JP5327740B2 - Cutting tip - Google Patents

Cutting tip Download PDF

Info

Publication number
JP5327740B2
JP5327740B2 JP2008271310A JP2008271310A JP5327740B2 JP 5327740 B2 JP5327740 B2 JP 5327740B2 JP 2008271310 A JP2008271310 A JP 2008271310A JP 2008271310 A JP2008271310 A JP 2008271310A JP 5327740 B2 JP5327740 B2 JP 5327740B2
Authority
JP
Japan
Prior art keywords
cutting
tip
cemented carbide
cutting tip
flank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008271310A
Other languages
Japanese (ja)
Other versions
JP2010099758A (en
Inventor
英二 近藤
Original Assignee
国立大学法人 鹿児島大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 鹿児島大学 filed Critical 国立大学法人 鹿児島大学
Priority to JP2008271310A priority Critical patent/JP5327740B2/en
Publication of JP2010099758A publication Critical patent/JP2010099758A/en
Application granted granted Critical
Publication of JP5327740B2 publication Critical patent/JP5327740B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、タングステンの使用量を抑え、かつ長寿命な切削用チップに関する。   The present invention relates to a cutting tip that reduces the amount of tungsten used and has a long life.

自動車部品等を加工する際には、融点が高く、高温においても硬度の低下が小さい超硬合金を用いた切削工具が一般に用いられる。ここで、超硬合金とは、主にタングステンカーバイド(WC)とコバルト(Co)とからなる合金であり、超硬合金を用いた切削工具は生産額の半数以上を占めている。超硬合金を用いた切削工具の形態としては、バイトホルダー等の先端に取り付けられるチップや、ドリルなどがある。   When processing automobile parts and the like, a cutting tool using a cemented carbide having a high melting point and a small decrease in hardness even at high temperatures is generally used. Here, the cemented carbide is an alloy mainly composed of tungsten carbide (WC) and cobalt (Co), and cutting tools using the cemented carbide account for more than half of the production value. As a form of the cutting tool using the cemented carbide, there are a tip attached to the tip of a bite holder or the like, a drill and the like.

図4は、バイトホルダーに取り付けられた従来の超硬合金チップを示す図である。ステンレスや合金鋼などを加工する際には、バイトホルダー12に超硬合金チップ11を取り付け、被削材を回転させて超硬合金チップ11の先端部分で外周加工などを行う。   FIG. 4 is a view showing a conventional cemented carbide chip attached to a bite holder. When machining stainless steel, alloy steel, or the like, the cemented carbide tip 11 is attached to the bite holder 12 and the work piece is rotated to perform peripheral processing at the tip of the cemented carbide tip 11.

前述したように、超硬合金には主成分としてタングステンが含まれている。超硬合金を用いた切削工具の主要原料であるタングステンは、将来は安定的な確保が難しい稀少金属であることが指摘されている。そこで、超硬合金に代わる材料の開発や使用量を削減するための技術の開発が進められている。   As described above, the cemented carbide contains tungsten as a main component. It has been pointed out that tungsten, the main raw material for cutting tools using cemented carbide, is a rare metal that is difficult to secure in the future. Therefore, the development of materials to replace cemented carbide and the technology for reducing the amount of use are being promoted.

ところが、図4に示すように、一般に使用されている切削用チップは、チップの先端の切れ刃近傍とそれ以外の被削材と接触しない部分とで同一の材料となっている。一方、超硬合金の上に窒化物等のセラミックスでコーティングされた切削用チップが使用されることがあるが、チップの先端の切れ刃近傍とそれ以外の部分とでは同一の材料となっており、本質的には変わりはない。また、切削用チップのすくい面側において、切り屑が接触することによる発熱と、さらには高応力に耐えられる耐摩耗性の高い超硬合金を用いると、工具逃げ面の摩耗が大きくなるのに伴い、切削用チップの逃げ面側では逆に摩擦力が増加し、更なる発熱を招いてしまう。   However, as shown in FIG. 4, a generally used cutting tip is made of the same material in the vicinity of the cutting edge at the tip of the tip and a portion that does not come into contact with other work materials. On the other hand, cutting tips coated with ceramics such as nitride on cemented carbide may be used, but the vicinity of the cutting edge at the tip of the tip and the other parts are the same material. , Essentially the same. In addition, if a cemented carbide with high wear resistance that can withstand high stress and heat generated by contact with chips on the rake face side of the cutting tip is used, the wear on the tool flank will increase. As a result, the frictional force is increased on the flank side of the cutting tip, which causes further heat generation.

