JPS61149474A - Heating method of thin film material in vacuum deposition - Google Patents

Heating method of thin film material in vacuum deposition

Info

Publication number
JPS61149474A
JPS61149474A JP27712884A JP27712884A JPS61149474A JP S61149474 A JPS61149474 A JP S61149474A JP 27712884 A JP27712884 A JP 27712884A JP 27712884 A JP27712884 A JP 27712884A JP S61149474 A JPS61149474 A JP S61149474A
Authority
JP
Japan
Prior art keywords
thin film
film material
heating
crucible
heat source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27712884A
Other languages
Japanese (ja)
Inventor
Tetsuya Akiyama
哲也 秋山
Koichi Kodera
宏一 小寺
Isamu Inoue
勇 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP27712884A priority Critical patent/JPS61149474A/en
Publication of JPS61149474A publication Critical patent/JPS61149474A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To make possible many times of the stable formation of thin films for a long period of time by heating simultaneously a thin film material for vapor deposition by using a heat source for heating the entire part and a heat source for local heating. CONSTITUTION:A crucible 7 contg. the thin film material 8 for vacuum deposition is mounted to a crucible rest 5 embedded with a heater 4. The above- mentioned material 8 is heated over the entire part by the heater 4 via the crucible 7 to about the temp. at which the material 8 does not evaporate. Electron rays 3 generated from a filament 1 are focused by using the magnetic field formed by a magnet 2, by which the material 8 heated over the entire part is locally heated to evaporate 9. The material 8 is thereby evaporated in the stable state without making chemical reaction with the crucible 7 and without bumping. Many times of the stable formation of the thin films over a long period of time are thus made possible.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、真空蒸着によって薄膜を安定に形成の するため、薄膜材料の加熱方法に関するものである。[Detailed description of the invention] Industrial applications The present invention enables stable formation of thin films by vacuum evaporation. The present invention relates to a heating method for thin film materials.

従来の技術 一般に真空蒸着における薄膜材料の加熱方法として、第
2図に示すような、抵抗加熱による方法と、第3図に示
すような、電子線加熱による方法が行なわれている。
2. Description of the Related Art In general, methods for heating thin film materials in vacuum deposition include a resistance heating method as shown in FIG. 2, and an electron beam heating method as shown in FIG.

前者は、例えばボート型の蒸発源1oの中に薄膜材料1
1を入れて、前記蒸発源1oに電極12を通じて電流を
流し、発熱させることによって、薄膜材料11を加熱す
るものである。
In the former case, for example, a thin film material 1 is placed in a boat-shaped evaporation source 1o.
1, and a current is passed through the evaporation source 1o through the electrode 12 to generate heat, thereby heating the thin film material 11.

後者は、フィラメント13から発生する電子線16を磁
石14によって形成される磁場を用いて薄膜材料16の
上に集束させて加熱するものである。この場合、蒸発源
の損傷を防ぐために、冷却水17を流して冷却している
(例えば、金原粂・藤原英夫[薄膜J、  (昭54.
e、s)、裳華房。
The latter uses a magnetic field formed by a magnet 14 to focus an electron beam 16 generated from a filament 13 onto the thin film material 16 and heat it. In this case, in order to prevent damage to the evaporation source, cooling water 17 is flown to cool it (for example, Kume Kanehara and Hideo Fujiwara [Thin Film J, (1982).
e, s), Shokabou.

P10〜11)。P10-11).

発明が解決しようとする問題点 抵抗加熱による方法では、蒸発源1oのほうが薄膜材料
11よりも高温になるため、薄膜材料11と蒸発源1o
との化学反応や、両者の界面での突沸が起こりやすい。
Problems to be Solved by the Invention In the method using resistance heating, the evaporation source 1o has a higher temperature than the thin film material 11, so the thin film material 11 and the evaporation source 1o
A chemical reaction with the material and bumping at the interface between the two is likely to occur.

また、電子線加熱による方法では、電子線15が当たる
部分だけが加熱され、蒸発源に接している面ば冷却され
ているため、温度勾配が大きくなり、電子線16が当た
る部分だけが溶けて、薄膜材料11に破線で示したよう
な穴が開きやすい。
In addition, in the method using electron beam heating, only the part that is hit by the electron beam 15 is heated, and the surface that is in contact with the evaporation source is cooled, so the temperature gradient becomes large and only the part that is hit by the electron beam 16 melts. , holes as shown by broken lines are likely to be formed in the thin film material 11.

また、全体を加熱するために電子線16の強度を増すと
、突沸が起こりやすい。
Furthermore, if the intensity of the electron beam 16 is increased in order to heat the whole, bumping is likely to occur.

以上のような原因で、従来の加熱方法では、欠陥の少な
い薄膜を長期的に安定に形成することが困難であった。
Due to the above reasons, it has been difficult to stably form a thin film with few defects over a long period of time using conventional heating methods.

本発明はこのような点に鑑みてなされたもので、長期間
・多回数にわたって安定な薄膜形成が可能な、薄膜材料
の加熱方法を提供することを目的としている。
The present invention has been made in view of these points, and an object of the present invention is to provide a method for heating a thin film material, which allows stable thin film formation over a long period of time and many times.

問題点を解決するための手段 本発明は上記問題点を解決するため、薄膜材料を第1の
熱源によって全体的に加熱し、第2の熱源によって局部
的に加熱するものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention heats the thin film material as a whole with a first heat source and locally heats it with a second heat source.

作   用 本発明は上記した方法により、薄膜材料全体をある程度
加熱しながら、局部的な加熱によって蒸発させることに
よって、薄膜材料内の温度勾配が小さく、しかも蒸発源
の速熱がない状態で蒸着を行なうことができる。したが
って、蒸着中に薄膜材料に穴が開いたり、薄膜材料と蒸
発源が化学反応を起こしたり、薄膜材料が沸騰すること
なく、長時間および多回数の蒸着においても、薄膜材料
や蒸発源の損傷が少ないので、長期的に安定な薄膜形成
が可能となる。
Effect The present invention uses the method described above to evaporate the thin film material by local heating while heating the entire thin film material to some extent, thereby performing vapor deposition in a state where the temperature gradient within the thin film material is small and there is no rapid heating of the evaporation source. can be done. Therefore, there is no damage to the thin film material or evaporation source even during long-term and multiple depositions, without creating holes in the thin film material during deposition, without causing a chemical reaction between the thin film material and the evaporation source, and without causing the thin film material to boil. Since there is little , it becomes possible to form a stable thin film over a long period of time.

実施例 第1図は、本発明の薄膜材料の加熱方法の一実施例を示
す加熱装置の断面図である。第1図において、薄膜材料
8を入れたるつぼ7が、るつぼ受け5に装着されている
。るつぼ受け5中には、ヒーター4が埋め込まれており
、これによって薄膜材料8を、るつぼてを介して全体的
に加熱する。
Embodiment FIG. 1 is a sectional view of a heating device showing an embodiment of the method for heating thin film materials of the present invention. In FIG. 1, a crucible 7 containing a thin film material 8 is mounted on a crucible holder 5. A heater 4 is embedded in the crucible holder 5, thereby heating the thin film material 8 entirely through the crucible.

この加熱する温度は、薄膜材料が蒸発しない程度にする
。ここで、るつぼ受け6に隣接する空洞部6は、ヒータ
ー4の熱が逃げるのを防止するためのものである。この
ようにして全体的に加熱された薄膜材料8に、フィラメ
ント1から発生する電子線3を、磁石2によって形成さ
れる磁場を用いて集束させることによって、薄膜材料8
を局部的に加熱し、蒸発させる。矢印9は、薄膜材料の
蒸発する様子を示したものである。
The heating temperature is set to such a level that the thin film material does not evaporate. Here, the cavity 6 adjacent to the crucible holder 6 is for preventing the heat of the heater 4 from escaping. By focusing the electron beam 3 generated from the filament 1 on the thin film material 8 that has been entirely heated in this manner using the magnetic field formed by the magnet 2, the thin film material 8 is heated.
is locally heated and evaporated. Arrow 9 shows how the thin film material evaporates.

この結果、薄膜材料8は、るつぼ7と化学反応を起こし
たり、突沸が生じたり、あるいは電子線が当たる部分に
穴が開いたりしない、安定な状態で蒸発させることがで
きる。したがって、長時間・多回数にわたって、安定な
薄膜形成が可能となる。
As a result, the thin film material 8 can be evaporated in a stable state without causing a chemical reaction with the crucible 7, causing bumping, or creating a hole in the portion exposed to the electron beam. Therefore, it is possible to form a stable thin film over a long period of time and many times.

なお、本実施例では薄膜材料としてPdを使用し、るつ
ぼはBN製のものを用いた。
In this example, Pd was used as the thin film material, and a crucible made of BN was used.

発明の効果 以上述べてきたように、本発明によれば、簡単な構成で
、真空蒸着中に薄膜材料に穴が開いたり、薄膜材料と蒸
発源が化学反応を起こしたり、薄膜材料が沸騰すること
なく、長時間・多回数にわたって、安定な薄膜形成がで
き、実用的にきわめて有利である。
Effects of the Invention As described above, according to the present invention, with a simple configuration, holes are formed in the thin film material during vacuum evaporation, chemical reactions occur between the thin film material and the evaporation source, and the thin film material boils. It is possible to form a stable thin film over a long period of time and many times without any problems, which is extremely advantageous in practical terms.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の真空蒸着における薄膜材料の加熱方法
を実施した加熱装置の断面図、第2図および第3図は従
来の方法による加熱装置の断面図である。 1・・・・・・フィラメント、2・・・・・・磁石、3
・・・・・・電子線、4・・・・・・ヒーター、7・・
・・・・るつぼ、8・・・・・・薄膜材料。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名!・
・・ フィンメン) 4 ヒータ δ・・・ろつIJ゛ψ1プ アー ろっは゛。 θ・・ 薄刀粟オオオ斗 !?・ 質  カフ ノ3・ フィラメント
FIG. 1 is a sectional view of a heating device that implements the method of heating thin film materials in vacuum evaporation of the present invention, and FIGS. 2 and 3 are sectional views of heating devices that use a conventional method. 1...Filament, 2...Magnet, 3
...Electron beam, 4...Heater, 7...
...Crucible, 8...Thin film material. Name of agent: Patent attorney Toshio Nakao and 1 other person!・
...Finmen) 4 Heater δ...Rotsu IJ゛ψ1 Poor Roha゛. θ... Utsuto Awaoooooooo! ?・ Quality Kafuno 3 ・ Filament

Claims (2)

【特許請求の範囲】[Claims] (1)真空中で薄膜を形成しようとする材料を、第1の
熱源によって全体的に加熱し、第2の熱源によって局部
的に加熱することを特徴とする真空蒸着における薄膜材
料の加熱方法。
(1) A method for heating a thin film material in vacuum evaporation, which comprises heating the material to be formed into a thin film in vacuum entirely by a first heat source and locally heating it by a second heat source.
(2)第1の熱源として、抵抗加熱手段を用い、第2の
熱源として電子線加熱手段を用いた特許請求の範囲第1
項記載の真空蒸着における薄膜材料の加熱方法。
(2) Claim 1 in which a resistance heating means is used as the first heat source and an electron beam heating means is used as the second heat source.
A method of heating a thin film material in vacuum evaporation as described in 2.
JP27712884A 1984-12-24 1984-12-24 Heating method of thin film material in vacuum deposition Pending JPS61149474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27712884A JPS61149474A (en) 1984-12-24 1984-12-24 Heating method of thin film material in vacuum deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27712884A JPS61149474A (en) 1984-12-24 1984-12-24 Heating method of thin film material in vacuum deposition

Publications (1)

Publication Number Publication Date
JPS61149474A true JPS61149474A (en) 1986-07-08

Family

ID=17579179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27712884A Pending JPS61149474A (en) 1984-12-24 1984-12-24 Heating method of thin film material in vacuum deposition

Country Status (1)

Country Link
JP (1) JPS61149474A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1466998A1 (en) * 2003-04-09 2004-10-13 Dr. Eberl MBE-Komponenten GmbH Effusion cell with improved temperature control of the crucible

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1466998A1 (en) * 2003-04-09 2004-10-13 Dr. Eberl MBE-Komponenten GmbH Effusion cell with improved temperature control of the crucible

Similar Documents

Publication Publication Date Title
JP2000040483A (en) Sample heating holder for electron microscope and sample observing method
US4098617A (en) Method of manufacturing film thermopile
US4059707A (en) Method of filling apertures with crystalline material
JPS61149474A (en) Heating method of thin film material in vacuum deposition
JPH07224382A (en) Substrate heating mechanism of thin film forming device
JPS63241921A (en) Substrate heating device for molecular beam epitaxy system
JPH03174307A (en) Production of oxide superconductor
JP3323522B2 (en) Molecular beam cell
JPS62180067A (en) Method and apparatus for electron beam vapor deposition
JPH0462453B2 (en)
JP3451694B2 (en) Vacuum deposition equipment
JPH0665465U (en) Vapor deposition equipment
JPS6033349A (en) Vacuum vapor deposition apparatus
JP2790654B2 (en) Method for forming titanium dioxide film on plastic lens substrate
JP3163773B2 (en) Thin film manufacturing method
JPH0578826A (en) Device for producing thin film
JPS6266620A (en) Electron beam vapor deposition apparatus
JPS6247167Y2 (en)
JPS58137940A (en) Ion source
JPH0733570B2 (en) Vapor deposition equipment
JPS6345814A (en) Substrate heating system for molecular beam epitaxy equipment
JPH028022B2 (en)
JP2005179770A (en) Patterned deposition source unit and deposition method using the same
JPS60171725A (en) Charged beam exposure unit
JPH0959767A (en) Formation of film of alloy using pbn hearth liner