JPS61506A - Manufacture of rod-shaped body of composite sintered material - Google Patents

Manufacture of rod-shaped body of composite sintered material

Info

Publication number
JPS61506A
JPS61506A JP59120219A JP12021984A JPS61506A JP S61506 A JPS61506 A JP S61506A JP 59120219 A JP59120219 A JP 59120219A JP 12021984 A JP12021984 A JP 12021984A JP S61506 A JPS61506 A JP S61506A
Authority
JP
Japan
Prior art keywords
material layer
layer
sintered
composite material
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59120219A
Other languages
Japanese (ja)
Other versions
JPH0742488B2 (en
Inventor
Yuichiro Kono
鴻野 雄一郎
Akio Hara
昭夫 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP59120219A priority Critical patent/JPH0742488B2/en
Priority to KR1019850004091A priority patent/KR920001585B1/en
Priority to AT85304135T priority patent/ATE49147T1/en
Priority to DE8585304135T priority patent/DE3575092D1/en
Priority to CA000483612A priority patent/CA1286510C/en
Priority to EP85304135A priority patent/EP0168953B2/en
Publication of JPS61506A publication Critical patent/JPS61506A/en
Priority to US07/231,644 priority patent/US4880707A/en
Publication of JPH0742488B2 publication Critical patent/JPH0742488B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a slender rod-shaped body of a composite sintered material whose head part and supporting part are cemented with a body by charging the first material layer for a hard sintered body and the second material layer to be cemented with the first material layer into a container, and hot-pressing at high temps. and high pressure. CONSTITUTION:The first material layer for a hard sintered body contg. >=50% diamond powder or high pressure-phase boron nitride powder and the second material layer of a hard alloy to be cemented with the first layer are charged one upon another in the pressing direction into a hot-press container. The first material is sintered by hot pressing, and the obtained hard sintered body is cemented with the second material layer to form a composite material block. The block is fixed to a wire cut electric spark machine and cut, and >=2 slender columnar composite material body having thickness 1/6 times the original thickness and having a cross section having <=3mm. equivalent diameter are cut out. A rod-shaped body of a composite sintered material for drills, etc. wherein a sintered CBN layer is fixed to one end of the supporting part of a hard alloy is obtained in this way.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は硬質な頭部を有する複合材料棒状体、好ましく
は小径の円柱体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing composite rods, preferably small diameter cylinders, with rigid heads.

更に詳細には本発明は、ダイヤモンド焼結体或いは高圧
相窒化硼素焼結体の如き硬質な頭部と、該頭部と一体に
構成され、例えば超硬合金からによる支持部とを具備す
る小断面の複合材料棒状体の(製造方法に関する。
More specifically, the present invention provides a small device comprising a hard head such as a diamond sintered body or a high-pressure phase boron nitride sintered body, and a support part formed integrally with the head and made of, for example, a cemented carbide. (Relating to a manufacturing method of a cross-sectional composite material rod-shaped body.

このような本発明の製造方法によって得られる複合材料
棒状体は、高性能な小径ドリルの素材或いはドツトプリ
ンタのヘッド部として用いることができる。
The composite rod-shaped body obtained by the manufacturing method of the present invention can be used as a material for a high-performance small-diameter drill or as a head for a dot printer.

従来技術 超硬合金よりなるドリルが金属、非金属材料の穴あけ用
に多用されている。特に近年急激に需要が伸びているプ
リント基板の穴あけには直径1mm前後の超硬合金製ド
リルが使われている。
BACKGROUND OF THE INVENTION Drills made of cemented carbide are widely used for drilling holes in metal and non-metallic materials. In particular, cemented carbide drills with a diameter of around 1 mm are used for drilling holes in printed circuit boards, a demand for which has been growing rapidly in recent years.

プリント基板には各種の材料が使われているが、主とし
て用いられているのはガラス繊維にエポキシ樹脂を含浸
させた強化樹脂で、一般にガラエポ基板と称されている
Various materials are used for printed circuit boards, but the main one used is a reinforced resin made by impregnating glass fiber with epoxy resin, which is generally referred to as a glass-epoxy board.

このようなプリント基板の穴あけは剛性の高いドリルで
通常回転数5〜6万rpmの条件で行われているが、基
板に含まれるガラス繊維は超硬工具を非常に早く摩耗さ
せて、一般的に3000〜5000ヒツト(ヒツトとは
穴あけ回数のこと)で超硬ドリルは寿命となる。こうし
たドリル盤には自動工具交換装置がついており、寿命と
なったドリルは自動的に交換されるが、生産効率向上の
ためにはこの自動工具交換のための時間も問題であり、
ドリル寿命をのばして工具交換呼撤゛すなわち交換時間
を減少させるという要求が強い。
Drilling of such printed circuit boards is usually done using a highly rigid drill at a rotation speed of 50,000 to 60,000 rpm, but the glass fibers contained in the board wear out the carbide tool very quickly, A carbide drill reaches the end of its lifespan after 3,000 to 5,000 hits (hits refers to the number of holes drilled). These drill machines are equipped with an automatic tool changer, and the drill that has reached the end of its service life is automatically replaced, but the time required for automatic tool change is also an issue in order to improve production efficiency.
There is a strong desire to extend drill life and eliminate tool change calls, ie, reduce tool change time.

プリント基板の特性からみると、更に耐熱性等を向上さ
せて高機能化を計りたいという要求も強く、このような
基板材料は実際に製造可能であるが、一般にこのような
高機能材料は難削で、従来の超硬合金ドリルでは非常に
短寿命となってしまい、このためこの基板材料の実用化
が出来ないのが実情である。
Looking at the characteristics of printed circuit boards, there is a strong demand for higher functionality by further improving heat resistance, etc., and although it is actually possible to manufacture such board materials, it is generally difficult to produce such high-performance materials. Due to cutting, the life of conventional cemented carbide drills is extremely short, and the reality is that this substrate material cannot be put to practical use.

更に、通常のガラエポ基板に対しても更に高能率の穴あ
けを行うため穴あけドリルの回転数の上昇が望まれてい
るが、これも従来の超硬合金製ドリルでは切削速度の上
昇と共に急激に寿命が低下してしまうためこの面から高
能率化を達成できない。
Furthermore, it is desired to increase the rotational speed of the drilling drill in order to drill even more efficiently into ordinary glass epoxy substrates, but this also means that the lifespan of conventional cemented carbide drills rapidly decreases as the cutting speed increases. Since this decreases, high efficiency cannot be achieved from this point of view.

一方、近年使用量が急激に増加しつつある焼結ダイヤモ
ンド工具は超硬工具に対して飛躍的に硬度が高く、耐摩
耗性が優れており、上記強化樹脂などの切削に於いては
非常な高性能を発揮する。
On the other hand, sintered diamond tools, whose usage has been rapidly increasing in recent years, are significantly harder and more wear resistant than carbide tools, and are extremely useful when cutting the reinforced resins mentioned above. Demonstrates high performance.

ところが第1図に示すように、この焼結ダイヤモンド工
具は焼結ダイヤモンド層11が超硬合金の支持部12に
貼り合わされた複合焼結体13からによる。
However, as shown in FIG. 1, this sintered diamond tool is made of a composite sintered body 13 in which a sintered diamond layer 11 is bonded to a support portion 12 of cemented carbide.

この複合焼結体13を使用してドリルを作製する場合に
は第2図に示すようにシャンク15の先端部に複合焼結
体13を何らかの方法により固着させて作らざるを得な
い。
When manufacturing a drill using this composite sintered body 13, the composite sintered body 13 must be fixed to the tip of the shank 15 by some method as shown in FIG.

ところがこのドリル先端部の径は1mm程度であり、こ
のような小径のものではシャンク15と余程強力な接合
強度をもたせないと接合後の刃先研削加工で接合部16
からはずれてしまい、良好なドリルが製造できない。特
に焼結ダイヤモンドは雛研削であり、研削抵抗が高く、
通常の銀ロウ付は程度の強度では強度不足である。接合
強度の高い接合方法として例えば電子ビーム溶接が考え
られるが、電子ビーム溶接を実施するとなると、ドリル
の製造工程が複雑且つ原価が高くなり、高性能ドリルの
需要の近年の急激な増加に対応できなかった。
However, the diameter of the tip of this drill is about 1 mm, and if a drill with such a small diameter does not have a very strong joint strength with the shank 15, the joint 16 will be damaged by grinding the cutting edge after joining.
The drill will fall off, making it impossible to manufacture a good drill. In particular, sintered diamonds are chick-ground and have high grinding resistance.
Normal silver brazing is not strong enough. For example, electron beam welding can be considered as a bonding method with high bonding strength, but if electron beam welding were to be implemented, the drill manufacturing process would be complicated and the cost would be high, making it difficult to meet the rapid increase in demand for high-performance drills in recent years. There wasn't.