切削用チップの刃先部分の発熱を抑制するための技術としては、積層構造や傾斜機能構造の材料からなる切削用チップが提案されている(例えば、特許文献1参照)。また、優れた熱伝導率を有する立方晶窒化硼素(cubic Boron Nitride:以下、cBN)を含む超高硬度焼結体と、超硬合金とを積層させた切削用チップも知られている(例えば、特許文献2参照)。   As a technique for suppressing heat generation at the cutting edge portion of the cutting tip, a cutting tip made of a material having a laminated structure or a functionally inclined structure has been proposed (for example, see Patent Document 1). Also known is a cutting tip in which a super-hard sintered body containing cubic boron nitride (hereinafter referred to as cBN) having excellent thermal conductivity and a cemented carbide are laminated (for example, , See Patent Document 2).

特開平10−156605号公報JP-A-10-156605 特開平8−331213号公報JP-A-8-33213

しかしながら、前記特許文献1に記載の技術では、超硬材料(WC)と高い熱伝導率を有する銅とを組み合わせて傾斜組成化することにより、切削用チップの刃先の温度上昇を抑えることはできるが、工具逃げ面摩耗の増加に伴う切削抵抗の増大を抑えることはできなかった。   However, in the technique described in Patent Document 1, it is possible to suppress the temperature rise of the cutting edge of the cutting tip by combining the cemented carbide material (WC) and copper having high thermal conductivity into a gradient composition. However, an increase in cutting resistance due to an increase in tool flank wear could not be suppressed.

また、前記特許文献2に記載の技術では、cBNを含む超高硬度焼結体を製造するコストが多くかかるという観点から、被削材と接触する部分にのみcBNを含む超高硬度焼結体を用いている。したがって、工具逃げ面摩耗の増加に伴う切削抵抗の増大を抑えることはできなかった。   Moreover, in the technique of the said patent document 2, from a viewpoint that the cost which manufactures the ultra-high-hardness sintered compact containing cBN requires much, the ultra-high-hardness sintered body containing cBN only in the part which contacts a work material Is used. Therefore, an increase in cutting resistance due to an increase in tool flank wear could not be suppressed.

本発明は前述の問題点に鑑み、タングステンの使用量を少なくするとともに、工具逃げ面摩耗の増加に伴う切削抵抗を抑えることが可能な切削用チップを提供することを目的としている。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a cutting tip capable of reducing the amount of tungsten used and suppressing cutting resistance associated with increased tool flank wear.

本発明の切削用チップは、工具のホルダーに取り付け及び取り外しが可能な切削用チップであって、すくい面側の層が厚さ0.1mm〜0.6mmの超硬合金からなり、前記すくい面側の層と隣接する層がモリブデン系高速度鋼からなることを特徴とする。 The cutting tip of the present invention is a cutting tip that can be attached to and detached from a tool holder, the rake face layer is made of a cemented carbide having a thickness of 0.1 mm to 0.6 mm, and the rake face The layer adjacent to the side layer is made of molybdenum high speed steel .

本発明によれば、すくい面の表層側にのみタングステンの含有量の高い超硬合金を用いているので、タングステンの使用量を抑えることができる。また、隣接する層が超硬合金よりも耐摩耗性が低い合金であるため、逃げ面が摩耗したときの切削抵抗を低減することができる。これにより、工具寿命を向上させることができる。   According to the present invention, since the cemented carbide having a high tungsten content is used only on the surface side of the rake face, the amount of tungsten used can be suppressed. Moreover, since the adjacent layer is an alloy having lower wear resistance than the cemented carbide, the cutting resistance when the flank is worn can be reduced. Thereby, a tool life can be improved.

本発明者は、切削加工で工具が被削材と接触する部分は切れ刃に近い狭い部分であること、工具寿命は逃げ面の摩耗によって生じる切削抵抗(切削熱)の増加が原因になることに着目し、鋭意検討した結果、超硬合金の薄板とモリブデン系高速度鋼の母材とからなる二層構造の切削用チップを見いだした。   The inventor believes that the part where the tool contacts the workpiece in cutting is a narrow part close to the cutting edge, and that the tool life is caused by an increase in cutting resistance (cutting heat) caused by wear on the flank. As a result of diligent investigation, we found a two-layer cutting tip composed of a cemented carbide thin plate and a molybdenum-based high-speed steel base material.

図1は、本実施形態に係る切削用チップ1の構造例を示す図である。
図1において、切削用チップ1のすくい面の表層側には、超硬合金の薄板2が形成されており、下部の母材3には、モリブデン系高速度鋼が用いられている。また、薄板2と母材3とは、銀ろう等を用いてろう付けにより接合されている。なお、切削を行う際には、バイトホルダー4等に切削用チップ1が取り付けられて行われる。
FIG. 1 is a diagram illustrating a structure example of a cutting tip 1 according to the present embodiment.
In FIG. 1, a cemented carbide thin plate 2 is formed on the surface side of the rake face of the cutting tip 1, and a molybdenum base high-speed steel is used for the lower base material 3. The thin plate 2 and the base material 3 are joined by brazing using a silver braze or the like. In addition, when performing cutting, the cutting tip 1 is attached to the tool holder 4 or the like.

すくい面の表層側の薄板2に用いられる超硬合金は、耐摩耗性が優れ、高硬度であり、切削によって刃先温度が上昇しても、硬度の低下が小さいという特徴がある。一方、母材3に用いられるモリブデン系高速度鋼は、耐熱性及び剛性に優れているという特徴がある。被削材と接触して切り屑を生成するすくい面側では強度が必要とされるため、強度の優れた超硬合金の薄板2が上部に接合されている。一方、耐摩耗性が高くなると、逃げ面の摩耗部と被削材との接触面では、切削抵抗が大きくなるため、母材3としては耐摩耗性が低い高速度鋼が下部に接合されている。これにより、逃げ面摩耗部に母材3が露出した場合には、母材3は耐摩耗性が低いため、切削抵抗の上昇を抑えることができる。   The cemented carbide used for the thin plate 2 on the surface side of the rake face is characterized by excellent wear resistance, high hardness, and small decrease in hardness even when the cutting edge temperature is increased by cutting. On the other hand, the molybdenum-based high speed steel used for the base material 3 is characterized by excellent heat resistance and rigidity. Since strength is required on the side of the rake face that contacts with the work material and generates chips, a cemented carbide thin plate 2 having excellent strength is joined to the upper part. On the other hand, when the wear resistance increases, the cutting resistance increases at the contact surface between the worn portion of the flank and the work material, and therefore, the high-speed steel having low wear resistance is joined to the lower portion as the base material 3. Yes. Thereby, when the base material 3 is exposed to the flank wear part, since the base material 3 has low wear resistance, an increase in cutting resistance can be suppressed.

図2は、本実施形態に係る切削用チップ1を用いて被削材を切削加工している状態を示す図である。図2に示すように、被削材を切削加工すると、すくい面側では主として被削材の切り屑により主分力Fzを受け、逃げ面側では、主として被削材から背分力Fyを受ける。逃げ面摩耗量VBが大きくなると、逃げ面摩耗部に母材3である高速度鋼が露出する。高速度鋼が露出した状態では、母材3である高速度鋼は高温での耐摩耗性が低いため、母材の部分は大きく摩耗して後退する。この結果、母材3の部分は、被削材と接触しないか、もしくは接触してもその部分で生じる切削抵抗は小さくなるため、実質的には背分力Fyを受ける部分は超硬合金の部分のみとなる。したがって、切削抵抗は一定に保たれるようになり、工具寿命が向上する。 FIG. 2 is a diagram illustrating a state in which a work material is being cut using the cutting tip 1 according to the present embodiment. As shown in FIG. 2, when the work material is cut, the main component force F z is mainly received from the cutting material on the rake face side, and the back force force F y is mainly applied from the work material on the flank side. Receive. When the flank wear amount V B increases, the high speed steel as the base material 3 is exposed at the flank wear portion. In a state where the high-speed steel is exposed, the high-speed steel as the base material 3 has low wear resistance at high temperatures, so that the base material portion is greatly worn and retracted. As a result, part of the base material 3, since the cutting resistance becomes small resulting in some parts thereof are either not in contact with the workpiece, or contact with, the portion is substantially subjected to the back component force F y is a cemented carbide It becomes only the part of. Accordingly, the cutting resistance is kept constant, and the tool life is improved.

図3は、逃げ面摩耗幅と切削抵抗との関係を示す図である。図3における破線6は、工具逃げ面摩耗幅を示している。また、実線7で示した2層構造を有する切削用チップ1での切削抵抗は、逃げ面の摩耗に伴って増加するが、逃げ面摩耗幅が表層の薄板の厚さよりも大きくなると、切削抵抗は一定値に保たれる。図2に示す例のように、被削材のワーク面と切削用チップ1のすくい面とが垂直である場合、逃げ面摩耗量VBが超硬合金の薄板2の厚さを超えると、逃げ面摩耗部に母材3が露出する。母材3である高速度鋼が露出した状態では、前述したように切削抵抗を受ける部分は超硬合金の部分のみとなるため、2層構造を有する切削用チップ1の場合は、切削抵抗がほぼ一定に保たれる。一方、点線8で示す従来の超硬チップでの切削抵抗は、逃げ面の摩耗の増加に伴い、増大し続ける。 FIG. 3 is a diagram showing the relationship between the flank wear width and the cutting resistance. A broken line 6 in FIG. 3 indicates a tool flank wear width. In addition, the cutting resistance of the cutting tip 1 having the two-layer structure shown by the solid line 7 increases with the wear of the flank, but when the flank wear width becomes larger than the thickness of the surface thin plate, the cutting resistance Is kept constant. When the work surface of the work material and the rake surface of the cutting tip 1 are perpendicular as in the example shown in FIG. 2, if the flank wear amount V B exceeds the thickness of the cemented carbide thin plate 2, The base material 3 is exposed at the flank wear portion. In the state where the high-speed steel that is the base material 3 is exposed, the portion that receives the cutting resistance is only the cemented carbide portion as described above. Therefore, in the case of the cutting tip 1 having a two-layer structure, the cutting resistance is It is kept almost constant. On the other hand, the cutting resistance of the conventional carbide tip indicated by the dotted line 8 continues to increase as the flank wear increases.

以上のように2層構造からなる切削用チップ1は、従来の超硬合金のみの単層構造のチップと比べて使用する超硬合金の量を少なくすることができるとともに、逃げ面摩耗量VBが大きくなっても切削抵抗をほぼ一定に保つことができる。これにより、従来の単層構造の超硬合金のチップと比べて切削抵抗が小さくなり、工具寿命を長くすることができる。 As described above, the cutting tip 1 having a two-layer structure can reduce the amount of cemented carbide to be used as compared to a conventional single-layered tip made of cemented carbide, and the flank wear amount V. Even if B increases, the cutting force can be kept almost constant. Thereby, cutting resistance becomes small compared with the chip | tip of the cemented carbide of the conventional single layer structure, and tool life can be lengthened.

なお、単層構造の切削用チップの場合、逃げ面摩耗量VBが0.6mmを超えると、切削抵抗が大きくなりすぎてチッピングやブレが生じ、切削用チップとしての機能を保つことができなくなる。したがって、チッピングやブレが生じない程度の切削抵抗に保つためには、超硬合金からなる薄板2の厚さが0.6mm以下であることが好ましい。さらに安定した性能を確保するためには、0.5mm以下であることが好ましい。 In the case of a cutting tip having a single-layer structure, if the flank wear amount V B exceeds 0.6 mm, the cutting resistance becomes too large, causing chipping and blurring, and the function as a cutting tip can be maintained. Disappear. Therefore, in order to maintain a cutting resistance that does not cause chipping or blurring, it is preferable that the thickness of the thin plate 2 made of cemented carbide is 0.6 mm or less. Furthermore, in order to ensure the stable performance, it is preferable that it is 0.5 mm or less.

一方、超硬合金からなる薄板2の厚さが0.1mm未満となると、切り屑による主分力Fyに対する強度が十分に確保できなくなり、さらに、製造が非常に困難なものとなるため、超硬合金からなる薄板2の厚さは0.1mm以上であることが好ましい。 On the other hand, if the thickness of the thin plate 2 made of cemented carbide is less than 0.1 mm, the strength against the main component force F y due to the chips cannot be secured sufficiently, and the manufacturing becomes very difficult. The thickness of the thin plate 2 made of a cemented carbide is preferably 0.1 mm or more.

