JPH04108682A - Device for producing compound semiconductor single crystal and production - Google Patents

Device for producing compound semiconductor single crystal and production

Info

Publication number
JPH04108682A
JPH04108682A JP22872090A JP22872090A JPH04108682A JP H04108682 A JPH04108682 A JP H04108682A JP 22872090 A JP22872090 A JP 22872090A JP 22872090 A JP22872090 A JP 22872090A JP H04108682 A JPH04108682 A JP H04108682A
Authority
JP
Japan
Prior art keywords
crystal
chamber
pulling
single crystal
pulled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22872090A
Other languages
Japanese (ja)
Inventor
Takeshi Ito
武志 伊藤
Toru Yagi
八木 亨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP22872090A priority Critical patent/JPH04108682A/en
Publication of JPH04108682A publication Critical patent/JPH04108682A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To obtain single crystal little in crystal flaw by providing a crystal chamber via a sluice valve to the upper part of a pulling-up chamber in a device for producing compound semiconductor single crystal due to a liquid sealing pulling-up method and completing pulling-up of single crystal in a pulling-up chamber, and pulling-up this single crystal into a crystal chamber and performing prescribed heat treatment. CONSTITUTION:A crystal chamber 101 is provided to the upper part of a pulling-up chamber 100 via a sluice valve 5. Inert gas is introduced into the pulling-up chamber 100 and the crystal chamber 101 at high pressure by opening the sluice valve 5. Then, while current for heating is supplied to the heaters 4, 6, compound semiconductor single crystal is pulled up by a liquid sealing pulling-up method in the pulling-up chamber 100. Single crystal 10 completed in pulling up is pulled up into the crystal chamber 101 and the sluice valve 5 is closed. While the temp. distribution around single crystal 10 is uniformly held by controlling the heater 4, single crystal 10 is slowly cooled. Then the componental gas of single crystal 10 is substituted for the inert gas in the crystal chamber 101. Heat treatment of single crystal 10 is performed by using the heater 4, and thermal stress is removed which remains in this single crystal 10.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、Ga+ Inなどの■族元素とP、^3な
どのV族元素となど、異なる元素を成分とする化合物半
導体の単結晶を、液体封止引上げ法によって結晶原料融
液中から引き上げる化合物半導体単結晶11遣裟1の構
成と、この構成によるJii結晶製遭vtfを用いて化
合物半導体単結晶を製造する際の製造方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is directed to a single crystal of a compound semiconductor composed of different elements such as Group I elements such as Ga+In and Group V elements such as P and ^3. The present invention relates to a structure of a compound semiconductor single crystal 11 to be pulled from a crystal raw material melt by a liquid-sealed pulling method, and a manufacturing method for manufacturing a compound semiconductor single crystal using a JII crystal VTF having this structure.

〔従来の技術〕[Conventional technology]

化合物半導体単結晶製i!i[装置の従来の構造例を第
3図に示す、筒状の圧力容器として形成されたさ 引上げ空容器1内の丁番には、例えばGaなとの■族元
素とAsなどの■族元素とからなる結晶原料と、封止剤
として例えばB□0.とが入れられるルツボ7と、この
ルツボ7を囲みルツボ7を周りから加熱また、引上げ空
容器1の天井板を、下+端に種結晶が取り付けられ種結
晶の下端に単結晶を柱状に成長させつつ単結晶を引き上
げる引上げ棒13が、ルツボ軸12と同軸に貫通してい
る。
Compound semiconductor single crystal i! i [An example of the conventional structure of the device is shown in FIG. 3. The hinges in the empty lifting container 1 formed as a cylindrical pressure vessel contain, for example, group II elements such as Ga and group II elements such as As. A crystal raw material consisting of an element and a sealing agent such as B□0. A crucible 7 is placed in which the crucible 7 is placed, and the crucible 7 is heated from the surroundings, and a seed crystal is attached to the lower end of the ceiling plate of the empty container 1. A single crystal is grown in a columnar shape at the lower end of the seed crystal. A pulling rod 13 that pulls up the single crystal while coaxially penetrating the crucible shaft 12 is provided.

このように構成された単結晶製造装置により単結晶を製
造する際には、単結晶の原料と封止剤とを、回転、昇降
するルツボ7に入れ、引上げ空容器1内に不活性ガスと
して例えばアルゴンガスを数十ス王の高圧に充填した後
、加鳩袋I6により結晶票科と封止剤とを熔融させ、ル
ツボ軸i2と同軸にルツボ7の上方に位置して回転、昇
降する弓上げ棒′、3の先端に取り付けた種結晶11を
、引上げ棒!3を下降させて結晶原料M18に接触させ
、弓上’、f;4f3を徐々に回転、上昇させることに
より、種結晶IXの下地に単結晶が柱状に成長しつつ上
方へ引き上げられる。
When manufacturing a single crystal using the single crystal manufacturing apparatus configured as described above, raw materials for the single crystal and a sealant are placed in a crucible 7 that rotates and moves up and down, and then pulled into an empty container 1 as an inert gas. For example, after filling argon gas to a high pressure of several tens of tons, the crystal tablets and sealant are melted using a pigeon bag I6, and the product is positioned above the crucible 7 coaxially with the crucible axis i2 and rotated and raised and lowered. Seed crystal 11 attached to the tip of the bow raising rod ', 3, is the pulling rod! 3 is lowered and brought into contact with the crystal raw material M18, and the bow top', f; 4f3 is gradually rotated and raised, thereby the single crystal grows in a columnar shape on the base of the seed crystal IX and is pulled upward.

C発明が解決しようとする課題〕 このように、封止剤により表面が封止された結晶原料融
液中から単結晶を柱状に引き上げる液体封止引上げ法で
は、引上げ途中および引上げ終了時の冷却過程で双晶、
多結晶の発生など、結晶に欠陥が発生していた。このよ
うな結晶欠陥は、結晶が引上げ途中および引上げ終了後
の冷却過程で結晶内に結晶内の温度勾配により大きな熱
応力が生じ、結晶内に転位が高密度に発生することに起
因する。
C Problems to be Solved by the Invention] As described above, in the liquid-sealed pulling method for pulling a single crystal into a columnar shape from a crystal raw material melt whose surface is sealed with a sealing agent, cooling during and at the end of pulling is required. Twinning in the process,
Defects were occurring in the crystals, such as the formation of polycrystals. Such crystal defects are caused by the generation of large thermal stress in the crystal due to the temperature gradient within the crystal during the pulling of the crystal and during the cooling process after the completion of pulling, and dislocations are generated in the crystal at a high density.