シャンク15との接合を強固にし且つドリル自体の切削
性を高めるには、ドリルの先端部全体が超硬合金で、そ
の頭部にダイヤモンドの如き硬質の焼結体を有するよう
に構成すると理想的である。
In order to strengthen the connection with the shank 15 and improve the cutting performance of the drill itself, it is ideal if the entire tip of the drill is made of cemented carbide, and the head part has a hard sintered body such as diamond. It is.

そのためには、硬質な頭部を有し、超硬合金からによる
細長の複合材料棒状体が必要である。しかしながら、従
来技術では、このような小断面で且つ軸長の大きい複合
焼結体を製造することができなかった。
For this purpose, an elongated composite rod made of cemented carbide with a hard head is required. However, with the conventional techniques, it has not been possible to manufacture a composite sintered body with such a small cross section and a large axial length.

すなわち、断面積に対し軸方向長さの大きい製品を製造
する場合、粉末材料を軸方向に加圧してホットプレスを
行っても、粉末材料層による圧力損失が大きく、軸方向
中央部分に必要な圧力がかからず、強固な焼結体が得ら
れないからである。
In other words, when manufacturing a product with a large axial length relative to its cross-sectional area, even if powder material is pressed in the axial direction and hot pressed, the pressure loss due to the powder material layer is large, and the required axial center portion is This is because no pressure is applied and a strong sintered body cannot be obtained.

これをさらに軸方向に加圧して高圧力のホットプレスを
行うと、ホットプレスのコンテナ内の圧力分布が極めて
変則的となるので座屈したり、曲がりなどの変形を起こ
し易く十分な寸法精度を持っA         焼結
体が得られない。
If this is further pressurized in the axial direction to perform high-pressure hot pressing, the pressure distribution inside the hot press container will become extremely irregular, making it easy to buckle or bend. A: A sintered body cannot be obtained.

そのため、細長の焼結材料のホットプレスでは焼結材料
の軸方向が加圧方向と直角となるよう焼結材料を寝かせ
て配置していた。このような方式で、細長の複合材料を
ホットプレスをしても、異った材料層間の境界面に垂直
な方向での圧力は小さく、材料層間の十分な強度の接合
が得られなかった。
Therefore, in hot pressing of a long and narrow sintered material, the sintered material is laid down so that the axial direction of the sintered material is perpendicular to the pressing direction. Even when a long and narrow composite material is hot-pressed using this method, the pressure in the direction perpendicular to the interface between different material layers is small, and a sufficiently strong bond between the material layers cannot be obtained.

発明の目的 本発明は、上記従来技術の問題を解決することを目的と
し、更に詳細には、硬質焼結体の頭部を有し、該頭部と
支持部とが焼結処理により一体に接合されている小断面
且つ細長の複合材料棒状体、好ましくは小径の円柱体の
製造方法を提供し、これより耐摩耗性および剛性の優れ
たドリルを容易且つ安価に製造可能とすることを目的と
する。
OBJECT OF THE INVENTION The present invention aims to solve the problems of the prior art described above, and more specifically, the present invention has a head made of a hard sintered body, and the head and the support part are integrated by sintering. The purpose of the present invention is to provide a method for manufacturing a joined rod-like body of a composite material having a small cross section and an elongated shape, preferably a cylindrical body having a small diameter, so that a drill having excellent wear resistance and rigidity can be easily and inexpensively manufactured therefrom. shall be.

更に本発明の目的は、ガラエポ基板の如き難削性の基板
の穴あけを容易且つ高性能で実現する、長寿命のドリル
を低価格で提供することにある。
A further object of the present invention is to provide a long-life drill at a low price that can easily and efficiently drill holes in difficult-to-cut substrates such as glass epoxy substrates.

更に、本発明の目的は、ドツトプリンタのヘッドの如き
硬質の先端部を必要とする細長の部材を容易に製造し得
る中間製品としての小断面の複合材料棒状体の製造方法
を提供することにある。
Furthermore, it is an object of the present invention to provide a method for manufacturing a composite material rod-shaped body with a small cross section as an intermediate product that can easily manufacture an elongated member that requires a hard tip, such as a head of a dot printer. .

発明の構成 本発明者らは、断面積の大きな複合材料ブロックのホッ
トプレスを行って複合焼結体ブロックを製造し、これを
放電ワイヤカッティングで小径の円柱体に切断すること
により小径で細長の、硬質な頭部を有する複合焼結材料
棒状体を与えることに成功したものである。
Structure of the Invention The present inventors manufactured a composite sintered body block by hot pressing a composite material block with a large cross-sectional area, and then cut this into a small diameter cylindrical body using electric discharge wire cutting. , succeeded in providing a rod-shaped composite sintered material having a hard head.

すなわち、本発明に従い、ダイヤモンド粉末または高圧
相窒化硼素粉末を50%以上含有する硬質焼結体用の第
1の材料層と、該第1の材料層の焼結過程で該第1の材
料の硬質焼結体と接合する第2の材料層とを同一のホッ
トプレスコンテナ内に加圧方向に重ねて装入し、 高温高圧下でホットプレスして該第1の材料層を焼結す
るとともに、得られた硬質焼結体を該第2の材料層側と
接合せしめて、所定厚さの硬質焼結体の層を有する複合
材料ブロックを形成し、該複合゛材料ブロックを放電ワ
イヤカッティング方法により材料層厚方向に切断して、
該複合材料ブロックの材料層厚方向厚さに対して115
以下で且つ3mm以下の相当直径の断面を有し、頭部に
硬質焼結体を備える細長の複合材料棒状体を2本以上切
り取ることを特徴とする細長の複合材料棒状体の製造方
法が提供される。
That is, according to the present invention, a first material layer for a hard sintered body containing 50% or more of diamond powder or high-pressure phase boron nitride powder; The hard sintered body and the second material layer to be joined are stacked in the same hot press container in the pressing direction, and hot pressed under high temperature and high pressure to sinter the first material layer. The obtained hard sintered body is joined to the second material layer side to form a composite material block having a layer of hard sintered body with a predetermined thickness, and the composite material block is subjected to an electric discharge wire cutting method. Cut the material in the thickness direction by
115 with respect to the material layer thickness direction thickness of the composite material block
Provided is a method for manufacturing an elongated composite material rod, which comprises cutting two or more elongated composite material rods having a cross section with an equivalent diameter of 3 mm or less and having a hard sintered body at the head. be done.

複合材料をホットプレスして焼結するに際し、本発明に
従うと、複合材料ブロックの軸方向長さは相当直径DB
の3倍、好ましくは2倍以下の必要がある。3倍を越え
る軸方向長さの複合材料ブロックのホットプレスを行う
と複合材料ブロック内の圧力分布が変則的となり、曲が
りなどを生ずる。本明細書中で、相当直径とは断面積の
等しい円の直径に換算した値を意味する。
When hot pressing and sintering the composite material, according to the present invention, the axial length of the composite material block is equal to the equivalent diameter DB.
3 times, preferably 2 times or less. If a composite material block with an axial length exceeding three times is hot-pressed, the pressure distribution within the composite material block will become irregular, resulting in bending or the like. In this specification, equivalent diameter means a value converted to the diameter of a circle having the same cross-sectional area.

ダイヤモンド粉末または高圧相窒化硼素粉末の平均粒度
は好ましくは30μm以下であり、この範囲の粒度のダ
イヤモンドまたは高圧相窒化硼素焼結体で耐摩耗性およ
び剛性に優れた複合焼結材料が得られる。
The average particle size of the diamond powder or high-pressure phase boron nitride powder is preferably 30 μm or less, and a composite sintered material with excellent wear resistance and rigidity can be obtained with a diamond or high-pressure phase boron nitride sintered body having a particle size in this range.

ただし、ダイヤモンド粉末を使用して切削工具のチップ
を作製するときは、平均粒度が10μmを越えるダイヤ
モンド粉末を原料として使用すると、この複合焼結材料
円柱体を加工して冑だ切削工具の切刃が鋭利に成形でき
ず、このため高性能とならないので、硬質焼結部は10
μm以下のダイヤモンドまたは高圧相窒化硼素からによ
るのが好ましい。
However, when making cutting tool tips using diamond powder, if diamond powder with an average particle size exceeding 10 μm is used as a raw material, the cutting edge of the cutting tool will be formed by processing this composite sintered material cylindrical body. The hard sintered part cannot be formed sharply and therefore does not have high performance.
Preferably, it is made of sub-μm diamond or high-pressure phase boron nitride.

本発明の好ましい特徴に従うと、該硬質焼結部の軸方向
長さは0.3〜2mmである。
According to a preferred feature of the invention, the axial length of the hard sintered portion is between 0.3 and 2 mm.

第1の材料層がダイヤモンド粉末を主成分とするときは
、ダイヤモンド粉末単独、或いは70%以上のダイヤモ
ンドを含み、残部がFe、 CoまたはN1を主成分と
する結合材粉末を添加した混合粉末がある。ダイヤモン
ド粉末の第1の材料層の好ましい例としては、70%以
上のダイヤモンド粉末とWC−5〜15%Co粉末との
混合粉末である。
When the first material layer is mainly composed of diamond powder, it may be made of diamond powder alone or a mixed powder containing 70% or more of diamond and a binder powder containing Fe, Co, or N1 as the main component. be. A preferred example of the first material layer of diamond powder is a mixed powder of 70% or more diamond powder and WC-5 to 15% Co powder.

尚、第1の材料層の材料としてダイヤモンド単独の粉末
を使用する場合は、第1の材料層の焼結1      
  時に第2の材料層の中の結合材成分が第1の材料層
粉末中に溶浸することによって第1の材料層の焼結が達
成される。
In addition, when using diamond powder alone as the material of the first material layer, sintering 1 of the first material layer
Sintering of the first material layer is sometimes achieved by infiltrating the binder component in the second material layer into the first material layer powder.

第1の材料層が高圧相窒化硼素系の場合は、高圧相窒化
硼素粉末単独、或いは50%以上の高圧相窒化硼素に4
a、 5a、 6a族元素の炭化物、窒化物、炭窒化物
及びアルミニウムおよび/またはシリコンを結合材とし
て添加して焼結したものがある。
When the first material layer is high-pressure phase boron nitride-based, high-pressure phase boron nitride powder alone or 40% or more of high-pressure phase boron nitride powder is used.
There are sintered materials in which carbides, nitrides, carbonitrides of group a, 5a, and 6a elements, and aluminum and/or silicon are added as binders.

ここで、高圧相窒化硼素とは、立方。晶型窒化硼素およ
びウルツ鉱型窒化硼素を意味する。
Here, high-pressure phase boron nitride is cubic. Means crystalline boron nitride and wurtzite boron nitride.

支持部を形成する第2の材料層は、いわゆる超硬合金す
なわち、周期律表第4a、5a、 6a族元素の炭化物
、窒化物、炭窒化物、硼化物、珪化物又はこれらの相互
固溶体炭化物をRe5CoまたはN1の鉄族金属で結合
した焼結合金またはサーメットあるいはそれらの粉末原
料である。サーメットの1例としては、(Mo、 w)
 Cの炭化物をN1またはCoの鉄族金属で結合したも
のがある。
The second material layer forming the support portion is made of a so-called cemented carbide, that is, a carbide, nitride, carbonitride, boride, silicide, or mutual solid solution carbide of an element of group 4a, 5a, or 6a of the periodic table. These are sintered alloys or cermets bonded with Re5Co or N1 iron group metals, or their powder raw materials. An example of cermet is (Mo, w)
There is one in which C carbide is bonded with N1 or Co, an iron group metal.

更に別の第2の材料層としては、Wを80〜98重量%
含み、残余がNi−FeまたはN1−Fe−Coからに
よるいわゆるヘビー・メタルといわれる焼結合金、ある
いはその粉末原料がある。
Furthermore, as another second material layer, W is 80 to 98% by weight.
There is a sintered alloy called a so-called heavy metal in which the remainder is Ni-Fe or N1-Fe-Co, or its powder raw material.

第2の材料層は、既に焼結済みの固形超硬合金であって
もよく、或いは超硬合金材料の粉末であってもよい。し
かしながら、ホットプレスの際の取扱い上の便宜、さら
には高圧力の適用の容易性を考慮すると、焼結済みの超
硬合金ブロックを使用するのが好ましい。
The second material layer may be a solid cemented carbide that has already been sintered, or may be a powder of a cemented carbide material. However, considering handling convenience during hot pressing and ease of applying high pressure, it is preferable to use a sintered cemented carbide block.

本発明の複合材料棒状体の製造方法の重要な特徴の1つ
は、硬質焼結部と支持部との接合を硬質焼結部の焼結過
程で行うことにある。従って、第2の材料層の成分は、
第1の材料層の焼結過程で第1の材料層と接合し得る材
質であることが必要である。
One of the important features of the method for manufacturing a composite rod-shaped body of the present invention is that the hard sintered part and the support part are joined during the sintering process of the hard sintered part. Therefore, the components of the second material layer are:
The material needs to be capable of bonding with the first material layer during the sintering process of the first material layer.

しかしながら、上記した硬質焼結部と支持部との成分の
範囲ではこのような組み合わせは無限にあり、ダイヤモ
ンドまたは高圧相窒化硼素の高圧力および高温度下のホ
ットプレスによる焼結過程で、上記したように支持部材
中の鉄系金属の結合材が溶浸して硬質焼結部と支持部と
の接合は容易に生ずる。従って、このような硬質焼結部
と支持部の成分の選択は当業者が上記した範囲内で必要
に応じて可能であることは云うまでもない。更に高圧相
窒化硼素粉末は上記したように単独でも焼結可能であり
、支持部との接続はその焼結過程で達成される。
However, within the range of the components of the hard sintered part and the support part mentioned above, there are infinite combinations, and in the sintering process of diamond or high-pressure phase boron nitride by hot pressing under high pressure and high temperature, the above-mentioned combinations are possible. As such, the ferrous metal binding material in the support member is infiltrated and the hard sintered part and the support part are easily joined. Therefore, it goes without saying that those skilled in the art can select the components of the hard sintered part and the supporting part as needed within the above-mentioned range. Further, the high-pressure phase boron nitride powder can be sintered alone as described above, and the connection with the support part is achieved during the sintering process.

更に、本発明の1つの態様に従うと、上記第1の材料層
と第2の材料層との間に厚さ0.5mm以下の中間接合
層を配置してホットプレスを行う。
Furthermore, according to one aspect of the present invention, hot pressing is performed with an intermediate bonding layer having a thickness of 0.5 mm or less disposed between the first material layer and the second material layer.

中間接合層としては、70%未満の高圧相窒化硼素と残
部が周期律表第4a族のTi、 Zr、 Hfの炭化物
、窒化物、炭窒化物あるいはホウ化物の1種もしくはこ
れらの混合物または相互固溶体化合物を主体としたもの
と、これにAIおよび/またはSiを0.1重量%以上
含有するものが好ましGイ。
The intermediate bonding layer is made of less than 70% high-pressure phase boron nitride and the remainder is one of carbides, nitrides, carbonitrides, or borides of Ti, Zr, or Hf in group 4a of the periodic table, or a mixture thereof, or a mixture thereof. It is preferable to use a compound mainly composed of a solid solution compound and a compound containing 0.1% by weight or more of AI and/or Si.

更に、本発明の1つの態様に従うと、上記第2の材料層
、すなわち支持部が軸方向に2以上の材料層から構成さ
れる。このような1例として、第2の材料層の支持側の
層がWC−Coであり、硬質な頭部側の層が(Mo、 
w) Cの炭化物をNiまたはCoの鉄族金属で結合し
たサーメットからによるものがある。
Furthermore, according to one aspect of the invention, the second material layer, ie the support section, is comprised of two or more material layers in the axial direction. As one such example, the supporting side layer of the second material layer is WC-Co, and the hard head side layer is (Mo,
w) There are cermets in which carbon carbide is bonded with iron group metals such as Ni or Co.

更に、第1の材料層を第2の材料層の上下に配置し、ホ
ットプレスを行い、得られる複合材料ブロックを同軸方
向の小断面の棒状体に切出して上下の両端に硬質な頭部
を有する棒状体を製造することも出来る。
Furthermore, the first material layer is placed above and below the second material layer, hot-pressed, and the resulting composite material block is cut into a rod-shaped body with a small cross section in the coaxial direction, and hard heads are formed at both the upper and lower ends. It is also possible to manufacture a rod-shaped body having

次に本発明の製造方法により得られる複合焼結材料棒状
体の形状を説明する。
Next, the shape of the composite sintered material rod obtained by the manufacturing method of the present invention will be explained.

