the composite sintered material of the present invention has a circular cross section, no special processing is required when it is pushed into a hole drilled at the tip of the shank of a drill, as shown in Figure 6a. It can be installed without cutting, and the amount of cutting required for cutting the cutting edge is small, making it economical.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来技術の複合ダイヤモンド焼結体の
構造を示す。第2図は従来技術の複合焼結体を刃
先に固着したドリルを示す。第3図a及びbはそ
れぞれ本発明の実施例の複合焼結材料円柱体を示
す。第4図aおよびbはそれぞれ本発明の複合焼
結材料円柱体を切り出す前の状態の複合焼結材料
ブロツクの斜視図である。第5図は、複合材料ブ
ロツクから小断面の円柱体を切り出す位置を示
す。第6図aは本発明の複合焼結材料円柱体をド
リルのシヤンクに固着した状態を示し、第6図b
はこのようにして得られたドリルを示す。 (主な参照番号)、11……従来のダイヤモン
ド工具の焼結ダイヤモンド層、12……超硬合金
製の支持部、13……従来の複合焼結ダイヤモン
ドのチツプ、15……シヤンク、21……本発明
の複合焼結材料円柱体の硬質焼結部、22……支
持部、23……本発明の複合焼結材料円柱体、2
4……中間接合部、31……複合材料ブロツクの
硬質焼結部、32……支持部、33……複合材料
ブロツク、34……中間接合部。
FIG. 1 shows the structure of a conventional composite diamond sintered body. FIG. 2 shows a drill in which a conventional composite sintered body is fixed to the cutting edge. Figures 3a and 3b each show a composite sintered material cylinder according to an embodiment of the present invention. FIGS. 4a and 4b are perspective views of the composite sintered material block before cutting out the composite sintered material cylinder of the present invention, respectively. FIG. 5 shows the position where a small cross-section cylinder is cut out from the composite material block. Figure 6a shows the cylindrical body of the composite sintered material of the present invention fixed to the shank of a drill, and Figure 6b
shows the drill obtained in this way. (Main reference numbers), 11... Sintered diamond layer of conventional diamond tool, 12... Cemented carbide support, 13... Conventional composite sintered diamond chip, 15... Shank, 21... ...Hard sintered part of the composite sintered material cylindrical body of the present invention, 22... Supporting part, 23... Composite sintered material cylindrical body of the present invention, 2
4... Intermediate joint part, 31... Hard sintered part of composite material block, 32... Support part, 33... Composite material block, 34... Intermediate joint part.

Claims (1)

【特許請求の範囲】 1 ダイヤモンド粉末または立方晶窒化硼素粉末
のいずれか一方または双方を50%以上含有し且つ
断面が円形をなす硬質焼結部と、1端部がこの硬
質焼結部に接合され且つこの硬質焼結部とほぼ同
一径の円柱形を有する支持部とを具備する複合焼
結材料円柱体において、 この複合焼結材料円柱体は、平均粒度が10μm
以下であるダイヤモンド粉末または立方晶窒化硼
素粉末のいずれか一方または双方を50%以上含有
する第1の材料層と、周期律表第4a、5a、6a族
元素の炭化物又はこれらの相互固溶体炭化物を鉄
族金属で結合した超硬合金ブロツクよりなる第2
の材料層とを同一のホツトプレスコンテナ中に加
圧方向に積層して収容した後、高温・高圧下でホ
ツトプレスして硬質焼結部21と支持部22とが
接合された断面積の大きな複合焼結体ブロツクを
製造し、得られた複合焼結体ブロツクを放電加工
によつて上記材料の積層方向に切断することによ
つて作られたものであり、 硬質焼結部21の軸方向長さは0.3〜2mmであ
り、 支持部22の軸方向長さは硬質焼結部21の軸
方向長さの5倍以上であり、 複合焼結材料円柱体は直径が3mm以下で且つそ
の全長は10mm以上である ことを特徴とする複合焼結材料円柱体。 2 硬質焼結部21と支持部22とが、厚さが
0.5mm以下の中間接合層を介して接合されている
特許請求の範囲第1項に記載の複合焼結材料円柱
体。
[Scope of Claims] 1. A hard sintered part containing 50% or more of either diamond powder or cubic boron nitride powder and having a circular cross section, and one end joined to this hard sintered part. In the composite sintered material cylinder, the composite sintered material cylinder has an average particle size of 10 μm.
A first material layer containing 50% or more of either diamond powder or cubic boron nitride powder or both of the following, and a carbide of a group 4a, 5a, or 6a element of the periodic table or a mutual solid solution carbide of these elements. A second block consisting of cemented carbide blocks bonded with iron group metals.
A composite material with a large cross-sectional area in which the hard sintered part 21 and the support part 22 are joined by hot pressing at high temperature and high pressure after storing the material layers in the same hot press container in a stacked manner in the pressing direction. It is made by manufacturing a sintered body block and cutting the obtained composite sintered body block in the lamination direction of the above materials by electric discharge machining, and the axial length of the hard sintered part 21 is The axial length of the supporting part 22 is at least 5 times the axial length of the hard sintered part 21, and the cylindrical body of the composite sintered material has a diameter of 3 mm or less and a total length of 0.3 to 2 mm. A cylindrical body of composite sintered material having a diameter of 10 mm or more. 2 The hard sintered part 21 and the support part 22 have a thickness
The composite sintered material cylindrical body according to claim 1, which is bonded via an intermediate bonding layer of 0.5 mm or less.
JP59120218A 1984-06-12 1984-06-12 Composite sintering material cylindrical body Granted JPS60264371A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP59120218A JPS60264371A (en) 1984-06-12 1984-06-12 Composite sintering material cylindrical body
EP85304135A EP0168953B2 (en) 1984-06-12 1985-06-11 Stick of composite materials and process for preparation thereof
CA000483612A CA1286510C (en) 1984-06-12 1985-06-11 Stick of composite materials and process for preparation thereof
KR1019850004091A KR920001585B1 (en) 1984-06-12 1985-06-11 Stick compositie materials and process for preparation thereof
AT85304135T ATE49147T1 (en) 1984-06-12 1985-06-11 ROD MADE OF COMPOSITE MATERIALS AND METHOD FOR ITS MANUFACTURE.
DE8585304135T DE3575092D1 (en) 1984-06-12 1985-06-11 ROD FROM COMPOSITE MATERIALS AND METHOD FOR THEIR PRODUCTION.
US07/231,644 US4880707A (en) 1984-06-12 1988-08-10 Stick of composite materials and process for preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59120218A JPS60264371A (en) 1984-06-12 1984-06-12 Composite sintering material cylindrical body

Publications (2)

Publication Number Publication Date
JPS60264371A JPS60264371A (en) 1985-12-27
JPH049754B2 true JPH049754B2 (en) 1992-02-21

Family

ID=14780807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59120218A Granted JPS60264371A (en) 1984-06-12 1984-06-12 Composite sintering material cylindrical body

Country Status (1)

Country Link
JP (1) JPS60264371A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA863979B (en) * 1985-06-13 1987-01-28 De Beers Ind Diamond A method of making a blank of a drill bit
GB201002375D0 (en) 2010-02-12 2010-03-31 Element Six Production Pty Ltd A superhard tip, method for making same and tool comprising same
CN113042787B (en) * 2021-03-24 2022-06-21 武汉理工大学 Twist drill and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5544543A (en) * 1978-09-22 1980-03-28 Daijietsuto Kogyo Kk Cubic system boron nitride composite sintered body
JPS5879881A (en) * 1981-11-09 1983-05-13 住友電気工業株式会社 Composite diamond sintered body for bit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5544543A (en) * 1978-09-22 1980-03-28 Daijietsuto Kogyo Kk Cubic system boron nitride composite sintered body
JPS5879881A (en) * 1981-11-09 1983-05-13 住友電気工業株式会社 Composite diamond sintered body for bit

Also Published As

Publication number Publication date
JPS60264371A (en) 1985-12-27

Similar Documents

Publication Publication Date Title
EP0168953B1 (en) Stick of composite materials and process for preparation thereof
EP0157625B1 (en) Composite tool
US4437800A (en) Cutting tool
US5453105A (en) Abrasive product
EP0272913B1 (en) Tool insert
KR900002701B1 (en) Diamond sintered body for tools and method of manufacturing the same
EP0418078B1 (en) Composite abrasive compacts
US20050210755A1 (en) Doubled-sided and multi-layered PCBN and PCD abrasive articles
WO2005025805A1 (en) Doubled-sided and multi-layered pcd and pcbn abrasive articles
WO2007069030A1 (en) Ultra-hard cutting tool components
KR100407227B1 (en) Composite bond wheel and wheel having resin bonding phase
JPS62142704A (en) Composite sintered material
JPH0742488B2 (en) Method for manufacturing rod-shaped body of composite sintered material
JPH049754B2 (en)
JPH0525617B2 (en)
JP2004510884A (en) Abrasive and wear-resistant materials
JP2720951B2 (en) Cutting tool with high hardness composite sintered body as cutting edge
JPS61152308A (en) Small-sized twist drill made of hard sintered material
JP2002160166A (en) Super abrasive grain tool
JPH0742489B2 (en) Abrasion resistant parts with tool or hard head made of composite sintered material
JP2002264023A (en) Super-abrasive wheel
JP2877254B2 (en) High hardness composite sintered body for tools
ZA200302235B (en) Abrasive and wear resistant material.
JP2000135681A (en) Centerless blade and its manufacture

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term