このように転位が高密度に発生すると、結晶の比抵抗、
結晶内電子の移動度等の特性が低下するため、結晶内に
残留する熟歪みを除去して、これろ比抵抗や電子移動賓
などの特性を改善するために熱処理が行われる。この熱
処理は、半導体が例えばGaAsかろなる化合物半導体
である場合には、その成分元素であるAsの加圧された
ガスWW気中で行われる。熱処理を加圧されたAsガス
雰囲気中で行う理由は、A3の肩気圧が高いため、熱処
理時にGaAs中のAsが分ml、 [発するのを防ぐ
ためである。この熱処理のために、従来、加熱装置を内
蔵し高圧のAsガスに耐える圧力容器を備えた1専用の
複雑な熱処理装置を必要としていた。
When dislocations occur at a high density in this way, the specific resistance of the crystal,
Since properties such as intracrystal electron mobility deteriorate, heat treatment is performed to remove residual strain within the crystal and improve properties such as resistivity and electron mobility. When the semiconductor is a compound semiconductor such as GaAs, this heat treatment is performed in a pressurized gas WW containing As, which is a constituent element of the semiconductor. The reason why the heat treatment is performed in a pressurized As gas atmosphere is to prevent As from being released in the GaAs during the heat treatment due to the high shoulder pressure of A3. Conventionally, this heat treatment has required a dedicated and complicated heat treatment apparatus equipped with a built-in heating device and a pressure vessel that can withstand high-pressure As gas.

さらに、結晶引上げ途中で結晶に双晶、多結晶等の欠陥
が生じたり、種結晶を結晶原料融液に接触させる工程に
おいて、種結晶を長時間高温雰囲気中においた場合に種
結晶中のAsガ分離、蒸発して単結晶成長が不可能にな
り、結晶引上げを途中で中止することがしばしば起こっ
ていた。
Furthermore, defects such as twins and polycrystals may occur in the crystal during crystal pulling, and As may be present in the seed crystal if it is left in a high-temperature atmosphere for a long time during the process of bringing the seed crystal into contact with the crystal raw material melt. Separation and evaporation of the gases made single crystal growth impossible, and crystal pulling was often stopped midway through.

この発明の第1のgIIMは、単結晶引上げ途中および
引上げ終了時の冷却過程で結晶内に生じる双晶、多結晶
など、転位に基づく結晶欠陥を減少させるため、単結晶
まわりの温度分布を改善することができ、かつ複雑な熱
処!ll装置を必要とすることなく筒便に熱処理を行う
ことのできる化合物半導体単結晶製造装置の構成を提供
することである。
The first gIIM of this invention improves the temperature distribution around the single crystal in order to reduce crystal defects based on dislocations such as twins and polycrystals that occur within the crystal during the single crystal pulling and during the cooling process at the end of the pulling. Can and complex heat treatment! An object of the present invention is to provide a structure for a compound semiconductor single crystal manufacturing apparatus that can perform heat treatment on a tube without requiring a 11 apparatus.

この発明の第2の課題は、種結晶中の成分元素の分層、
蓼発等が原因で単結晶成長が不可能な場合、あるいは何
らかの原因で単結晶中に双晶、多結晶等の欠陥が生じる
ような状況が起こった場合に、迅速に新たな単結晶の引
上げ工程に入りうる化合物半導体単結晶製造装置の構成
を提供することである。
The second problem of this invention is to separate layers of component elements in the seed crystal,
If single crystal growth is impossible due to cracking, or if a situation occurs where defects such as twins or polycrystals occur in the single crystal for some reason, we can quickly pull a new single crystal. An object of the present invention is to provide a configuration of a compound semiconductor single crystal manufacturing apparatus that can be used in a process.

この発明の第3の課題は、第1の課題に沿って構成され
た装置を用いて化合物半導体単結晶を製造する際に結晶
欠陥を少なくすることのできる製造方法を提供すること
である。
A third object of the present invention is to provide a manufacturing method that can reduce crystal defects when manufacturing a compound semiconductor single crystal using an apparatus configured in accordance with the first object.

〔課題を解決するための手段〕[Means to solve the problem]

上記第1の課題を達成するために、この発明においては
、化合物半導体単結晶引上げ装置を、結晶原料と封止剤
とが入れられるルツボと、ルツボを囲みルツボを周りか
ら加熱する加熱装置と、加熱装買を囲む熱シールドとが
収納され、前記ルツボの加熱により溶融した結晶頁料融
液中からルツボと同軸の引上げ欅を用いて単結晶が引き
上げられる引上げ室と、該引上シブ室の上方に仕切り弁
を介して結合され内部に加熱装置を備えるとともに前記
引上げ棒が天井板を1通する結晶室とを震えた装置 (
以下第1の装置と記す)とするものとする。
In order to achieve the first object, the present invention provides a compound semiconductor single crystal pulling device including a crucible into which a crystal raw material and a sealant are placed, a heating device that surrounds the crucible and heats the crucible from the surroundings, a pulling chamber in which a heat shield surrounding a heating equipment is housed, and in which a single crystal is pulled from a crystalline molten liquid melted by the heating of the crucible using a pulling cage coaxial with the crucible; A device connected to the upper part via a gate valve, equipped with a heating device inside, and connected to a crystal chamber in which the pulling rod passes through one ceiling plate (
(hereinafter referred to as the first device).

次に、上記第2の課題を達成するために、この発明にお
いては、化合物半導体単結晶引上げ装置を、前記第1の
課題に沿って構成された装置において、引上げ室と結晶
室とを仕切る仕切り弁が、単結晶引上げ棒の軸方向に分
離可能に結合される2個の仕切り弁からなるとともにそ
れぞれの仕切り弁がそれぞれ引上げ室と結晶室とに一体
化されている装置(以下第2の装置と記す)とするもの
とする。
Next, in order to achieve the above-mentioned second object, in the present invention, a compound semiconductor single crystal pulling apparatus is configured in accordance with the above-mentioned first object. A device in which the valve is composed of two gate valves that are separably coupled in the axial direction of the single crystal pulling rod, and each gate valve is integrated into a pulling chamber and a crystal chamber (hereinafter referred to as the second device). ).

また、前記第1の課題に沿って構成された装置を用いた
化合物半導体単結晶の製造方法を、引上げ室および結晶
室の内部空間を仕切る仕切り弁を開いて引上げ室および
結晶室内に不活性ガスを高圧に充填巳た後、引上−ヂ室
および結晶室内の伽−装置に加熱1を流を供給5つつ引
上げ室内で半導体単結晶を引き上げるとともに、引上げ
室で引上げが終了した単結晶を結晶室内まで引き上げて
仕切り弁を閉じ、結晶室内の加熱値!を制御して単結晶
まわりの温度分布を均一に保ちつつ単結晶を徐冷した後
、結晶室内の不活性ガスを単結晶の成分ガスと置換し、
高圧の単結晶成分ガス雰囲気中で前記結晶室内の加熱値
!を用いて単結晶の熱処理を行う製造方法とするものと
する。
In addition, a method for manufacturing a compound semiconductor single crystal using an apparatus configured in accordance with the first problem is described by opening a gate valve that partitions the internal spaces of the pulling chamber and the crystallization chamber to create an inert atmosphere inside the pulling chamber and the crystallization chamber. After filling at high pressure, the semiconductor single crystal is pulled in the pulling chamber while supplying heating and flow to the device in the pulling chamber and the crystallization chamber, and the single crystal that has been pulled is crystallized in the pulling chamber. Pull it up to the room, close the gate valve, and check the heating value inside the crystallization chamber! After slowly cooling the single crystal while controlling the temperature distribution around the single crystal to be uniform, the inert gas in the crystal chamber is replaced with the component gas of the single crystal.
Heating value in the crystal chamber in a high pressure single crystal component gas atmosphere! The manufacturing method uses heat treatment of a single crystal.

〔作用〕[Effect]

前記第1の装置のように化合物半導体単結晶引上げ装置
を構成すると、引上げ室1結晶室それぞれの内部空間を
、従来の引上げ室の内部空間よりも顕著に小さくするこ
とができる。そして、引上げ室内での単結晶引上げ中は
、結晶室の加熱装置にも通電して引上げ室内ルツボ上方
の温度を高温に保つことができることと合わせ、引上げ
室内での封止剤両側の温度差を小さくして単結晶引上げ
途中の結晶内温度勾配を小さくすることができ、引上げ
途中の冷却過程で結晶内に生しる熱応力を小さくして結
晶欠陥の発生を抑制することができる。また、引上げ終
了時に結晶室内まで引き上げられた柱状の単結晶まわり
の空間が小さいから、結晶室内の加熱装置を制御するこ
とにより、結晶まわりの雰囲気ガスの対流を側限して室
内の温度分布を改善することが容易に可能になり、単結
晶引上げ終了時の冷却過程での結晶欠陥を少なくするこ
とができる。
When a compound semiconductor single crystal pulling apparatus is configured like the first apparatus, the internal space of each crystal chamber in the pulling chamber can be made significantly smaller than the internal space of a conventional pulling chamber. During single crystal pulling in the pulling chamber, the heating device in the crystallization chamber is also energized to maintain the temperature above the crucible in the pulling chamber at a high temperature, and the temperature difference between both sides of the sealant in the pulling chamber is reduced. By making the size smaller, the temperature gradient within the crystal during pulling of the single crystal can be reduced, and the thermal stress generated within the crystal during the cooling process during pulling can be reduced, thereby suppressing the generation of crystal defects. In addition, since the space around the columnar single crystal pulled into the crystal chamber at the end of pulling is small, by controlling the heating device inside the crystal chamber, the convection of the atmospheric gas around the crystal can be limited and the temperature distribution in the chamber can be controlled. It becomes possible to easily improve the crystal defects, and it is possible to reduce crystal defects during the cooling process at the end of single crystal pulling.

また、結晶室は、結晶引上げ終了時に結晶を結晶室内ま
で引き上げて仕切り弁を閉じ、温度分布が改善された結
晶室内で単結晶を徐冷した後、結晶室内の不活性ガスを
単結晶成分のガスと置換して、引上げ工程から連続して
結晶を高圧下の化合物成分ガス雰囲気中で焼きなましす
る。いわゆるインゴットアニールのための簡便な熱処理
装置となり、従来のように、インゴットアニールのため
の結晶の取り出し、アニール装置への装填など、アニー
ルの準備工程が省略されるほか、従来のような、引上げ
室から独立した専用の熱処理装置を準備することはもは
や必要がなくなる。
In addition, at the end of crystal pulling, the crystal is pulled up into the crystallization chamber, the gate valve is closed, and the single crystal is gradually cooled in the crystallization chamber with improved temperature distribution. The crystal is annealed in a compound component gas atmosphere under high pressure continuously from the pulling process by replacing the crystal with a gas. This is a simple heat treatment device for so-called ingot annealing, and in addition to omitting the annealing preparation process such as taking out the crystal for ingot annealing and loading it into the annealing device, it also eliminates the need for a pulling chamber as in the conventional method. It is no longer necessary to prepare a dedicated heat treatment equipment independent of the process.

上記第2の課題を達成するために第2の装置のように化
合物半導体単結晶引上げ装置を構成すると、2個の仕切
り弁をともに閉じて引上げ室と結晶室との室内圧力をそ
れぞれ高圧に保持したまま内部空間を分離することがで
き、引上げ工程から連続して熱処理工程に入ることがで
きるとともに、種結晶中の成分が蒸発して単結晶の成長
が不可能となった場合や、単結晶中に結晶欠陥が発生す
るような状況が起こった場合に、成長途中の結晶を結晶
室内まで引き上げて2個の仕切り弁を閉じ、引上げ室の
ルツボ内結晶原料装填量が単結晶1本分の場合には、引
上げ室を置換するとともに引上げ途中の結晶や種結晶を
結晶室ごと取りがえ、迅速に新たな単結晶引上げ工程に
入ることができる。
In order to achieve the second problem above, when a compound semiconductor single crystal pulling apparatus is configured like the second apparatus, both the two gate valves are closed to maintain the internal pressures of the pulling chamber and the crystal chamber at high pressures. It is possible to separate the internal space while maintaining the temperature, and it is possible to enter the heat treatment process continuously from the pulling process. If a situation occurs in which crystal defects occur in the crucible, the crystal in the middle of growth is pulled up into the crystallization chamber, the two gate valves are closed, and the amount of crystal raw material loaded in the crucible in the pulling chamber is reduced to the amount equivalent to one single crystal. In such a case, the pulling chamber can be replaced, and the crystal or seed crystal that is being pulled can be replaced with the entire crystal chamber, and a new single crystal pulling process can be started quickly.

また、ルツボに多本分の結晶原料が装填されている場合
には、結晶を1本引き上げるごとに引上げた結晶を結晶
室ごと移動し、種結晶を取り付けた別の結晶室に!き換
え、同一条件で連続して引上げを行うことができ、引上
げを効率よく行うことができる。
Also, if the crucible is loaded with multiple crystal raw materials, each time you pull up one crystal, move the pulled crystal along with the crystal chamber, and place it in another crystal chamber with a seed crystal attached! It is possible to perform the pulling operation continuously under the same conditions, and the pulling operation can be carried out efficiently.

そして、前記第1の装置による化合物半導体単結晶の製
造方法を、引上げ室および結晶室の内部空間を仕切る仕
切り弁を開いて引上げ室および結晶室内に不活性ガスを
高圧に充填した後、引上げ室および結晶室内の加熱装置
に加熱電流を供給しつつ引上げ室内で半導体単結晶を引
き上げるとともに、引上げ室で引上げが終了した単結晶
を結晶室内まで引き上げて仕切り弁を閉じ、結晶室内の
加熱装置を制御して単結晶まわりの温度分布を均一に保
ちつつ単結晶を徐冷した後、結晶室内の不活性ガスを単
結晶の成分ガスと置換し、高圧の単結晶成分ガス雰囲気
中で前記結晶室内の加熱装置を用いて単結晶の熱処理を
行う製造方法とすることにより、引上げ室内での結晶引
上げ中は、ルツボ上方の温度が高温に保たれて結晶内温
度勾配が小さ(なり、引上げ途中の冷却過程において結
晶内に生じる熱応力が小さくなるため、結晶欠陥の発生
が抑制される。また、結晶引上げ終了時に結晶室内へ引
き上げられた結晶は、結晶室のtj)さい空間内で加熱
装置を11IWiシで単結晶まわりの対流を効果的に制
限しつつ単結晶まわりの11分布が改善された状態で徐
冷され、つづいて高圧の単結晶成分ガス雰囲気中で良好
な温度分布を形成する結晶室内の加熱装置を用いて熱処
理が行われるから、熱応力が効果的に膝去されて結晶欠
陥が大きく減少する。
Then, the method for manufacturing a compound semiconductor single crystal using the first apparatus is carried out by opening the gate valve that partitions the internal spaces of the pulling chamber and the crystallization chamber, filling the pulling chamber and the crystallization chamber with an inert gas at high pressure, and then Then, the semiconductor single crystal is pulled up in the pulling chamber while supplying heating current to the heating device in the crystal chamber, and the single crystal that has been pulled in the pulling chamber is pulled up into the crystal chamber, the gate valve is closed, and the heating device in the crystal chamber is controlled. After slowly cooling the single crystal while maintaining a uniform temperature distribution around the single crystal, the inert gas in the crystal chamber is replaced with the component gas of the single crystal, and the inside of the crystal chamber is cooled in a high-pressure single crystal component gas atmosphere. By using a manufacturing method that heat-treats the single crystal using a heating device, the temperature above the crucible is maintained at a high temperature while the crystal is being pulled in the pulling chamber, and the temperature gradient inside the crystal is small. Since the thermal stress generated within the crystal during the process is reduced, the occurrence of crystal defects is suppressed.Furthermore, the crystal pulled into the crystal chamber at the end of crystal pulling is heated by a heating device in the small space of the crystal chamber. The temperature distribution around the single crystal is improved while effectively restricting convection around the single crystal, and then the crystal is cooled slowly in a state where the temperature distribution around the single crystal is improved. Since the heat treatment is performed using a heating device, thermal stress is effectively removed and crystal defects are greatly reduced.

〔実施例〕〔Example〕

第1図に本発明の第1の実施例による化合物半導体単結
晶製造装置の構成を示す、装置は、結晶原料として例え
ばGaおよびAsと、封止剤として例えばB2O2とが
装填される。ルツボ軸I2まわりに回転しながら!!−
降するルツボ7と、ルツボ7を囲みルツボ7を周りから
加熱する1例えばグラファイトからなる加熱装置6と、
加熱装置6を囲む1例えば石英からなる熱シールド3と
が主要部材として収容され、ルツボ7の加熱により溶融
した結晶原料融液中から、ルツボ軸12と同軸の引上げ
113の下端部に取り付けられた種結晶11の下端に単
結晶を柱状に成長させる。圧力容器として形成された引
上げ空容器1と、内側に加熱装置4を備えるとともに天
井板を引上げ捧13が貫通する結晶室容器2とが、仕切
り弁5を介してス密に結合されている。
FIG. 1 shows the configuration of a compound semiconductor single crystal manufacturing apparatus according to a first embodiment of the present invention. The apparatus is loaded with, for example, Ga and As as crystal raw materials, and with, for example, B2O2 as a sealant. While rotating around the crucible axis I2! ! −
a heating device 6 made of, for example, graphite, which surrounds the crucible 7 and heats the crucible 7 from the surroundings;
A heat shield 3 made of quartz, for example, surrounding the heating device 6 is housed as a main component, and is attached to the lower end of a pull-up 113 coaxial with the crucible axis 12 from the crystal raw material melt melted by the heating of the crucible 7. A single crystal is grown in a columnar shape at the lower end of the seed crystal 11. An empty lifting vessel 1 formed as a pressure vessel and a crystal chamber vessel 2 equipped with a heating device 4 inside and having a ceiling plate penetrated by a lifting rod 13 are tightly connected via a gate valve 5.

単結晶引上げ時には、仕切り弁5が開放されて引上げ空
容器1および結晶室容器2内にアルゴンガスなどの不活
性ガスが数十気圧の高圧に充填され、引上げ棒13を降
下させて先端部の種結晶11を溶融した結晶原料融液に
接触させた後、ルツボ7はルツボ軸12まわり時計方向
に、引上げ棒13はその軸まわり反時計方向にそれぞれ
低速で回転させつつ引上げ棒13を徐々に引き上げて種
結晶の下端に単結晶を柱状に成長させる。このとき、結
晶室容R2内の加熱装置には加熱電流が供給され、ルツ
ボ7の上方空間を高温に保持して、封止材90両側の温
度差が小さく保たれ、結晶内温度勾配が小さくなり、引
上げ途中における冷却過程で結晶内に生ずる熱応力によ
る結晶欠陥の発生が抑制される。
When pulling a single crystal, the gate valve 5 is opened and the empty pulling container 1 and the crystal chamber container 2 are filled with an inert gas such as argon gas at a high pressure of several tens of atmospheres, and the pulling rod 13 is lowered to remove the tip. After the seed crystal 11 is brought into contact with the molten crystal raw material melt, the crucible 7 is rotated clockwise around the crucible axis 12 and the pulling rod 13 is rotated counterclockwise around the axis at low speed, and the pulling rod 13 is gradually rotated. The single crystal is pulled up to grow a columnar single crystal at the lower end of the seed crystal. At this time, a heating current is supplied to the heating device in the crystal chamber volume R2 to maintain the space above the crucible 7 at a high temperature, so that the temperature difference on both sides of the sealing material 90 is kept small, and the temperature gradient inside the crystal is small. This suppresses the occurrence of crystal defects due to thermal stress generated within the crystal during the cooling process during pulling.

引上げが終了すると、単結晶の全長が結晶室容器2内へ
引き上げられて仕切り弁5が閉しられ、結晶室容器2の
小さい内部空間内で加熱装置を制御して対流を効果的に
制限しながら単結晶まわりの温度分布が改善された状態
で単結晶の徐冷が行われた後、結晶室内の不活性ガスが
単結晶の成分ガスと置換され、高圧の単結晶成分ガス中
で結晶室内の加熱装置を用いて熱処理が行われる。
When the pulling is finished, the entire length of the single crystal is pulled into the crystallization chamber container 2, the gate valve 5 is closed, and the heating device is controlled in the small internal space of the crystallization chamber container 2 to effectively limit convection. However, after the single crystal is slowly cooled while the temperature distribution around the single crystal is improved, the inert gas in the crystal chamber is replaced with the component gas of the single crystal, and the crystal chamber is cooled in the high pressure single crystal component gas. The heat treatment is performed using a heating device.

第2図に本発明の第2の実施例による化合物半導体単結
晶製造装置の構成を示す、この装置は、第1の実施例に
おける仕切り弁を、単結晶引上げ棒の軸方向に分離可能
に結合される2個の仕切り弁で構成したものである。そ
の一方の仕切り弁51は引上げ空容器1と一体化され、
他方の仕切り弁52は結晶室2と一体化される。そして
両仕切り弁51.52は、リング状の結合フランジ15
を介して互いに分離可能に結合される。
FIG. 2 shows the configuration of a compound semiconductor single crystal manufacturing apparatus according to a second embodiment of the present invention. In this apparatus, the gate valve of the first embodiment is separably coupled in the axial direction of a single crystal pulling rod. It consists of two gate valves. One of the gate valves 51 is integrated with the empty lifting container 1,
The other gate valve 52 is integrated with the crystal chamber 2. Both gate valves 51 and 52 have a ring-shaped coupling flange 15.
are separably coupled to each other via.

装置をこのように構成すると、2個の仕切り弁をともに
閉して引上げ室と結晶室との室内圧力をそれぞれ高圧に
保持したまま内部空間を分離することができ、引上げ工
程力・a連続して熱処理工程に入ることができるととも
に、種結晶中の成分が蒸発して単結晶の成長が不可能と
なった場合や、単結晶中に結晶欠陥が発生するような状
況が起こった場合に、成長途中の結晶を結晶室内まで引
き上げて2個の仕切り弁を閉し、引上げ室のルツボ内結
晶原料装填量が単結晶1本分の場合には、引上げ室を置
換するとともに引上げ途中の結晶や種結晶を結晶室ごと
取りかえ、迅速に新たな単結晶引上げ工程に入ることが
できる。また、ルツボに多本分の結晶原料が装填されて
いる場合には、結晶を1本引き上げるごとに引上げた結
晶を結晶室ごと移動し、種結晶を取り付けた別の結晶室
に置き換え、同一条件で連続して引上げを行うことがで
き、引上げを効率よく行うことができる。
By configuring the device in this way, it is possible to separate the internal spaces of the pulling chamber and the crystallization chamber while maintaining the internal pressures at high pressures by closing both gate valves. In addition, when the components in the seed crystal evaporate and it becomes impossible to grow a single crystal, or when a situation occurs where crystal defects occur in the single crystal, The crystal in the middle of growth is pulled up to the crystallization chamber and the two gate valves are closed. If the amount of crystal raw material loaded in the crucible in the pulling chamber is one single crystal, the pulling chamber is replaced and the crystal in the middle of being pulled is removed. The seed crystal can be replaced with the entire crystal chamber and a new single crystal pulling process can be started quickly. In addition, if the crucible is loaded with multiple crystal raw materials, each time one crystal is pulled up, the pulled crystal is moved together with the crystal chamber and replaced with another crystal chamber with a seed crystal attached, under the same conditions. It is possible to carry out continuous pulling, and the pulling can be carried out efficiently.

〔発明の効果〕〔Effect of the invention〕

本発明においては、化合物半導体単結晶製造装置を上述
のように構成したので、以下に記載する効果が奏せられ
る。
In the present invention, since the compound semiconductor single crystal manufacturing apparatus is configured as described above, the following effects can be achieved.

請求項1の装置では、従来の引上げ室を2分割し、装置
を、単結晶が引き上げみれる引上げ室と、引上げが終了
−だ単結晶を熱処理する結晶室とを仕切り弁を介巳て結
合した装置として構成しだので、引上げ室、′@晶室そ
れぞれの内部空間が従来の引上げ室と比べて顕著に小さ
くなるとともに、引上げ室での単結晶引上げ時に結晶室
内の加熱装置にも通電してル・ンボ上方の温度を高温に
保つことができるため、封止111画側の温度差が小さ
くなり、引き上げられた結晶内の温度勾配が小さくなる
ため、引上げ途中の冷却過程で結晶内に生ずる熱応力に
基づく結晶欠陥の発生を抑制することができる。そして
、引き上げが終了した単結晶は結晶室内に引き上げられ
て仕切り弁が閉じられ、結晶室の小さい空間内で加熱装
置を制御して室内の対流を効果的に制限しつつ温度分布
が改善された状態で単結晶の徐冷が行われるとともに、
つづく高圧の単結晶成分ガス雰囲気中で結晶室内の加熱
装置を用いて結晶のアニールが行われるため、結晶内に
残留する熱応力の除去が効果的に行われ、結晶欠陥の少
ない単結晶を得ることができる。
In the apparatus of claim 1, the conventional pulling chamber is divided into two parts, and the pulling chamber in which the single crystal is pulled and the crystal chamber in which the single crystal is heat-treated after the pulling is connected via a gate valve. Since it is configured as a device, the internal space of each of the pulling chamber and crystal chamber is significantly smaller than that of conventional pulling chambers, and the heating device inside the crystal chamber is also energized when pulling a single crystal in the pulling chamber. Since the temperature above the tube can be maintained at a high temperature, the temperature difference on the sealing 111 side becomes smaller, and the temperature gradient inside the pulled crystal becomes smaller. Generation of crystal defects due to thermal stress can be suppressed. Once pulled, the single crystal was pulled into the crystallization chamber, the gate valve was closed, and the heating device was controlled within the small space of the crystallization chamber, effectively limiting convection within the chamber and improving temperature distribution. While slow cooling of the single crystal is carried out in
Subsequently, the crystal is annealed using a heating device inside the crystal chamber in a high-pressure single-crystal component gas atmosphere, which effectively removes residual thermal stress within the crystal and yields a single crystal with few crystal defects. be able to.

また、結晶のアニールは、引上げ工程から連続して行う
かとができ、従来のように、アニールのための結晶の取
り出し、アニール装置への装填など、アニールの準備工
程が省略され、半導体単結晶の製造効率が大幅に向上す
るとともに、従来のような、引上げ室から独立した専用
の熱処理装置を準備する必要がない。
In addition, crystal annealing can be performed continuously from the pulling process, eliminating the conventional annealing preparation process such as taking out the crystal for annealing and loading it into an annealing device. Manufacturing efficiency is greatly improved, and there is no need to prepare a dedicated heat treatment device independent of the pulling chamber, unlike in the past.

請求項2の装置では、請求項1の装置における仕切り弁
を、単結晶引上げ棒の軸方向に分離可能に結合され、そ
れぞれ引上げ室と結晶室とに一体化される2個の仕切り
弁で構成したので、2個の仕切り弁をともに閉じて引上
げ室と結晶室との室内圧力をそれぞれ高圧に保持したま
ま内部空間を分離することができ、引上げ工程から連続
して熱処理工程に入ることができるとともに、種結晶中
の成分が蒸発して単結晶の成長が不可能となった場合や
、単結晶中に結晶欠陥が発生するような状況が起こった
場合に、成長途中の結晶を結晶室内まで引き上げて2個
の仕切り弁を閉じ、引上げ室のルツボ内結晶原料装填量
が単結晶1本分の場合には、引上げ室を置換するととも
に引上げ途中の結晶や種結晶を結晶室ごと取りかえ、迅
速に新たな単結晶引上げ工程に入ることができる。また
、ルツボに多本分の結晶原料が装填されている場合には
、結晶を1本引き上げるごとに引上げた結晶を結晶室ご
と移動し、種結晶を取り付けた別の結晶室に置き換え、
同一条件で連続して引上げを行うことができ、引上げを
効率よく行うことができる。
In the apparatus of claim 2, the gate valve in the apparatus of claim 1 is composed of two gate valves that are separably coupled in the axial direction of the single crystal pulling rod and are integrated into the pulling chamber and the crystal chamber, respectively. Therefore, by closing both gate valves, it is possible to separate the internal spaces of the pulling chamber and the crystallization chamber while maintaining the internal pressures at high pressures, and the heat treatment process can be started continuously from the pulling process. At the same time, if the components in the seed crystal evaporate and it becomes impossible to grow a single crystal, or if a situation occurs where crystal defects occur in the single crystal, the crystal in the middle of growth can be removed into the crystal chamber. Close the two gate valves, and if the amount of crystal raw material loaded in the crucible in the pulling chamber is equivalent to one single crystal, replace the pulling chamber and replace the crystals and seed crystals that are in the process of being pulled, and quickly A new single crystal pulling process can be started. In addition, if the crucible is loaded with multiple crystal raw materials, each time one crystal is pulled up, the pulled crystal is moved along with the crystal chamber and replaced with another crystal chamber with a seed crystal attached.
Pulling can be performed continuously under the same conditions, and pulling can be performed efficiently.

そして、前記第1の装置を用いた化合物半導体単結晶の
製造方法を、引上げ室および結晶室の内部空間を仕切る
仕切り弁を開いて引上げ室および結晶室内に不活性ガス
を高圧に充填した後、引上げ室および結晶室内の加熱装
置に加熱電流を供給しつつ引上げ室内で半導体単結晶を
引き上げるとともに、引上げ室で引上げが終了した単結
晶を結晶室内まで引き上げて仕切り弁を閉じ、結晶室内
の加熱装置をwi御して単結晶まわりの温度分布を均一
に保ちつつ単結晶を徐冷した後、結晶室内の不活性ガス
を単結晶の成分ガスと置換し、高圧の単結晶成分ガス雰
囲気中で前記萌晶室内の加熱値!を用いて単結晶の熱処
理を行う製造方法とじたので、結晶の引上げ途中に8.
する冷却過程で結晶内に生じる熱応力が小さくなって結
晶欠陥の発注が抑制され、引上げ工程から連続して行わ
れる結晶室内での結晶の熱処理は、結晶室の小さい内部
空間内で加熱装置を制御して対流を効果的に制限しつつ
単結晶まわりの温度分布が改善された状態で結晶を徐冷
した後、高圧の化合物成分ガス雰囲気中で良好な温度分
布を形成する結晶室内加熱装置を用いて行われるため、
結晶室内に残留する熱応力が効果的に除去され、結晶欠
陥の少ない単結晶を効率よく得ることができる。
Then, in the method for manufacturing a compound semiconductor single crystal using the first apparatus, after opening the gate valve that partitions the internal spaces of the pulling chamber and the crystallization chamber and filling the pulling chamber and the crystallization chamber with inert gas at high pressure, The semiconductor single crystal is pulled up in the pulling chamber while supplying heating current to the heating device in the pulling chamber and the crystallization chamber, and the single crystal that has been pulled in the pulling chamber is pulled up into the crystallization chamber, the gate valve is closed, and the heating device in the crystallization chamber is pulled up. After slowly cooling the single crystal while maintaining a uniform temperature distribution around the single crystal, the inert gas in the crystal chamber is replaced with the component gas of the single crystal, and the Heating value inside the crystallization chamber! Since the manufacturing method was ended in which the single crystal was heat-treated using
During the cooling process, the thermal stress generated within the crystal is reduced and the formation of crystal defects is suppressed.The heat treatment of the crystal in the crystal chamber, which is carried out continuously from the pulling process, is performed using a heating device within the small internal space of the crystal chamber. After slowly cooling the crystal in a controlled state that effectively limits convection and improves the temperature distribution around the single crystal, we install a crystal chamber heating device that forms a good temperature distribution in a high-pressure compound gas atmosphere. Because it is done using
Thermal stress remaining in the crystal chamber is effectively removed, and a single crystal with few crystal defects can be efficiently obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はそれぞれ本発明の第1および第2
の実施例による化合物半導体単結晶製造装置の構成を示
す縦断面図、第3図は従来の化合物半導体単結晶製造装
置の構成例を示す縦断面図である。 1:引上げ型容器、2:結晶室容器、3:熱シールド、
4.6.加熱装置、5.51.52+仕切り弁、7:ル
ツボ、8:結晶原料融液、9:封上剤、1O−Ill晶
、12ニルツボ軸、13:引とげ棒、100゜102 
:引上げ室、101:結晶室。
1 and 2 are the first and second embodiments of the present invention, respectively.
FIG. 3 is a longitudinal sectional view showing an example of the structure of a conventional compound semiconductor single crystal manufacturing apparatus. 1: Pull-up container, 2: Crystal chamber container, 3: Heat shield,
4.6. Heating device, 5.51.52 + gate valve, 7: Crucible, 8: Crystal raw material melt, 9: Sealing agent, 1O-Ill crystal, 12 Nyl crucible axis, 13: Pull rod, 100° 102
: Pulling chamber, 101: Crystal chamber.

Claims (1)

【特許請求の範囲】 1)液体封止引上げ法による化合物半導体単結晶製造装
置において、結晶原料と封止剤とが入れられるルツボと
、ルツボを囲みルツボを周りから加熱する加熱装置と、
加熱装置を囲む熱シールドとが収納され、前記ルツボの
加熱により溶融した結晶原料融液中からルツボと同軸の
引上げ棒を用いて単結晶が引き上げられる引上げ室と、
該引上げ室の上方に仕切り弁を介して結合され内部に加
熱装置を備えるとともに前記引上げ棒が天井板を貫通す
る結晶室とを備えてなることを特徴とする化合物半導体
単結晶製造装置。 2)請求項第1項に記載の装置において、引上げ室と結
晶室とを仕切る仕切り弁が、単結晶引上げ棒の軸方向に
分離可能に結合される2個の仕切り弁からなるとともに
それぞれの仕切り弁がそれぞれ引上げ室と結晶室とに一
体化されていることを特徴とする化合物半導体単結晶製
造装置。 3)請求項第1項に記載の装置を用い、引上げ室および
結晶室の内部空間を仕切る仕切り弁を開いて引上げ室お
よび結晶室内に不活性ガスを高圧に充填した後、引上げ
室および結晶室内の加熱装置に加熱電流を供給しつつ引
上げ室内で半導体単結晶を引き上げるとともに、引上げ
室で引上げが終了した単結晶を結晶室内まで引き上げて
仕切り弁を閉じ、結晶室内の加熱装置を制御して単結晶
まわりの温度分布を均一に保ちつつ単結晶を徐冷した後
、結晶室内の不活性ガスを単結晶の成分ガスと置換し、
高圧の単結晶成分ガス雰囲気中で前記結晶室内の加熱装
置を用いて単結晶の熱処理を行うことを特徴とする化合
物半導体単結晶の製造方法。
[Scope of Claims] 1) A compound semiconductor single crystal production device using a liquid sealing pulling method, comprising: a crucible into which a crystal raw material and a sealant are placed; a heating device surrounding the crucible and heating the crucible from the surroundings;
a pulling chamber in which a heat shield surrounding a heating device is housed, and a single crystal is pulled from a crystal raw material melt melted by heating of the crucible using a pulling rod coaxial with the crucible;
A compound semiconductor single crystal production apparatus comprising a crystal chamber connected above the pulling chamber via a gate valve and equipped with a heating device therein, and in which the pulling rod passes through a ceiling plate. 2) In the apparatus according to claim 1, the gate valve that partitions the pulling chamber and the crystallization chamber is composed of two gate valves separably coupled in the axial direction of the single crystal pulling rod, and each gate valve A compound semiconductor single crystal manufacturing apparatus characterized in that valves are integrated into a pulling chamber and a crystal chamber, respectively. 3) Using the apparatus according to claim 1, after opening the gate valve that separates the internal spaces of the pulling chamber and the crystallization chamber and filling the pulling chamber and the crystallization chamber with inert gas at high pressure, the pulling chamber and the crystallization chamber are closed. At the same time, the semiconductor single crystal is pulled up in the pulling chamber while supplying heating current to the heating device, and the single crystal that has been pulled in the pulling chamber is pulled up into the crystal chamber, the gate valve is closed, and the heating device in the crystal chamber is controlled to raise the single crystal. After slowly cooling the single crystal while maintaining a uniform temperature distribution around the crystal, the inert gas in the crystal chamber is replaced with the component gas of the single crystal.
1. A method for producing a compound semiconductor single crystal, comprising heat-treating the single crystal in a high-pressure single-crystal component gas atmosphere using a heating device in the crystal chamber.
JP22872090A 1990-08-30 1990-08-30 Device for producing compound semiconductor single crystal and production Pending JPH04108682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22872090A JPH04108682A (en) 1990-08-30 1990-08-30 Device for producing compound semiconductor single crystal and production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22872090A JPH04108682A (en) 1990-08-30 1990-08-30 Device for producing compound semiconductor single crystal and production

Publications (1)

Publication Number Publication Date
JPH04108682A true JPH04108682A (en) 1992-04-09

Family

ID=16880759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22872090A Pending JPH04108682A (en) 1990-08-30 1990-08-30 Device for producing compound semiconductor single crystal and production

Country Status (1)

Country Link
JP (1) JPH04108682A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000000674A2 (en) * 1998-06-26 2000-01-06 Memc Electronic Materials, Inc. Process for growth of defect free silicon crystals of arbitrarily large diameters
US6190631B1 (en) 1997-04-09 2001-02-20 Memc Electronic Materials, Inc. Low defect density, ideal oxygen precipitating silicon
US6236104B1 (en) 1998-09-02 2001-05-22 Memc Electronic Materials, Inc. Silicon on insulator structure from low defect density single crystal silicon
US6254672B1 (en) 1997-04-09 2001-07-03 Memc Electronic Materials, Inc. Low defect density self-interstitial dominated silicon
US6284039B1 (en) 1998-10-14 2001-09-04 Memc Electronic Materials, Inc. Epitaxial silicon wafers substantially free of grown-in defects
US6312516B2 (en) 1998-10-14 2001-11-06 Memc Electronic Materials, Inc. Process for preparing defect free silicon crystals which allows for variability in process conditions
US6379642B1 (en) 1997-04-09 2002-04-30 Memc Electronic Materials, Inc. Vacancy dominated, defect-free silicon
US6416836B1 (en) 1998-10-14 2002-07-09 Memc Electronic Materials, Inc. Thermally annealed, low defect density single crystal silicon
US6846539B2 (en) 2001-01-26 2005-01-25 Memc Electronic Materials, Inc. Low defect density silicon having a vacancy-dominated core substantially free of oxidation induced stacking faults
US6858307B2 (en) 2000-11-03 2005-02-22 Memc Electronic Materials, Inc. Method for the production of low defect density silicon
US7105050B2 (en) 2000-11-03 2006-09-12 Memc Electronic Materials, Inc. Method for the production of low defect density silicon
US8216362B2 (en) 2006-05-19 2012-07-10 Memc Electronic Materials, Inc. Controlling agglomerated point defect and oxygen cluster formation induced by the lateral surface of a silicon single crystal during CZ growth

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6896728B2 (en) 1997-04-09 2005-05-24 Memc Electronic Materials, Inc. Process for producing low defect density, ideal oxygen precipitating silicon
US7229693B2 (en) 1997-04-09 2007-06-12 Memc Electronic Materials, Inc. Low defect density, ideal oxygen precipitating silicon
US6555194B1 (en) 1997-04-09 2003-04-29 Memc Electronic Materials, Inc. Process for producing low defect density, ideal oxygen precipitating silicon
US6254672B1 (en) 1997-04-09 2001-07-03 Memc Electronic Materials, Inc. Low defect density self-interstitial dominated silicon
US6379642B1 (en) 1997-04-09 2002-04-30 Memc Electronic Materials, Inc. Vacancy dominated, defect-free silicon
US6287380B1 (en) 1997-04-09 2001-09-11 Memc Electronic Materials, Inc. Low defect density silicon
US6632278B2 (en) 1997-04-09 2003-10-14 Memc Electronic Materials, Inc. Low defect density epitaxial wafer and a process for the preparation thereof
US6409827B2 (en) 1997-04-09 2002-06-25 Memc Electronic Materials, Inc. Low defect density silicon and a process for producing low defect density silicon wherein V/G0 is controlled by controlling heat transfer at the melt/solid interface
US7442253B2 (en) 1997-04-09 2008-10-28 Memc Electronic Materials, Inc. Process for forming low defect density, ideal oxygen precipitating silicon
US6190631B1 (en) 1997-04-09 2001-02-20 Memc Electronic Materials, Inc. Low defect density, ideal oxygen precipitating silicon
US6605150B2 (en) 1997-04-09 2003-08-12 Memc Electronic Materials, Inc. Low defect density regions of self-interstitial dominated silicon
US6409826B2 (en) 1997-04-09 2002-06-25 Memc Electronic Materials, Inc. Low defect density, self-interstitial dominated silicon
US6328795B2 (en) 1998-06-26 2001-12-11 Memc Electronic Materials, Inc. Process for growth of defect free silicon crystals of arbitrarily large diameters
WO2000000674A3 (en) * 1998-06-26 2002-10-10 Memc Electronic Materials Process for growth of defect free silicon crystals of arbitrarily large diameters
US6913647B2 (en) 1998-06-26 2005-07-05 Memc Electronic Materials, Inc. Process for cooling a silicon ingot having a vacancy dominated region to produce defect free silicon
WO2000000674A2 (en) * 1998-06-26 2000-01-06 Memc Electronic Materials, Inc. Process for growth of defect free silicon crystals of arbitrarily large diameters
US6562123B2 (en) 1998-06-26 2003-05-13 Memc Electronic Materials, Inc. Process for growing defect-free silicon wherein the grown silicon is cooled in a separate chamber
US6342725B2 (en) 1998-09-02 2002-01-29 Memc Electronic Materials, Inc. Silicon on insulator structure having a low defect density handler wafer and process for the preparation thereof
US6849901B2 (en) 1998-09-02 2005-02-01 Memc Electronic Materials, Inc. Device layer of a silicon-on-insulator structure having vacancy dominated and substantially free of agglomerated vacancy-type defects
US6236104B1 (en) 1998-09-02 2001-05-22 Memc Electronic Materials, Inc. Silicon on insulator structure from low defect density single crystal silicon
US6284039B1 (en) 1998-10-14 2001-09-04 Memc Electronic Materials, Inc. Epitaxial silicon wafers substantially free of grown-in defects
US6565649B2 (en) 1998-10-14 2003-05-20 Memc Electronic Materials, Inc. Epitaxial wafer substantially free of grown-in defects
US6500255B2 (en) 1998-10-14 2002-12-31 Memc Electronic Materials, Inc. Process for growing silicon crystals which allows for variability in the process conditions while suppressing the formation of agglomerated intrinsic point defects
US6652646B2 (en) 1998-10-14 2003-11-25 Memc Electronic Materials, Inc. Process for growing a silicon crystal segment substantially free from agglomerated intrinsic point defects which allows for variability in the process conditions
US6743289B2 (en) 1998-10-14 2004-06-01 Memc Electronic Materials, Inc. Thermal annealing process for producing low defect density single crystal silicon
US6416836B1 (en) 1998-10-14 2002-07-09 Memc Electronic Materials, Inc. Thermally annealed, low defect density single crystal silicon
US6312516B2 (en) 1998-10-14 2001-11-06 Memc Electronic Materials, Inc. Process for preparing defect free silicon crystals which allows for variability in process conditions
US7097718B2 (en) 1998-10-14 2006-08-29 Memc Electronic Materials, Inc. Single crystal silicon wafer having an epitaxial layer substantially free from grown-in defects
US7105050B2 (en) 2000-11-03 2006-09-12 Memc Electronic Materials, Inc. Method for the production of low defect density silicon
US6858307B2 (en) 2000-11-03 2005-02-22 Memc Electronic Materials, Inc. Method for the production of low defect density silicon
US7217320B2 (en) 2001-01-26 2007-05-15 Memc Electronics Materials, Inc. Low defect density silicon having a vacancy-dominated core substantially free of oxidation induced stacking faults
US6846539B2 (en) 2001-01-26 2005-01-25 Memc Electronic Materials, Inc. Low defect density silicon having a vacancy-dominated core substantially free of oxidation induced stacking faults
US8216362B2 (en) 2006-05-19 2012-07-10 Memc Electronic Materials, Inc. Controlling agglomerated point defect and oxygen cluster formation induced by the lateral surface of a silicon single crystal during CZ growth
US8673248B2 (en) 2006-05-19 2014-03-18 Memc Electronic Materials, Inc. Silicon material with controlled agglomerated point defects and oxygen clusters induced by the lateral surface

Similar Documents

Publication Publication Date Title
JPH04108682A (en) Device for producing compound semiconductor single crystal and production
US20200255969A1 (en) Technique for controlling temperature uniformity in crystal growth apparatus
JPS6046998A (en) Pulling up of single crystal and its device
JP2705809B2 (en) Single crystal pulling device
JP2943430B2 (en) Method and apparatus for producing single crystal
JPS61151099A (en) Quality modification of gaas single crystal
JP2531875B2 (en) Method for producing compound semiconductor single crystal
CN117071051A (en) Balanced solidification method for preparing compound crystal by temperature gradient solidification
US20230069057A1 (en) Growth Device and Method for Low-Stress Crystals
KR100868726B1 (en) Synthesis vb apparatus and method for gaas
JPS60191095A (en) Method and device for manufacturing silicon single crystal
JPS60122793A (en) Device for growing single crystal of compound semiconductor
JPS6090897A (en) Method and apparatus for manufacturing compound semiconductor single crystal
JPH10185455A (en) Heat treating apparatus
JPS58199796A (en) Pulling device of crystal under sealing with liquid
JPS5957992A (en) Manufacture of single crystal of semiconductor of compound
JPS6021899A (en) Apparatus for preparing compound semiconductor single crystal
JPH04167421A (en) Apparatus for manufacturing semiconductor single crystal
JPH05319973A (en) Single crystal production unit
WO2002016678A1 (en) Method for producing silicon single crystal
JPH0723275B2 (en) Gallium arsenide single crystal growth method
JPH01145395A (en) Production of compound semiconductor single crystal
JPH07206589A (en) Method for producing compound semiconductor single crystal
JPS6077195A (en) Apparatus for producing compound semiconductor single crystal
JP3392245B2 (en) Method for manufacturing compound semiconductor single crystal