添付の第3図(a)および(b)は本発明の製造方法に
よって得られる複合材料棒状体の例の斜視図である。
The attached FIGS. 3(a) and 3(b) are perspective views of examples of composite rod-shaped bodies obtained by the manufacturing method of the present invention.

第3図(a)に示す複合焼結材料棒状体は全体として円
柱形をなし、硬質焼結部21が支持部22と直接に接合
されている。
The rod-shaped composite sintered material shown in FIG. 3(a) has a cylindrical shape as a whole, and the hard sintered part 21 is directly joined to the support part 22.

他方、第3図(b)に示す複合焼結材料棒状体では、硬
質焼結部21と支持部22とが中間接合層24を介して
接合されている。
On the other hand, in the composite sintered material rod-shaped body shown in FIG. 3(b), the hard sintered part 21 and the support part 22 are joined via the intermediate joining layer 24.

しかしながら、本発明の製造方法によって得られる複合
材料棒状体は円柱形に限定されず、角柱形であってもよ
いことは勿論である。
However, the composite material rod-shaped body obtained by the manufacturing method of the present invention is not limited to the cylindrical shape, but may of course be prismatic.

(本発明の方法で得られる複合焼結材料棒状体は3mm
以下の相当直径の断面である。3mmを越える相当直径
の断面の複合材料棒状体はプリント基板の穴あけドリル
用素材としては不適格であり、また研削して使用するに
しても研削代が大きくなり不経済である。
(The rod-shaped composite sintered material obtained by the method of the present invention has a diameter of 3 mm.
The following is a cross section with the equivalent diameter. Composite material rods having a cross section with an equivalent diameter of more than 3 mm are unsuitable as materials for drilling holes in printed circuit boards, and even if they are ground for use, the grinding allowance becomes large and uneconomical.

また、硬質焼結部21の軸方向の長さは0.3〜2II
Iilの範囲である。0.3mm未満では、ドリル先端
部として使用した場合には切削性の向上を期待できず、
2+++mを越える長さでは高価なダイヤモンド粉末等
を多量に使用することになり不経済である。
Moreover, the length of the hard sintered part 21 in the axial direction is 0.3 to 2II.
Iil range. If it is less than 0.3 mm, no improvement in cutting performance can be expected when used as the tip of a drill.
If the length exceeds 2+++ m, a large amount of expensive diamond powder etc. will be used, which is uneconomical.

また3mmを越える直径の棒状体は本発明の方法以外の
従来方法でも製造可能である。
Moreover, rod-shaped bodies having a diameter exceeding 3 mm can be manufactured by conventional methods other than the method of the present invention.

更に、支持部22の長さは硬質焼結部21の長さの5倍
以上であることが必要である。ドリルを作製する場合に
、ドリルの切羽長さを確保し、末端をシャンクに埋込む
必要があるので、上記の通り、5倍以上の長さの支持部
が必要となる。
Furthermore, the length of the support part 22 needs to be five times or more the length of the hard sintered part 21. When manufacturing a drill, it is necessary to ensure the length of the face of the drill and embed the end in the shank, so as described above, a support portion that is five times or more long is required.

次に、この本発明の製造方法により得られた複合材料棒
状体をドリルに適用した例を第4図に示す。
Next, FIG. 4 shows an example in which the composite material rod obtained by the manufacturing method of the present invention is applied to a drill.

第4図(a)に示す如く、ドリルのシャンク25の先端
に、複合材料棒状体く図示の例では円柱体)とはヌ′同
−径の孔26を穿設する。この孔26に複合材料棒状体
23の支持部側端部を押し込み、固定する。
As shown in FIG. 4(a), a hole 26 having the same diameter as that of the composite material rod (in the illustrated example, a cylinder) is bored at the tip of the shank 25 of the drill. The supporting portion side end of the composite material rod-shaped body 23 is pushed into this hole 26 and fixed.

このとき、孔26は内にロウ材を滴下しておき、ロウ付
けしてもよい。
At this time, brazing material may be dripped into the hole 26 and brazed.

この第4図(a)に示す如く、シャンクに固定された複
合材料棒状体23を刃付は加工し、第4図(b)に示す
如きドリルを得た。
As shown in FIG. 4(a), the composite material rod-shaped body 23 fixed to the shank was machined to have a cutting edge, thereby obtaining a drill as shown in FIG. 4(b).

第3図および第4図に示す複合材料棒状体の切り出し方
法を説明すると、上述の如くホットプレスして得られた
複合焼結体ブロック33は、第5図(a)に示す如く、
厚さ1mmのダイヤモンド焼結体層31と、これに接合
した超硬合金層32とからなり、中間接合層を含む場合
では第5図(b)示す如くダイヤモンド焼結体層31と
超硬合金層32と中間接合層を介して接合されている。
To explain the method of cutting out the composite material rod shown in FIGS. 3 and 4, the composite sintered body block 33 obtained by hot pressing as described above is as shown in FIG. 5(a).
It consists of a diamond sintered body layer 31 with a thickness of 1 mm and a cemented carbide layer 32 bonded thereto, and when an intermediate bonding layer is included, the diamond sintered body layer 31 and the cemented carbide layer 32 are bonded to the diamond sintered body layer 31 as shown in FIG. 5(b). It is bonded to layer 32 via an intermediate bonding layer.

図示の例では円柱状の複合焼結体ブロックを示している
が、複合焼結体ブロックは円柱体でも角柱体でもよいこ
とは勿論である。
Although the illustrated example shows a cylindrical composite sintered body block, it goes without saying that the composite sintered body block may be a cylindrical body or a prismatic body.

これらの複合焼結体ブロックを第6図に示す如く、複合
焼結体ブロックと同軸方向の相当直径3mm以下の断面
の棒状体に放電ワイヤカッティング法により切断して第
3図(a)および(b )に示す如き硬質の頭部を有す
る複合材料棒状体に切断する。
As shown in Fig. 6, these composite sintered blocks were cut into rod-shaped bodies with an equivalent diameter of 3 mm or less in the coaxial direction of the composite sintered blocks using the electric discharge wire cutting method. b) Cut into composite rods with hard heads as shown in FIG.

この放電ワイヤカッティング法では、ワイヤと複合焼結
体ブロックとの間に高電圧をかけ、ワイヤを緊張した状
態で走行させてブロックを切断するものであり、その詳
細は米国特許第4.103.137号を参照されたい。
In this electric discharge wire cutting method, a high voltage is applied between a wire and a composite sintered block, and the wire is run under tension to cut the block.The details are described in U.S. Patent No. 4.103. See No. 137.

以下、実施例により本発明の製造方法を説明する。ただ
し、これらの実施例は本発明の単なる例示であって、本
発明の範囲を何隻制限するものではない。
Hereinafter, the manufacturing method of the present invention will be explained with reference to Examples. However, these Examples are merely illustrative of the present invention, and do not limit the scope of the present invention.

尚、本明細書中では%の表示は、特別に示さない限り容
量パーセントで示ス。
In this specification, unless otherwise specified, percentages are expressed as volume percentages.

実施例1 外径18mm、内径14mm 、高さ15mmのWCl
2%C。
Example 1 WCl with an outer diameter of 18 mm, an inner diameter of 14 mm, and a height of 15 mm.
2%C.

超硬合金製リング、外径14mm、高さ12mmのWC
−12%Co超硬合金製円柱ブロック、外径14mm 
、厚さ0.5mmのWC−12%Co超硬合金製円板と
粒径0.5μmのダイヤモンド粉末85%と残余が粒径
0.5μm以下のWC−15%Co超硬合金粉末よりな
る混合粉末を用意した。
Cemented carbide ring, outer diameter 14mm, height 12mm WC
-12%Co cemented carbide cylindrical block, outer diameter 14mm
, consisting of a 0.5 mm thick WC-12% Co cemented carbide disk, 85% diamond powder with a grain size of 0.5 μm, and the remainder WC-15% Co cemented carbide powder with a grain size of 0.5 μm or less. A mixed powder was prepared.