なお、図1に示す構造例においては、切削用チップの片面側にのみ超硬合金の薄板が形成されている。一方、すくい面と逃げ面とが垂直な形状の切削用チップの場合は、表面と裏面とで超硬合金の薄板を形成した3層構造であってもよい。これにより、1コーナーにおいて表面側と裏面側とで使用することが可能となる。   In the structural example shown in FIG. 1, a cemented carbide thin plate is formed only on one side of the cutting tip. On the other hand, in the case of a cutting tip having a shape in which the rake face and the flank face are vertical, a three-layer structure in which a cemented carbide thin plate is formed on the front surface and the back surface may be used. This makes it possible to use the front side and the back side at one corner.

次に、本実施形態に係る切削用チップ1の切削試験結果について説明する。
図5は、本実施例における切削試験で用いた装置及び切削用チップの刃先部分の形状を示す図である。
本実施例に用いた切削用チップの形状は、図5に示すように厚さ0.5mmの超硬合金と厚さ5.5mmの高速度鋼との2層構造であり、逃げ面摩耗が大きくなったときの切削抵抗を小さくするために、先端部分に約10°のチャンファーホーニングを設け、先端部分の超硬合金の厚さを0.2mmとした。そして、すくい角は6°で逃げ角を6°に設定した。また、詳細な切削条件は以下の表1に示すとおりである。
Next, the cutting test result of the cutting tip 1 according to the present embodiment will be described.
FIG. 5 is a diagram showing the shape of the cutting edge portion of the apparatus and cutting tip used in the cutting test in this example.
The shape of the cutting tip used in this example is a two-layer structure of a 0.5 mm thick cemented carbide and a 5.5 mm thick high-speed steel as shown in FIG. In order to reduce the cutting resistance when increased, a chamfer honing of about 10 ° was provided at the tip portion, and the thickness of the cemented carbide at the tip portion was set to 0.2 mm. The rake angle was set to 6 ° and the clearance angle was set to 6 °. Detailed cutting conditions are as shown in Table 1 below.

Figure 0005327740
Figure 0005327740

比較のため、超硬合金のみを用いた単層構造の切削用チップについても、本実施例で作製した切削用チップと同一の形状のものを作製した。   For comparison, a cutting chip having the same shape as the cutting chip manufactured in this example was also prepared for the cutting chip having a single layer structure using only the cemented carbide.

図6は、本実施例の条件で被削材を切削した場合の、1分後及び10分後の刃先部分の摩耗形態を示す写真である。
超硬合金がM20で、V=209m/min、湿式切削の場合、逃げ面摩耗は大きく進行しているが、すくい面側は大きなクレーターの発達はなかった。
FIG. 6 is a photograph showing the wear pattern of the cutting edge portion after 1 minute and after 10 minutes when the work material is cut under the conditions of this example.
When the cemented carbide was M20, V = 209 m / min, and wet cutting, flank wear progressed greatly, but there was no large crater development on the rake face side.

図8は、本実施例で作製した切削用チップを用いて切削試験を行った結果を示す図である。図8(a)には、平均の逃げ面摩耗幅VB及び最大の逃げ面摩耗幅VBMAXの推移を示し、図8(b)には、背分力Fy及び主分力Fzの推移を示す。また、"Surface"及び"base"はそれぞれ、図7に示すように、逃げ面での超硬合金の摩耗幅及び高速度鋼の摩耗幅を示している。図7では、超硬合金の薄板の端部(逃げ面)全体が摩耗し、さらに、高速度鋼の部分にも同程度の摩耗(幅)が生じている。 FIG. 8 is a diagram showing the results of a cutting test using the cutting tips produced in this example. FIG. 8A shows the transition of the average flank wear width V B and the maximum flank wear width V BMAX , and FIG. 8B shows the back component force F y and the main component force F z . Shows the transition. Further, “Surface” and “base” respectively indicate the wear width of the cemented carbide and the wear width of the high-speed steel at the flank as shown in FIG. In FIG. 7, the entire end portion (flank) of the cemented carbide thin plate is worn, and the same level of wear (width) is also generated in the high-speed steel portion.

図8(a)に示すように、比較例として作製した単層の切削用チップでは、寿命が4〜5分であったのに対し、本実施例で作製した2層構造の切削用チップでは、10分切削した段階においても寿命には至らなかった。また、図8(b)に示すように、4分過ぎの段階では、比較例の切削用チップでは背分力Fyが大きくなっていることがわかる。このように、比較例として作製した単層の切削用チップに比べて、本実施例で作製した2層構造の切削用チップの寿命が2倍以上となり、有用性が確認できた。 As shown in FIG. 8A, the single-layer cutting tip produced as a comparative example had a life of 4 to 5 minutes, whereas the two-layer cutting tip produced in this example Even at the stage of cutting for 10 minutes, the service life was not reached. Moreover, as shown in FIG.8 (b), it turns out that the back component force Fy is large in the cutting tip of a comparative example in the stage after 4 minutes. Thus, the life of the cutting tip having a two-layer structure produced in this example was more than doubled as compared with a single-layer cutting tip produced as a comparative example, confirming its usefulness.

図9〜図11は、本実施例で作製した切削用チップを用いて他の切削条件で切削試験を行った結果を示す図である。
図8に示した結果と同様に、図9〜図11に示すように、比較例として作製した単層の切削用チップに比べて、本実施例で作製した2層構造の切削用チップの方が寿命が長くなり、有用性が確認できた。
9-11 is a figure which shows the result of having performed the cutting test on other cutting conditions using the cutting tip produced in the present Example.
Similar to the results shown in FIG. 8, as shown in FIGS. 9 to 11, the two-layered cutting tip produced in this example was compared with the single-layer cutting tip produced as a comparative example. However, the service life was prolonged and the usefulness was confirmed.

以上のように本実施例によれば、従来の超硬合金のみの単層構造の切削用チップと比べて、逃げ面が摩耗しても切削抵抗が一定値以下となり、工具寿命が長くなる。   As described above, according to the present embodiment, the cutting resistance becomes less than a certain value even when the flank wears, and the tool life is prolonged, as compared with the conventional cutting tip having a single-layer structure made of cemented carbide.

本発明の実施形態に係る切削用チップの構造例を示す図である。It is a figure which shows the structural example of the chip | tip for cutting which concerns on embodiment of this invention. 本発明の実施形態に係る切削用チップを用いて被削材を切削加工している状態を示す図である。It is a figure which shows the state which is cutting the work material using the chip | tip for cutting which concerns on embodiment of this invention. 本発明の実施形態において、逃げ面摩耗幅と切削抵抗との関係を示す図である。In embodiment of this invention, it is a figure which shows the relationship between flank wear width and cutting resistance. バイトホルダーに取り付けられた従来の超硬合金チップを示す図である。It is a figure which shows the conventional cemented carbide chip attached to the bite holder. 本発明の実施例における切削試験で用いた装置及び切削用チップの刃先部分の形状を示す図である。It is a figure which shows the shape of the blade edge | tip part of the apparatus and cutting tip which were used in the cutting test in the Example of this invention. 本発明の実施例の条件で被削材を切削した場合の、1分後及び10分後の刃先部分の摩耗形態を示す写真である。It is a photograph which shows the abrasion form of the blade edge | tip part after 1 minute and 10 minutes when a work material is cut on the conditions of the Example of this invention. 逃げ面側の摩耗形態を示す写真である。It is a photograph which shows the wear form by the side of a flank. 本発明の実施例で作製した切削用チップを用いて切削試験を行った結果を示す図である。It is a figure which shows the result of having performed the cutting test using the chip | tip for cutting produced in the Example of this invention. 本発明の実施例で作製した切削用チップを用いて他の切削条件で切削試験を行った結果を示す図である。It is a figure which shows the result of having performed the cutting test on other cutting conditions using the cutting tip produced in the Example of this invention. 本発明の実施例で作製した切削用チップを用いてその他の切削条件で切削試験を行った結果を示す図である。It is a figure which shows the result of having performed the cutting test on other cutting conditions using the cutting tip produced in the Example of this invention. 本発明の実施例で作製した切削用チップを用いてその他の切削条件で切削試験を行った結果を示す図である。It is a figure which shows the result of having performed the cutting test on other cutting conditions using the cutting tip produced in the Example of this invention.

符号の説明Explanation of symbols

1 切削用チップ
2 薄板
3 母材
4 バイトホルダー
11 超硬合金チップ
12 バイトホルダー
1 Cutting tip 2 Thin plate 3 Base material 4 Tool holder 11 Cemented carbide tip 12 Tool holder

Claims (2)

工具のホルダーに取り付け及び取り外しが可能な切削用チップであって、
すくい面側の層が厚さ0.1mm〜0.6mmの超硬合金からなり、前記すくい面側の層と隣接する層がモリブデン系高速度鋼からなることを特徴とする切削用チップ。
A cutting tip that can be attached to and detached from a tool holder,
A cutting tip characterized in that a rake face side layer is made of a cemented carbide having a thickness of 0.1 mm to 0.6 mm, and a layer adjacent to the rake face side layer is made of molybdenum high speed steel .
前記超硬合金からなる層と、前記モリブデン系高速度鋼からなる層との2層構造であることを特徴とする請求項に記載の切削用チップ。 The cutting tip according to claim 1 , wherein the cutting tip has a two-layer structure of a layer made of the cemented carbide and a layer made of the molybdenum-based high speed steel .
JP2008271310A 2008-10-21 2008-10-21 Cutting tip Expired - Fee Related JP5327740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008271310A JP5327740B2 (en) 2008-10-21 2008-10-21 Cutting tip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008271310A JP5327740B2 (en) 2008-10-21 2008-10-21 Cutting tip

Publications (2)

Publication Number Publication Date
JP2010099758A JP2010099758A (en) 2010-05-06
JP5327740B2 true JP5327740B2 (en) 2013-10-30

Family

ID=42290865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008271310A Expired - Fee Related JP5327740B2 (en) 2008-10-21 2008-10-21 Cutting tip

Country Status (1)

Country Link
JP (1) JP5327740B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5937717B2 (en) * 1978-12-28 1984-09-11 石川島播磨重工業株式会社 Cemented carbide welding method
DE3624673A1 (en) * 1985-08-01 1987-02-12 Arbed Techno Gmbh Cutting insert for chip-removing machining
JP2533872B2 (en) * 1987-04-10 1996-09-11 住友電気工業株式会社 Composite material for cutting tools
CN101795797B (en) * 2007-09-06 2013-06-12 株式会社捷太格特 Cutting tool, method of forming cutting tool, and method of manufacturing cutting tool

Also Published As

Publication number Publication date
JP2010099758A (en) 2010-05-06

Similar Documents

Publication Publication Date Title
JP4728256B2 (en) Cutting tool for high-quality and high-efficiency machining and cutting method using the same
US6155755A (en) Hard sintered body tool
JP2012045635A (en) Cutting insert with excellent deposition resistance
JP2012525987A (en) Hard insert
JP2006528077A (en) Uncoated cutting tool with brazed ultra-hard blank
CN109396558A (en) It is a kind of for processing the Diamond Cutting Toolss of hard brittleness difficult-to-machine material
JP5821088B2 (en) Cubic boron nitride sintered body tool and manufacturing method thereof
KR100942771B1 (en) Cermet reamer
JP4341962B2 (en) Rotary cutting tool with chip disposal function
JP5327740B2 (en) Cutting tip
JP2010125566A (en) Cutting tip, cutting tool, and method for cutting hard-to-cut material
JP2001001209A (en) Rotary cutting tool
JP3697893B2 (en) Hard sintered body throw-away tip and manufacturing method thereof
JP2007276079A (en) HIGH-HARDNESS MACHINING CUTTING TOOL MADE OF CUBIC BORON NITRIDE GROUP CERAMICS HAVING EXCELLENT BRAZING BONDING STRENGTH, AND Ag ALLOY BRAZING MAERIAL TO BE USED FOR THE SAME
JP5283017B2 (en) Diamond sintered compact tool for ultra-precision cutting
JP2004268202A (en) Small diameter end mill
JP6278137B1 (en) tool
JP2005186214A (en) Cutting insert and cutting tool
JP2012254486A (en) Extra-high pressure sintered rotary cutting tool
JP2011093053A (en) Cutting tool and method for manufacturing the same
JP5234359B2 (en) CBN sintered compact tool for high precision cutting
JP2001191212A (en) Rotary cutting multi-edged tool
JPS63161B2 (en)
JP5095621B2 (en) Replacement blade for cutting tools
JP2012206212A (en) Circular saw

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130716

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees