JPS61151099A - Quality modification of gaas single crystal - Google Patents

Quality modification of gaas single crystal

Info

Publication number
JPS61151099A
JPS61151099A JP26964384A JP26964384A JPS61151099A JP S61151099 A JPS61151099 A JP S61151099A JP 26964384 A JP26964384 A JP 26964384A JP 26964384 A JP26964384 A JP 26964384A JP S61151099 A JPS61151099 A JP S61151099A
Authority
JP
Japan
Prior art keywords
single crystal
temperature
ingot
gaas single
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26964384A
Other languages
Japanese (ja)
Inventor
Masahiro Nakajima
正博 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26964384A priority Critical patent/JPS61151099A/en
Publication of JPS61151099A publication Critical patent/JPS61151099A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:A single crystal of GaAs is subjected to repeated heating and cooling under specific conditions in an inert gas and As vapor to produce the titled single crystal with resistance to cracking and warpage and reduced crystal defects. CONSTITUTION:An ingot of GaAs single crystal which is produced by the LEC method is placed on a support 11 and set in a quartz vessel 1 which is provided with infrared heaters which is divided into several blocks in the lengthwise direction. Then, the cover 3 is closed to seal the vessel 1 tightly. Then, the valve in the evacuation pipe 10 is opened and valves 7, 8 are opened to introduce an inert gas and a small amount of As steam through inlet 2. Then, the heater is operated to heat the main region in the vessel at the first-stage temperature (800 deg.C) and the temperature is kept for the first time (10-20min), then the ingot is cooled down from the seed-crystal side of the ingot 12 to the second temperature (550 deg.C) and kept for the second time (5min), then cooled down to the room temperature.

Description

【発明の詳細な説明】 [発明の技術分野] この発明はGaAs単結晶の調質方法に関し、特に、L
EC法(液体カプセル法)等で引き上げられたc a 
A S q′i結晶インゴットの残留歪みや内部応力を
除去して転位等の結晶欠陥が少なく且つ割れにくいG 
a A Sウェハを得るための調質方法に関するもので
ある。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for refining a GaAs single crystal, and in particular, to a method for refining a GaAs single crystal.
c a raised using the EC method (liquid capsule method), etc.
A S q'i Removes residual strain and internal stress from the crystal ingot to create a G that has fewer crystal defects such as dislocations and is less likely to crack.
The present invention relates to a thermal refining method for obtaining an aAS wafer.

[発明の技術的背景] G a A S rti結晶の製造方法にはよく知られ
ているようにLEC法が主流となっている。 LEC法
にJ3いてはよく知られているように、GaAsの分解
蒸発を防止するために、高圧下でGaAS融液(融点1
240℃)の液面上を8203の融液で覆い (E n
capsulate)つつGaASの種結晶をGaAs
m1Ht中から引ぎ上げることによって、円柱状のG 
a A S !l!結晶インゴットを製造する。
[Technical Background of the Invention] As is well known, the LEC method is the mainstream method for producing GaAs rti crystals. As is well known in the LEC method, in order to prevent the decomposition and evaporation of GaAs, GaAs melt (melting point 1
240℃) is covered with the melt of 8203 (E n
GaAs seed crystal while capsulating)
By pulling it up from m1Ht, a cylindrical G
AAS! l! Manufacture crystal ingots.

L^頂技術の問題点] L E C法による単結晶育成方法では、GaAS種結
晶に成長する単結晶をG a’A s融液中からB20
.融液層を通過してるつぼ上部空間に引き上げる過程で
の温度勾配が大きいため、引上げに伴って形成されるG
 a A S単結晶インゴットの内部には熱応力に基因
する残留歪みが生じるとともに転位等の結晶欠陥が多母
に生じるという問題点があった。 従って、該インゴッ
トから製造したウェハに素子形成工程が加わると、該ウ
ェハに亀裂や割れが生じたり、ウェハが反ったりするこ
とが多く、また該インゴットをウェハにスライシングす
る過程においてウェハ表面にソーマークが生じやすい等
の好ましくない結果を沼いていた。
Problems with the L^Top technology] In the single crystal growth method using the L E C method, the single crystal growing on the GaAS seed crystal is
.. Due to the large temperature gradient during the process of passing through the melt layer and pulling it up into the space above the crucible, the G formed as it is pulled up
There is a problem in that residual strain due to thermal stress is generated inside the aAS single crystal ingot, and crystal defects such as dislocations are generated in multiple matrixes. Therefore, when a device formation process is applied to a wafer manufactured from the ingot, cracks or fractures often occur in the wafer, or the wafer is warped, and saw marks are created on the wafer surface during the process of slicing the ingot into wafers. I was worried about the undesirable results that are likely to occur.

また、ウェハ周辺部は結晶欠陥〈転位)が多いため、特
性の悪い素子が生じやすかったり、素子形成不良を生じ
やすい等の結果を招いていた。
Furthermore, since there are many crystal defects (dislocations) in the peripheral area of the wafer, it is easy to produce elements with poor characteristics or to have defective element formation.

このため、LEC法で製造されたGaAs単結晶を基板
とするGaAs半導体装置の製造歩留りは極めて悪く、
GaAs半導体装置の製造コストは極めて高価なものに
なっていた。
For this reason, the manufacturing yield of GaAs semiconductor devices using GaAs single crystal substrates manufactured by the LEC method is extremely poor.
The manufacturing cost of GaAs semiconductor devices has become extremely high.

[発明の目的1 この発明の目的は、GaAs半導体装置の製造工程にお
いてウェハに亀裂や反りが生じにくく、且つ転位等の結
晶欠陥の少ないGaAs単結晶を得ることのできるGa
As単結晶の調質方法を提供することぐある。
[Objective of the Invention 1 The object of the present invention is to develop a GaAs single crystal that is less likely to cause cracks or warp in a wafer in the manufacturing process of GaAs semiconductor devices, and that can obtain a GaAs single crystal with fewer crystal defects such as dislocations.
A method for refining As single crystals is provided.

[発明の概要1 この発明によるGaAs単結晶の調質方法は、特許請求
の範囲に記載された構成から成っているすなわち、L 
E C法で製造されたGaAs単結晶インゴットを不活
性ガスと少量の砒素蒸気とで満たされた器内に収容する
とともに該インゴットを所定の第一の時間の間、所定の
第一の温度(たとえば800°C)に保持した後、該イ
ンゴットの上端側から順々に第二の温度(たとえば55
0℃)に降温させ、全体が第二の温度になった時点から
該インゴットを所定の第二の時間の間、該第二の温度に
保持し、該第二の時間の経過後に該インゴットを常温ま
で冷FJIざぜる。
[Summary of the Invention 1 The GaAs single crystal refining method according to the present invention consists of the structure described in the claims, that is, L
A GaAs single crystal ingot produced by the EC method is placed in a vessel filled with an inert gas and a small amount of arsenic vapor, and the ingot is heated to a predetermined first temperature ( For example, 800°C), the ingot is held at a second temperature (for example, 55°C) in order from the upper end side.
0°C), and from the time when the whole ingot reaches the second temperature, the ingot is held at the second temperature for a predetermined second time, and after the second time has elapsed, the ingot is Cool FJI to room temperature.

この発明の方法によって調質されたGaAs単結晶イン
ゴツ1〜からは残留歪みや内部応力が除去されるうえ、
転位も著しく少なくなるため、このインボッ1−から1
1られたウェハには半導体装置製造プロセスにおいて亀
裂を生じる恐れが少なくなり、また反りも従来のウェハ
より小さいGaAsウェハが実現する。
Residual strain and internal stress are removed from the GaAs single crystal ingots 1~ tempered by the method of the present invention, and
Dislocations are also significantly reduced, so this in-bore 1- to 1
The resulting GaAs wafer is less likely to develop cracks in the semiconductor device manufacturing process, and has less warpage than conventional wafers.

[発明の実施例] 第1図は本発明の方法を実施する装置の概略図である。[Embodiments of the invention] FIG. 1 is a schematic diagram of an apparatus for carrying out the method of the invention.

 図において1は石英容器であり、この石英容器1の一
端にはガス流入口2が設けられている。 ガス流入口2
には不活性ガス送気管5とアルシンガス送気管6とが接
続されており、不活性ガス送気管5とアルシンガス送気
管6にはそれぞれ弁7,8が設けられている。 また、
石英容器1の他端には排気口4を具備した蓋3が設けら
れ、排気口4には弁9を有した排気管10が接続されて
いる。 石英容器1内には窒化アルミニウムもしくは窒
化鉛等の素材で構成された台11が収容され、LEC法
で製造されたGaAs単結晶のインゴット12を台11
の上に載置するようになっている。
In the figure, 1 is a quartz container, and one end of this quartz container 1 is provided with a gas inlet 2. Gas inlet 2
An inert gas supply pipe 5 and an arsine gas supply pipe 6 are connected to the inert gas supply pipe 5 and an arsine gas supply pipe 6, and valves 7 and 8 are provided in the inert gas supply pipe 5 and the arsine gas supply pipe 6, respectively. Also,
A lid 3 having an exhaust port 4 is provided at the other end of the quartz container 1, and an exhaust pipe 10 having a valve 9 is connected to the exhaust port 4. A stand 11 made of a material such as aluminum nitride or lead nitride is housed in the quartz container 1, and a GaAs single crystal ingot 12 manufactured by the LEC method is placed on the stand 11.
It is designed to be placed on top of the

石英容器1の外側には円筒状の赤外線ヒータ(図示せず
)が設けられ、この赤外線ヒータは石英容器1の長手方
向に沿って数段に分割されたセクションから構成されて
おり、一端側から他端側へ順次加熱範囲を移動さVうる
ようになっている。
A cylindrical infrared heater (not shown) is provided on the outside of the quartz container 1, and this infrared heater is composed of sections divided into several stages along the longitudinal direction of the quartz container 1. The heating range can be sequentially moved toward the other end.

本発明方法を実施する際には、LEC法で製造したGa
As単結晶のインゴット12をまず第1図に示すように
石英容器1内の台11の上に載置した後、M3を閉じて
該石英容器1を密閉する。
When carrying out the method of the present invention, Ga produced by the LEC method is used.
First, as shown in FIG. 1, an As single crystal ingot 12 is placed on a stand 11 inside a quartz container 1, and then M3 is closed to seal the quartz container 1.

次に弁9を開いた後、弁7を開いて不活性ガス送気管5
から不活性ガス(Ar >を石英容器1内に導入して該
石英容器1内を不活性ガス雰囲気にさせる。 石英容器
1内が不活性ガス雰囲気となった後、弁7を閉じるとと
もに弁8を問いてアルシンガス(As 1度2〜5%の
Arをベースとしたガス)を石英容器1内に導入する。
Next, after opening the valve 9, the valve 7 is opened and the inert gas air pipe 5 is opened.
An inert gas (Ar >) is introduced into the quartz container 1 to create an inert gas atmosphere inside the quartz container 1. After the inside of the quartz container 1 has become an inert gas atmosphere, the valve 7 is closed and the valve 8 is closed. Then, arsine gas (Ar-based gas containing 2 to 5% As) is introduced into the quartz container 1.

この状態でヒータを作動させ石英容器1内を昇温させる
。 石英容器1内の主要領域の温度が550℃に達した
時、弁8及び9を閉じ、石英容器1内にアルシンガスを
充満した状態で該石英容器1内への送気及び該容器内か
らの排気を停止する。
In this state, the heater is operated to raise the temperature inside the quartz container 1. When the temperature of the main area inside the quartz container 1 reaches 550°C, the valves 8 and 9 are closed, and air is supplied to and from the quartz container 1 while the quartz container 1 is filled with arsine gas. Stop exhaust.

この状態で該容器1内の主要領域が800℃になるまで
昇温した後、容器内が800°Cに達した状態で昇温を
停止し、その状態を10〜20分間保持する。
In this state, the temperature of the main area inside the container 1 is raised to 800°C, and then the temperature rise is stopped when the inside of the container reaches 800°C, and this state is maintained for 10 to 20 minutes.

第2図(a >はその時の石英容器1内の温度分布を示
した線図で必り、同図において縦軸は温度(’C)、横
軸は石英容器1の左端を原点として該容器1の長手方向
にとった距離を示す。 なお、温度分布を表す台形の線
分Aの横方向長さは第1図に対応している。
Figure 2 (a) is a diagram showing the temperature distribution inside the quartz container 1 at that time; in this figure, the vertical axis is the temperature ('C), and the horizontal axis is the temperature distribution with the left end of the quartz container 1 as the origin. 1. The horizontal length of the trapezoidal line segment A representing the temperature distribution corresponds to that in FIG.

ついで、第2図(b )及び(C)に示すように石英容
器1内の温度分布がその左端(ガス流入口側)から55
0℃になるようにヒータを制御することによってインゴ
ット12をその上端側から下端側に向かって順次550
℃になるように降温さける。
Then, as shown in FIGS. 2(b) and 2(c), the temperature distribution inside the quartz container 1 increases by 55 mm from the left end (gas inlet side).
By controlling the heater so that the temperature is 0°C, the ingot 12 is heated to 550° C. from the upper end to the lower end.
Avoid lowering the temperature to ℃.

そして、インゴット12の全体が550℃になったら、
その状態を5分間保った後、弁8及び9を開いて石英容
器1内にアルシンガスを流過させて毎分5℃の割合で該
容器1内を降温させ、最終的に室温になるまで冷却させ
る。
Then, when the temperature of the entire ingot 12 reaches 550℃,
After maintaining this state for 5 minutes, valves 8 and 9 are opened to allow arsine gas to flow into the quartz container 1 to lower the temperature inside the container 1 at a rate of 5°C per minute, and finally cool it to room temperature. let

該容器1内及びインゴット12が室温に達した後、弁8
を閉じる一方、弁7を開いて該容器1内のアルシンガス
をArガスで置換させる。 そして、該容器1内が完全
に不活性ガスで置換された侵、弁7を閉じ、続いて弁9
を閉じてから蓋3を聞いて該容器1内からインゴット1
2を取り出す。
After the inside of the container 1 and the ingot 12 reach room temperature, the valve 8
While closing the container 1, the valve 7 is opened to replace the arsine gas in the container 1 with Ar gas. Then, when the inside of the container 1 is completely replaced with inert gas, the valve 7 is closed, and then the valve 9 is closed.
After closing the lid 3, remove the ingot 1 from inside the container 1.
Take out 2.

上記のごどさ調質処理すなわち熱処理を終了した該イン
ボッ1−に所定の洗浄処理を施した後、外周研削を行い
、更にスライシングしてウェハとした。
The ingot 1-, which had been subjected to the above-mentioned rough refining treatment, that is, heat treatment, was subjected to a predetermined cleaning treatment, followed by outer periphery grinding and further slicing into wafers.

そして前記のごとき工程で17られたウェハを用いて半
導体装INを製造し、その過程において該ウェハに生じ
た亀裂や反りを測定して従来のウェハとの比較を行った
Semiconductor devices IN were manufactured using the wafers processed in the above steps, and cracks and warpage generated in the wafers during the process were measured and compared with conventional wafers.

その結果、従来のウェハではウェハプロセス(ウェハの
鏡面加工、素子形成プロセス、チップ分割工程)を通じ
て亀裂が入って割れるものの発生割合は60%にも達し
ていたが、本発明方法で処理されたインゴットから得た
ウェハでは、ウェハプロセスを通じて割れるものの割合
は10%以下となり、また、ウェハの反りも従来のウェ
ハでは20μm以上であったが、本発明方法適用のウェ
ハでは5μm以下であった。 一方、従来のLEGイン
ゴッj〜から得られたウェハでは厚みが350μm以−
ヒないと割れが多発するが、本発明方法を適用してiF
lられたウェハでは250μm以上の厚さがあれば量産
可能(すなわち、割れが多発する恐れがない)であるこ
とが明らかとなった。
As a result, as many as 60% of conventional wafers cracked and broke during the wafer process (wafer mirror polishing, element formation process, chip division process), but ingots processed using the method of the present invention In the wafers obtained from wafers, the percentage of cracks during the wafer process was less than 10%, and the wafer warpage was 20 μm or more for conventional wafers, but was 5 μm or less for wafers to which the method of the present invention was applied. On the other hand, wafers obtained from conventional LEG ingots have a thickness of 350 μm or more.
If there is no heat, cracks occur frequently, but by applying the method of the present invention, iF
It has become clear that mass production is possible (that is, there is no risk of frequent cracking) for wafers with a thickness of 250 μm or more.

更に、両ウェハについての結晶構造を比較したところ、
本発明方法を適用して製造されたウェハでは転位等の結
晶欠陥が従来のウェハにくらべて著しく少ないことも明
らかになった。
Furthermore, when we compared the crystal structures of both wafers, we found that
It has also been revealed that wafers manufactured by applying the method of the present invention have significantly fewer crystal defects such as dislocations than conventional wafers.

[発明の効果] 前記実施例において明らかにしたように、この発明の方
法によれば、割れにくく且つ反りの少ないウェハを製造
することができるとともに従来よりもウェハ厚を低減す
ることができるため、GaAS半導体装置の製造歩留り
を著しく改善することができるとともに該半導体装置の
製造コストを大幅に低減することが可能となった。
[Effects of the Invention] As clarified in the above examples, according to the method of the present invention, a wafer that is less likely to break and has less warpage can be manufactured, and the wafer thickness can be reduced compared to the conventional method. It has become possible to significantly improve the manufacturing yield of GaAS semiconductor devices and to significantly reduce the manufacturing costs of the semiconductor devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施するための装置の一例を示す
概略図、第2図は本発明方法における加熱プロセスを示
すための加熱装置内温度分布図である。 1・・・石英容器、 2・・・ガス流入口、 3・・・
蓋、4・・・排気口、 5・・・不活性ガス送気管、 
6・・・アルシンガス送気管、 7.8.9・・・弁、
 10・・・排気管、 11・・・台、 12・・・イ
ンゴット。
FIG. 1 is a schematic diagram showing an example of an apparatus for implementing the method of the present invention, and FIG. 2 is a temperature distribution diagram within the heating device to illustrate the heating process in the method of the present invention. 1...Quartz container, 2...Gas inlet, 3...
Lid, 4...Exhaust port, 5...Inert gas air pipe,
6...Arsine gas supply pipe, 7.8.9...Valve,
10...exhaust pipe, 11...unit, 12...ingot.

Claims (1)

【特許請求の範囲】 1 LEC法等の引上法で製造されたGaAs単結晶イ
ンゴットを不活性ガスと少量の砒素蒸気で満たされた器
内に収容するとともに該GaAs単結晶の全体を所定の
第一の時間の間、所定の第一温度に保持した後、該 GaAs単結晶インゴットをその種結晶側から該第一温
度よりも低い第二温度に降温させてゆき、該GaAs単
結晶インゴットの全体が該第二温度になった時点から所
定の第二の時間の間、該第二温度に保持し該第二の時間
の経過後に該GaAs単結晶インゴットを常温まで冷却
させることを特徴とするGaAs単結晶の調質方法。
[Claims] 1. A GaAs single crystal ingot manufactured by a pulling method such as the LEC method is placed in a container filled with an inert gas and a small amount of arsenic vapor, and the entire GaAs single crystal is placed in a predetermined position. After maintaining the GaAs single crystal ingot at a predetermined first temperature for a first time, the temperature of the GaAs single crystal ingot is lowered from the seed crystal side to a second temperature lower than the first temperature. It is characterized in that the GaAs single crystal ingot is maintained at the second temperature for a predetermined second time from the time when the whole reaches the second temperature, and after the second time has elapsed, the GaAs single crystal ingot is cooled to room temperature. Method for refining GaAs single crystal.
JP26964384A 1984-12-22 1984-12-22 Quality modification of gaas single crystal Pending JPS61151099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26964384A JPS61151099A (en) 1984-12-22 1984-12-22 Quality modification of gaas single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26964384A JPS61151099A (en) 1984-12-22 1984-12-22 Quality modification of gaas single crystal

Publications (1)

Publication Number Publication Date
JPS61151099A true JPS61151099A (en) 1986-07-09

Family

ID=17475202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26964384A Pending JPS61151099A (en) 1984-12-22 1984-12-22 Quality modification of gaas single crystal

Country Status (1)

Country Link
JP (1) JPS61151099A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61222999A (en) * 1985-03-27 1986-10-03 Dowa Mining Co Ltd Method of improving electric characteristics of single crystal of compound semiconductor of group iii-v
JPH03232235A (en) * 1990-02-08 1991-10-16 Sumitomo Metal Mining Co Ltd Heat treatment of gaas compound semiconductor single crystal substrate
JP2007081372A (en) * 2005-07-01 2007-03-29 Freiberger Compound Materials Gmbh Heating apparatus and process for iii-v group wafer, and annealing iii-v group semiconductor single crystal wafer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61222999A (en) * 1985-03-27 1986-10-03 Dowa Mining Co Ltd Method of improving electric characteristics of single crystal of compound semiconductor of group iii-v
JPH03232235A (en) * 1990-02-08 1991-10-16 Sumitomo Metal Mining Co Ltd Heat treatment of gaas compound semiconductor single crystal substrate
JP2007081372A (en) * 2005-07-01 2007-03-29 Freiberger Compound Materials Gmbh Heating apparatus and process for iii-v group wafer, and annealing iii-v group semiconductor single crystal wafer
JP2014212326A (en) * 2005-07-01 2014-11-13 フライベルガー・コンパウンド・マテリアルズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングFreiberger Compound Materials Gmbh I annealing group iii-v semiconductor single crystal wafer
US9181633B2 (en) 2005-07-01 2015-11-10 Freiberger Compound Materials Gmbh Device and process for heating III-V wafers, and annealed III-V semiconductor single crystal wafer

Similar Documents

Publication Publication Date Title
JP3016897B2 (en) Method and apparatus for producing silicon single crystal
JPH06504878A (en) Method of controlling precipitation conditions in silicon wafers
JPH0453840B2 (en)
JPS6046998A (en) Pulling up of single crystal and its device
JPH04108682A (en) Device for producing compound semiconductor single crystal and production
JPS61151099A (en) Quality modification of gaas single crystal
CN100385046C (en) Method for producing silicon wafer
JPS6027684A (en) Apparatus for producing single crystal
JPH0367994B2 (en)
JPH0259489A (en) Production of compound semiconductor single crystal
JPS60191095A (en) Method and device for manufacturing silicon single crystal
CN114775042B (en) Crucible for crystal growth and crystal growth method
JPS63319293A (en) Furnace for pulling and growing silicon single crystal
TW201625822A (en) Method for manufacturing mono-like silicon
JP2735740B2 (en) Method for producing silicon single crystal
JPS5957992A (en) Manufacture of single crystal of semiconductor of compound
JPS60122793A (en) Device for growing single crystal of compound semiconductor
JP2735741B2 (en) Method for producing silicon single crystal
JPH01122999A (en) Heat treatment of compound semiconductor single crystal
JP4207783B2 (en) Method for producing compound semiconductor single crystal
JPH0543400A (en) Production of gaas single crystal
JPS59116194A (en) Manufacture of compound semiconductor single crystal
CN117071051A (en) Balanced solidification method for preparing compound crystal by temperature gradient solidification
JP2828868B2 (en) Liquid phase crystal growth method for II-VI compound semiconductor
JPS6077195A (en) Apparatus for producing compound semiconductor single crystal