超合金リングの内径に超合金円柱ブロックを挿入し、超
硬合金リング内面と超硬合金円柱ブロックの上面とで形
成される直径14mm、深さ3mmの凹所に前記混合ダ
イヤモンド粉末を充填後加圧して、混合粉末の高さを1
.5μmとし、超硬合金円板で蓋をした後、超高圧焼結
装置中に配置し、圧力55kb、温度1370℃の条件
で15分間焼結を行った。冷却後、減圧して取り出した
封入容器の上部超硬合金円板を研削により除去すると高
さ12mmの超硬合金支持部の上面に厚さ1mmの焼結
ダイヤモンド層が接合して形成され周囲に超硬合金製リ
ングがやはり支持部及び焼結ダイヤモンド層に結合した
複合体ブロックが得られた。
A superalloy cylindrical block is inserted into the inner diameter of the superalloy ring, and the mixed diamond powder is filled into a recess with a diameter of 14 mm and a depth of 3 mm formed by the inner surface of the cemented carbide ring and the upper surface of the cemented carbide cylindrical block. Press to reduce the height of the mixed powder by 1
.. After setting the thickness to 5 μm and covering it with a cemented carbide disk, it was placed in an ultra-high pressure sintering device, and sintered for 15 minutes at a pressure of 55 kb and a temperature of 1370° C. After cooling, the upper cemented carbide disk of the enclosure was removed by depressurization and removed by grinding, and a 1 mm thick sintered diamond layer was bonded to the top surface of the 12 mm high cemented carbide support, forming a layer around it. A composite block was obtained in which the cemented carbide ring was also bonded to the support and to the sintered diamond layer.

この複合体ブロックを第6図に示すように、放4   
     電ワイヤカット加工機に装着し、放電ワイヤ
カッティングして、複合体ブロックの軸方向より直径1
mm、長さ13mmの丸棒で支持体部はWC−12%C
As shown in Fig. 6, this composite block is
Attach it to an electric wire cutting machine and perform electric wire cutting to create a diameter of 1 mm from the axial direction of the composite block.
mm, a round bar with a length of 13 mm, and the support part is WC-12%C.
.

超硬合金よりなり、その一端に長さ1mmの焼結ダイヤ
モンド層が固着形成された棒状体を得た。
A rod-shaped body made of cemented carbide and having a 1 mm long sintered diamond layer fixedly formed on one end thereof was obtained.

実施例2 それぞれWC−12%Co超硬合金よりなる■外径18
mm、内径14mm 、高さ20mmのリング、■外径
14mm 。
Example 2 ■Outer diameter 18 each made of WC-12%Co cemented carbide
mm, inner diameter 14mm, height 20mm ring, outer diameter 14mm.

高さ18+n+nの円柱ブロック、■外径14mm、厚
さ0.5mmの円板と、粒径3μmのダイヤモンド粉末
90%と残余がCo粉末よりなる混合粉末、粒径3μm
の高圧相窒化硼素(以下、立方晶型窒化硼素をCBNと
略記する)粉末60%と残余が(TiN−10重量%八
へ)の組成の粉末よりなる混合粉末を用意した。
A cylindrical block with a height of 18 + n + n, ■ A disk with an outer diameter of 14 mm and a thickness of 0.5 mm, and a mixed powder consisting of 90% diamond powder with a particle size of 3 μm and the remainder being Co powder, with a particle size of 3 μm.
A mixed powder consisting of 60% high-pressure phase boron nitride (hereinafter cubic boron nitride will be abbreviated as CBN) powder and the balance (TiN - 10% by weight) was prepared.

超硬合金製円柱ブロックの上面に前記CBN混合粉末を
溶媒に溶かしたものを厚さ50μmに塗付した後、溶媒
を加熱除去し、この処理を行った超硬合金円柱ブロック
を超硬リング内径に挿入した。
After applying a solution of the CBN mixed powder in a solvent to a thickness of 50 μm on the top surface of a cemented carbide cylindrical block, the solvent was removed by heating, and the cemented carbide cylindrical block subjected to this treatment was adjusted to the inside diameter of the cemented carbide ring. inserted into.

次に、超硬合金リング内面とCBN混合粉末を塗付した
超硬合金円柱ブロックの上面とで形成される凹所に前記
ダイヤモンド混合粉末を充填した後、加圧成型して厚さ
19.8mmのダイヤモンド混合粉末層を形成した後、
超硬合金円板で蓋をした。
Next, after filling the recess formed by the inner surface of the cemented carbide ring and the upper surface of the cemented carbide cylindrical block coated with the CBN mixed powder, the diamond mixed powder was press-molded to a thickness of 19.8 mm. After forming the diamond mixed powder layer of
It was covered with a cemented carbide disc.

次にこの容器を超高圧焼結装置中に配置し、圧力55k
b、温度1400℃で10分間焼結を行った後、冷却、
減圧して容器を取り出した。容器の上部超硬合金円板を
研削除去すると高さ18mmの超硬合金支持体の上面に
厚さ1.2mmの焼結ダイヤモンド層が厚さ25μmの
焼結CBN層を介して接合され、周囲に超硬合金リング
が支持体及び焼結ダイヤモンド層に結合した複合体ブロ
ックが得られた。
Next, this container was placed in an ultra-high pressure sintering device, and the pressure was 55k.
b. After sintering at a temperature of 1400°C for 10 minutes, cooling;
The pressure was reduced and the container was taken out. When the upper cemented carbide disk of the container is removed by grinding, a sintered diamond layer with a thickness of 1.2 mm is bonded to the top surface of the cemented carbide support with a height of 18 mm via a sintered CBN layer with a thickness of 25 μm. A composite block was obtained in which a cemented carbide ring was bonded to a support and a sintered diamond layer.

この複合体ブロックを放電ワイヤカット、加工機に装着
し、放電ワイヤカッティングにより複合体の軸方向より
直径2mm、長さ19.2mmの丸棒で支持体部はWC
−42%Co超硬合金よりなり、その一端に長さ1.2
mmの焼結ダイヤモンド層が厚さ25μmの焼結CBN
界面層を介して接合形成された棒状体を得た。
This composite block was mounted on an electric discharge wire cutting and processing machine, and the supporting body part was a round bar with a diameter of 2 mm and a length of 19.2 mm from the axial direction of the composite body by electric discharge wire cutting.
- Made of 42% Co cemented carbide, with a length of 1.2 mm at one end.
Sintered CBN with a thickness of 25 μm and a sintered diamond layer of mm
A rod-shaped body was obtained which was bonded through an interface layer.

実施例3 (Mo7、W3) C−11%Co超硬合金よりなり、
上面に直径20mm、深さ3mmの円形凹所を有する外
径24mm、高さ25mmの円柱ブ07り、外径20m
m、厚さ0.5mmのWCl2%Co超硬合金製円板と
粒径0.5μmのダイヤモンド粉末80%と残余が粒径
0.5μm以下のWC−15%Co超硬合金粉末よりな
るダイヤモンド混合粉末を用意した。
Example 3 (Mo7, W3) Made of C-11%Co cemented carbide,
Cylindrical block 07 with an outer diameter of 24 mm and a height of 25 mm, with a circular recess of 20 mm in diameter and 3 mm in depth on the top surface, outer diameter of 20 m
m, a diamond consisting of a 0.5 mm thick WCl 2% Co cemented carbide disk, 80% diamond powder with a grain size of 0.5 μm, and the remainder WC-15% Co cemented carbide powder with a grain size of 0.5 μm or less. A mixed powder was prepared.

このダイヤモンド混合粉末を前記超硬合金円柱ブロック
の上面凹所に充填後加圧して高さ2.3mmのダイヤモ
ンド混合粉末層を形成した。次にこの上に超硬合金円板
で蓋をした後、超高圧焼結装置内に配置し、圧力55k
b、温度1400℃で15分間焼結した。
This diamond mixed powder was filled into the recess on the upper surface of the cemented carbide cylindrical block and then pressed to form a diamond mixed powder layer with a height of 2.3 mm. Next, after covering this with a cemented carbide disk, it was placed in an ultra-high pressure sintering device, and the pressure was 55k.
b. Sintered at a temperature of 1400°C for 15 minutes.

焼結後、封入容器を取り出し、上面の超硬合金蓋を研削
除去すると上面円形凹所に厚さ1.5mmの焼結ダイヤ
モンド層を有し、これが周囲の(Mo、、W3)(,1
1%Co合金容器に強固に接合した複合体ブロックが得
られた。
After sintering, the enclosure was taken out and the cemented carbide lid on the top surface was ground and removed to reveal a sintered diamond layer with a thickness of 1.5 mm in the circular recess on the top surface.
A composite block was obtained that was firmly bonded to the 1% Co alloy container.

この複合体ブロックを放電ワイヤカット加工機に装着し
、放電ワイヤカッティングにより複合体ブロックの軸方
向より直径21′nm、長さ23.5mmの丸棒で支持
体部は(Mo2、W3)C−11%Co超硬合金よりな
り、その一端に長さ1.5mmの焼結ダイヤモンド層が
固着形成された棒状体が得られた。
This composite block was mounted on an electric discharge wire cutting machine, and the support part was cut from the axial direction of the composite block using a round bar with a diameter of 21'nm and a length of 23.5mm (Mo2, W3)C- A rod-shaped body made of 11% Co cemented carbide and having a 1.5 mm long sintered diamond layer fixedly formed on one end thereof was obtained.

実施例4 外径18mm’、内径14mm 、高さ15mmのWC
−12%Co超硬合金リング、外径14mm 、高さ1
2mmの96重量%W−3重量%Ni−1重量%Cu合
金よりなる円柱ブロック、外径14mm、厚さ0.5m
mのWC−12%Co超硬合金円板と粒径3μmのCB
N85%と残余がTlN0.l12粉末と^1粉末を重
量比で80:20として混合した後、1000℃で30
分真空炉内で加瓶処理を行った後、0.3μmに粉砕し
た粉末とよりなるCBN混合粉末を用意した。
Example 4 WC with an outer diameter of 18 mm, an inner diameter of 14 mm, and a height of 15 mm.
-12%Co cemented carbide ring, outer diameter 14mm, height 1
2 mm cylindrical block made of 96 wt% W-3 wt% Ni-1 wt% Cu alloy, outer diameter 14 mm, thickness 0.5 m
m WC-12% Co cemented carbide disk and CB with grain size 3 μm
N85% and the remainder TlN0. After mixing l12 powder and ^1 powder at a weight ratio of 80:20, it was heated at 1000℃ for 30 minutes.
A mixed CBN powder consisting of a powder crushed to 0.3 μm was prepared after bottle processing in a vacuum furnace.

超硬合金リングの内径にW合金円柱ブロックを挿入して
、超硬合金リング内面とW合金円柱ブロック上面とで形
成される直径14mm 、深さ3mmの凹所に前記CB
N混合粉末を充填し、加圧して高さ呵 1.7mmのCBN混合粉末層を形成した。次いで、超
硬合金円板をかぶせて蓋をし、超硬合金容器全体を超高
圧焼結装置中に配置し、しかる後圧力50kb、温度1
250℃で20分間焼結を行った。
A W alloy cylindrical block is inserted into the inner diameter of the cemented carbide ring, and the CB is inserted into a recess with a diameter of 14 mm and a depth of 3 mm formed by the inner surface of the cemented carbide ring and the upper surface of the W alloy cylindrical block.
N mixed powder was filled and pressurized to form a CBN mixed powder layer with a height of 1.7 mm. Next, a cemented carbide disk is placed on the lid, and the entire cemented carbide container is placed in an ultra-high pressure sintering device, after which the pressure is 50 kb and the temperature is 1.
Sintering was performed at 250°C for 20 minutes.

焼結後、超硬合金容器を取り出し、上面のWC−12%
Co超硬合金蓋を研削除去すると高さ12mmのW合金
支持部の上面に厚さ1mmの焼結CBN層が接合して形
成され周囲に超硬合金製リングが支持体および焼結CB
N層に接合した複合体ブロックが得られた。
After sintering, take out the cemented carbide container and remove the WC-12% on the top surface.
When the Co cemented carbide lid is ground and removed, a 1 mm thick sintered CBN layer is bonded to the top surface of the 12 mm high W alloy support, and a cemented carbide ring is placed around the support and the sintered CB.
A composite block bonded to the N layer was obtained.

この複合体ブロックを放電ワイヤカット加工機に装着し
、放電ワイヤカッティングにより複合体ブロックの軸方
向より直径1闘、長さ13mmの丸棒で支持部は96重
量%W−3重量%N1−1重量%Cu合金よりなり、そ
の一端に長さ1mmの焼結CBNが固着形成された棒状
体が得られた。
This composite block was mounted on an electrical discharge wire cutting machine, and the supporting part was cut from the axial direction of the composite block using a round bar with a diameter of 1 mm and a length of 13 mm, which was 96% W-3% N1-1. A rod-shaped body made of a Cu alloy with a length of 1 mm and a sintered CBN fixedly formed on one end thereof was obtained.

実施例5 外径40mm、内径36mm、高さ40mmのWC−1
2%Co超硬合金リング、外径36mm、高さ34mm
のWC−12%Co超硬合金円柱ブロック、外径36m
m、厚さ0.5mmのWC−12%Co超硬合金円板と
粒径3μmのCBN粉末粉末6槙 組成の粉末よりなるCBN混合粉末を用意した。
Example 5 WC-1 with an outer diameter of 40 mm, an inner diameter of 36 mm, and a height of 40 mm.
2%Co cemented carbide ring, outer diameter 36mm, height 34mm
WC-12%Co cemented carbide cylindrical block, outer diameter 36m
A CBN mixed powder consisting of a WC-12% Co cemented carbide disk having a thickness of 0.5 mm and a CBN powder having a particle size of 3 μm and a composition of 6 μm was prepared.

まずCBN混合粉末を直径36mm、厚さ2. 5mm
の円板に加圧成型し1、前記超硬合金リングの内径に下
部より超硬合金円板、CBN成型体、超硬合金円柱ブロ
ック、CBN成型体、超硬合金円板の順に積層配置し、
セットした容器全体を超高圧焼結装置中に配置して圧力
40kt],温度1200℃で20分間焼結した。
First, the CBN mixed powder was made into a diameter of 36 mm and a thickness of 2. 5mm
1. A cemented carbide disc, a CBN molded body, a cemented carbide cylindrical block, a CBN molded body, and a cemented carbide disc are stacked on the inner diameter of the cemented carbide ring in this order from the bottom. ,
The entire set container was placed in an ultra-high pressure sintering device and sintered at a pressure of 40 kt and a temperature of 1200° C. for 20 minutes.

焼結後取り出し、上下の超硬合金蓋を研削除去すると高
さ34mmの超硬合金円柱ブロックの上下面に直径36
mm,厚さ1.5mmの焼結CBN層が固着形成され、
更に周囲が超硬合金リングでおおわれた複合体ブロック
が得られた。
When taken out after sintering and the upper and lower cemented carbide lids were ground and removed, a diameter of 36 mm was formed on the upper and lower surfaces of the 34 mm high cemented carbide cylindrical block.
A sintered CBN layer with a thickness of 1.5 mm and a thickness of 1.5 mm is firmly formed.
Furthermore, a composite block was obtained whose periphery was covered with a cemented carbide ring.

次に、この複合体ブロックを放電ワイヤカット加工機に
装着し、放電ワイヤカッティングにより複合ブロック軸
方向より、直径2. 5mm,長さ37mmの丸棒でそ
の両端に長さ1.5mmの焼結CBN層が固着形成され
ものが得られた。
Next, this composite block is mounted on an electric discharge wire cutting machine, and the diameter of the composite block is 2 mm from the axial direction by electric discharge wire cutting. A sintered CBN layer of 1.5 mm in length was fixedly formed on both ends of a round bar of 5 mm in length and 37 mm in length.

この丸棒を更に長さ方向中央部で切断2分することによ
り直径2.5mm,長さ18mmの丸棒で支持部はWC
−12%Co超硬合金よりなり一端に長さ1.5mmの
焼結CBN層が固着形成された棒状体が得られた。
By further cutting this round bar into two parts at the center in the length direction, it becomes a round bar with a diameter of 2.5 mm and a length of 18 mm, and the support part is WC.
A rod-shaped body made of -12% Co cemented carbide and having a sintered CBN layer with a length of 1.5 mm fixedly formed on one end was obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

筆」図は従来技術の複合ダイヤモンド焼結体の構造を示
す。 第2図は従来技術の複合焼結体を刃先に固着したドリル
を示す。 第3図(a)及び(5)はそれぞれ本発明の方法によっ
て製造される複合焼結材料棒状体の例を示す。 第4図(a)は本発明の方法によって得られた複合材料
棒状体を使用してドリルを作る方法を図示し、第4図ら
)はそのドリルを示す。 第5図(a)は本発明の方法に従い得られた複合材料ブ
ロックの1例を示し、第5図(b)は中間接合部を有す
る複合材料ブロックの例を示す。 第6図は、本発明に従い複合材料ブロックから棒状体を
切り出す位置を示す。 (主な参照番号) 11・・・従来のダイヤモンド工具の焼結ダイヤモンド
層、12・・・超硬合金製の支持部、13・・・従来の
複合焼結ダイヤモンドのチップ、15・・・シャンク、 21・・・本発明方法による複合焼結材料棒状体の硬質
焼結部、22・・・支持部、23・・・本発明の複合焼
結材料棒状体、24・・・中間接合部、31・・・複合
材料ブロックの硬質焼結部、32・・・支持部、33・
・・複合材料ブロック、34・・・中間接合部、 特許出願人 住友電気工業株式会社 代 理 人 弁理士 新居 正彦 第3図 第4図 (α) ・   (b) 5梗「二] 第5図 (αン               (b)第6図 手続補正書(自発) 昭和60年7月4日 1、事件の表示  昭和59年特許願第120219号
2、発明の名称 複合焼結材料棒状体の製造方法 3、補正をする者 事件との関係  特許出願人 住 所 大阪市東区北浜5丁目15番地名 称 (21
3)住友電気工業株式会社4、代理人 住 所 ■101東京都千代田区東神田1−10−76
、補正命令の日付 (自発) 7、補正の対象 (1)明細書の特許請求の範囲の欄(
2)明細書の発明の詳細な説明の欄 8、補正の内容 (1)、特許請求の範囲を別紙の通り補正する。 (2)、明細書第10頁第4行乃至第6行に記載の“1
15以下で・・・・・を備える”を「1/6以下で且つ
3mm以下の相当直径の断面を有する硬質焼結体を頭部
に備える」と訂正する。 特許請求の範囲 (1)  ダイヤモンド粉末または高圧相窒化硼素粉末
を50%以上含有する硬質焼結体用の第1の材料層と、
該第1の材料層の焼結過程で該第1の材料の硬質焼結体
と接合する第2の材料層とを同一のホットプレスコンテ
ナ内に加圧方向に重ねて装入し、高温高圧下でホットプ
レスして該第1の材料層を焼結するとともに、得られた
硬質焼結体を該第2の材料層側と接合せしめて、所定厚
さの硬質焼結体の層を有する複合材料ブロックを形成し
、該複合材料ブロックを放電ワイヤカッティング方法に
より材料層厚方向に切断して、該複合材料ブロックの材
料層厚方向厚さに対して1/6以下で且つ3mm以下の
相当直径の断面を有卦硬質焼結体を頭部に備える細長の
複合材料円柱体を2本以上切り取ることを特徴とする細
長の複合材料棒状体の製造方法。 (2)上記硬質焼結部のダイヤモンド粉末または高圧相
窒化硼素粉末は平均粒度30μm以下であることを特徴
とする特許請求の範囲第1項記載の細長の複合材料棒状
体の製造方法。 (3)上記硬質焼結部のダイヤモンド粉末または高圧相
窒化硼素粉末は平均粒度10μm以下であることを特徴
とする特許請求の範囲第1項記載の細長の複合材料棒状
体の製造方法。 (4)上記第2の材料層は、周期律表第4a、 5a、
 6.a族元素の炭化物又はこれらの相互固溶体炭化物
を鉄族金属で結合した超硬合金であることを特徴とする
特許請求の範囲第1項乃至第3項のいずれかに記載の細
長の複合材料棒状体の製造方法。 (5)上記第2の材料層は、Wを80〜98重量%含み
、残余がNi−FeまたはNi−Pe−Cuからによる
合金であることを特徴とする特許請求の範囲第1項乃至
第3項のいずれかに記載の細長の複合材料棒状体の製造
方法。 (6)上記第1の材料層と第2の材料層との問答ご厚さ
が領5mm以下の中間接合層を配置してホ・7)プレス
を行うことを特徴とする特許請求の範囲第1項乃至第5
項のいずれかに記載の細長の複合材料棒状体の製造方法
The "brush" figure shows the structure of a conventional composite diamond sintered body. FIG. 2 shows a drill in which a conventional composite sintered body is fixed to the cutting edge. FIGS. 3(a) and 3(5) respectively show examples of composite sintered material rods manufactured by the method of the present invention. FIG. 4(a) illustrates a method of making a drill using a composite material rod obtained by the method of the present invention, and FIG. 4(a) shows the drill. FIG. 5(a) shows an example of a composite material block obtained according to the method of the invention, and FIG. 5(b) shows an example of a composite material block with an intermediate joint. FIG. 6 shows the location of cutting out rods from a block of composite material according to the invention. (Main reference numbers) 11...Sintered diamond layer of conventional diamond tool, 12...Cemented carbide support part, 13...Conventional composite sintered diamond tip, 15...Shank , 21... Hard sintered part of the composite sintered material rod-shaped body by the method of the present invention, 22... Supporting part, 23... Composite sintered material rod-shaped body of the present invention, 24... Intermediate joint part, 31... Hard sintered part of composite material block, 32... Support part, 33...
...Composite material block, 34...Intermediate joint, Patent applicant Sumitomo Electric Industries Co., Ltd. Agent Masahiko Arai (αn (b) Figure 6 Procedural amendment (voluntary) July 4, 1985 1, Indication of the case 1985 Patent Application No. 120219 2, Name of the invention Method for manufacturing composite sintered material rod-shaped body 3 , Relationship with the case of the person making the amendment Patent applicant address 5-15 Kitahama, Higashi-ku, Osaka Name (21
3) Sumitomo Electric Industries Co., Ltd. 4, Agent address: 1-10-76 Higashikanda, Chiyoda-ku, Tokyo 101
, Date of amendment order (voluntary) 7. Subject of amendment (1) Claims column of the specification (
2) Column 8 of the detailed description of the invention in the specification, contents of amendment (1), and claims are amended as shown in the attached sheet. (2), “1” stated on page 10, lines 4 to 6 of the specification.
15 or less and..." is corrected to "the head is equipped with a hard sintered body having a cross section with an equivalent diameter of 1/6 or less and 3 mm or less." Claims (1) A first material layer for a hard sintered body containing 50% or more of diamond powder or high-pressure phase boron nitride powder;
In the sintering process of the first material layer, the hard sintered body of the first material and the second material layer to be bonded are stacked in the pressing direction in the same hot press container, and are heated at high temperature and high pressure. The first material layer is sintered by hot pressing at the bottom, and the obtained hard sintered body is joined to the second material layer to form a hard sintered body layer with a predetermined thickness. A composite material block is formed, and the composite material block is cut in the material layer thickness direction by an electric discharge wire cutting method, and the thickness is equal to or less than 1/6 of the material layer thickness direction of the composite material block and 3 mm or less. A method for producing an elongated composite material rod-like body, which comprises cutting two or more elongated composite material cylinders each having a hard sintered body at the head with a diameter cross section. (2) The method for producing an elongated composite material rod according to claim 1, wherein the diamond powder or high-pressure phase boron nitride powder in the hard sintered part has an average particle size of 30 μm or less. (3) The method for manufacturing a slender composite material rod according to claim 1, wherein the diamond powder or high-pressure phase boron nitride powder in the hard sintered part has an average particle size of 10 μm or less. (4) The second material layer is made of materials from periodic table 4a, 5a,
6. The elongated composite material rod shape according to any one of claims 1 to 3, which is a cemented carbide made by bonding carbides of Group A elements or their mutual solid solution carbides with iron group metals. How the body is manufactured. (5) The second material layer contains 80 to 98% by weight of W, with the remainder being an alloy of Ni-Fe or Ni-Pe-Cu. 4. A method for producing an elongated composite material rod according to any one of Item 3. (6) The first material layer and the second material layer are pressed by disposing an intermediate bonding layer having a thickness of approximately 5 mm or less. Items 1 to 5
A method for producing an elongated composite material rod according to any one of Items 1 to 3.

Claims (6)

【特許請求の範囲】[Claims] (1)ダイヤモンド粉末または高圧相窒化硼素粉末を5
0%以上含有する硬質焼結体用の第1の材料層と、該第
1の材料層の焼結過程で該第1の材料の硬質焼結体と接
合する第2の材料層とを同一のホットプレスコンテナ内
に加圧方向に重ねて装入し、高温高圧下でホットプレス
して該第1の材料層を焼結するとともに、得られた硬質
焼結体を該第2の材料層側と接合せしめて、所定厚さの
硬質焼結体の層を有する複合材料ブロックを形成し、該
複合材料ブロックを放電ワイヤカッティング方法により
材料層厚方向に切断して、該複合材料ブロックの材料層
厚方向厚さに対して1/5以下で且つ3mm以下の相当
直径の断面を有し、頭部に硬質焼結体を備える細長の複
合材料棒状体を2本以上切り取ることを特徴とする細長
の複合材料棒状体の製造方法。
(1) Diamond powder or high pressure phase boron nitride powder
The first material layer for the hard sintered body containing 0% or more and the second material layer bonded to the hard sintered body of the first material in the sintering process of the first material layer are the same. The first material layer is sintered by hot pressing under high temperature and high pressure, and the obtained hard sintered body is placed in the second material layer. A composite material block having a layer of hard sintered body having a predetermined thickness is formed by joining the sides, and the composite material block is cut in the thickness direction of the material layer by an electric discharge wire cutting method to determine the material of the composite material block. It is characterized by cutting two or more elongated composite material rods having a cross section with an equivalent diameter of 1/5 or less of the thickness in the layer thickness direction and 3 mm or less, and having a hard sintered body at the head. A method for manufacturing an elongated composite material rod.
(2)上記硬質焼結部のダイヤモンド粉末または高圧相
窒化硼素粉末は平均粒度30μm以下であることを特徴
とする特許請求の範囲第1項記載の細長の複合材料棒状
体の製造方法。
(2) The method for producing an elongated composite material rod according to claim 1, wherein the diamond powder or high-pressure phase boron nitride powder in the hard sintered part has an average particle size of 30 μm or less.
(3)上記硬質焼結部のダイヤモンド粉末または高圧相
窒化硼素粉末は平均粒度10μm以下であることを特徴
とする特許請求の範囲第1項記載の細長の複合材料棒状
体の製造方法。
(3) The method for manufacturing a slender composite material rod according to claim 1, wherein the diamond powder or high-pressure phase boron nitride powder in the hard sintered part has an average particle size of 10 μm or less.
(4)上記第2の材料層は、周期律表第4a、5a、6
a族元素の炭化物又はこれらの相互固溶体炭化物を鉄族
金属で結合した超硬合金であることを特徴とする特許請
求の範囲第1項乃至第3項のいずれかに記載の細長の複
合材料棒状体の製造方法。
(4) The second material layer is made of materials 4a, 5a, and 6 of the periodic table.
The elongated composite material rod shape according to any one of claims 1 to 3, which is a cemented carbide made by bonding carbides of Group A elements or their mutual solid solution carbides with iron group metals. How the body is manufactured.
(5)上記第2の材料層は、Wを80〜98重量%含み
、残余がNi−FeまたはNi−Fe−Cuからによる
合金であることを特徴とする特許請求の範囲第1項乃至
第3項のいずれかに記載の細長の複合材料棒状体の製造
方法。
(5) The second material layer contains 80 to 98% by weight of W, with the remainder being an alloy of Ni-Fe or Ni-Fe-Cu. 4. A method for producing an elongated composite material rod according to any one of Item 3.
(6)上記第1の材料層と第2の材料層との間に厚さが
0.5mm以下の中間接合層を配置してホットプレスを
行うことを特徴とする特許請求の範囲第1項乃至第5項
のいずれかに記載の細長の複合材料棒状体の製造方法。
(6) Hot pressing is performed by disposing an intermediate bonding layer having a thickness of 0.5 mm or less between the first material layer and the second material layer, as claimed in claim 1. 6. A method for producing an elongated composite material rod according to any one of items 5 to 5.
JP59120219A 1984-06-12 1984-06-12 Method for manufacturing rod-shaped body of composite sintered material Expired - Fee Related JPH0742488B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP59120219A JPH0742488B2 (en) 1984-06-12 1984-06-12 Method for manufacturing rod-shaped body of composite sintered material
KR1019850004091A KR920001585B1 (en) 1984-06-12 1985-06-11 Stick compositie materials and process for preparation thereof
AT85304135T ATE49147T1 (en) 1984-06-12 1985-06-11 ROD MADE OF COMPOSITE MATERIALS AND METHOD FOR ITS MANUFACTURE.
DE8585304135T DE3575092D1 (en) 1984-06-12 1985-06-11 ROD FROM COMPOSITE MATERIALS AND METHOD FOR THEIR PRODUCTION.
CA000483612A CA1286510C (en) 1984-06-12 1985-06-11 Stick of composite materials and process for preparation thereof
EP85304135A EP0168953B2 (en) 1984-06-12 1985-06-11 Stick of composite materials and process for preparation thereof
US07/231,644 US4880707A (en) 1984-06-12 1988-08-10 Stick of composite materials and process for preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59120219A JPH0742488B2 (en) 1984-06-12 1984-06-12 Method for manufacturing rod-shaped body of composite sintered material

Publications (2)

Publication Number Publication Date
JPS61506A true JPS61506A (en) 1986-01-06
JPH0742488B2 JPH0742488B2 (en) 1995-05-10

Family

ID=14780829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59120219A Expired - Fee Related JPH0742488B2 (en) 1984-06-12 1984-06-12 Method for manufacturing rod-shaped body of composite sintered material

Country Status (1)

Country Link
JP (1) JPH0742488B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61209821A (en) * 1985-03-13 1986-09-18 Sumitomo Electric Ind Ltd Method of manufacturing bar type body of composite sintered material
JPS6368553U (en) * 1986-10-24 1988-05-09
WO2018092195A1 (en) * 2016-11-15 2018-05-24 住友電工ハードメタル株式会社 Cutting tool
JPWO2020255315A1 (en) * 2019-06-20 2020-12-24

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS567603U (en) * 1979-06-25 1981-01-23
JPS5672105A (en) * 1979-11-13 1981-06-16 Toshiba Tungaloy Co Ltd Composite cutting body
JPS5681605A (en) * 1979-12-06 1981-07-03 Toshiba Tungaloy Co Ltd Production of composite cutting body
JPS5681606A (en) * 1979-12-06 1981-07-03 Toshiba Tungaloy Co Ltd Production of composite cutting body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS567603U (en) * 1979-06-25 1981-01-23
JPS5672105A (en) * 1979-11-13 1981-06-16 Toshiba Tungaloy Co Ltd Composite cutting body
JPS5681605A (en) * 1979-12-06 1981-07-03 Toshiba Tungaloy Co Ltd Production of composite cutting body
JPS5681606A (en) * 1979-12-06 1981-07-03 Toshiba Tungaloy Co Ltd Production of composite cutting body

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61209821A (en) * 1985-03-13 1986-09-18 Sumitomo Electric Ind Ltd Method of manufacturing bar type body of composite sintered material
JPH0525617B2 (en) * 1985-03-13 1993-04-13 Sumitomo Electric Industries
JPS6368553U (en) * 1986-10-24 1988-05-09
JPH0215069Y2 (en) * 1986-10-24 1990-04-24
WO2018092195A1 (en) * 2016-11-15 2018-05-24 住友電工ハードメタル株式会社 Cutting tool
JPWO2018092195A1 (en) * 2016-11-15 2019-02-28 住友電工ハードメタル株式会社 Cutting tools
US10717134B2 (en) 2016-11-15 2020-07-21 Sumitomo Electric Hardmetal Corp. Cutting tool
JPWO2020255315A1 (en) * 2019-06-20 2020-12-24
WO2020255315A1 (en) * 2019-06-20 2020-12-24 オーエスジー株式会社 Cutting tool

Also Published As

Publication number Publication date
JPH0742488B2 (en) 1995-05-10

Similar Documents

Publication Publication Date Title
CA1286510C (en) Stick of composite materials and process for preparation thereof
KR100371979B1 (en) Abrasive tool, dressing tool and method of manufacturing the dressing tool
US20050050801A1 (en) Doubled-sided and multi-layered PCD and PCBN abrasive articles
US20050210755A1 (en) Doubled-sided and multi-layered PCBN and PCD abrasive articles
EP0272913A2 (en) Tool insert
KR20020064933A (en) Composite rotary tool and tool fabrication method
JPH06669B2 (en) High hardness sintered compact composite material with sandwich structure
CN111318710A (en) Preparation method of high-holding-force diamond-inlaid tool
JPH06297206A (en) Hard sintered tool and its manufacture
JPS62142704A (en) Composite sintered material
JPS61506A (en) Manufacture of rod-shaped body of composite sintered material
CN110114176A (en) Tool
JP4215317B2 (en) IC lead frame cutting blade and manufacturing method thereof
JPS61209821A (en) Method of manufacturing bar type body of composite sintered material
CN102049583A (en) Method for manufacturing composite welding blade
JPH049754B2 (en)
JPS61152308A (en) Small-sized twist drill made of hard sintered material
JPS5916942A (en) Composite diamond-sintered body useful as tool and its manufacture
JPH0798964B2 (en) Cubic boron nitride cemented carbide composite sintered body
JP2720951B2 (en) Cutting tool with high hardness composite sintered body as cutting edge
JPS6049589B2 (en) Composite sintered body for tools and its manufacturing method
JP3651285B2 (en) Cubic boron nitride-containing brazing composite material and method for producing the same
JP2002264023A (en) Super-abrasive wheel
JPS644840Y2 (en)
JPS60167701A (en) Complex sintered body tool and its manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees