JPS6247167Y2 - - Google Patents

Info

Publication number
JPS6247167Y2
JPS6247167Y2 JP1478981U JP1478981U JPS6247167Y2 JP S6247167 Y2 JPS6247167 Y2 JP S6247167Y2 JP 1478981 U JP1478981 U JP 1478981U JP 1478981 U JP1478981 U JP 1478981U JP S6247167 Y2 JPS6247167 Y2 JP S6247167Y2
Authority
JP
Japan
Prior art keywords
magnetic permeability
high magnetic
permeability material
electric heater
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1478981U
Other languages
Japanese (ja)
Other versions
JPS57128759U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1478981U priority Critical patent/JPS6247167Y2/ja
Publication of JPS57128759U publication Critical patent/JPS57128759U/ja
Application granted granted Critical
Publication of JPS6247167Y2 publication Critical patent/JPS6247167Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は電熱ヒータが発生する磁場をシールド
するようになした加熱装置に関する。
[Detailed Description of the Invention] The present invention relates to a heating device that shields a magnetic field generated by an electric heater.

電子顕微鏡では、電子ビーム通路上に配置され
た金属試料を加熱して、金属試料の温度による像
を観察している。又、電子顕微鏡や電子ビーム露
光装置等の荷電ビーム加工装置では、ビーム通路
上に配置された絞を加熱して、該絞へのコンタミ
付着を軽減している。所で、前記金属試料や絞等
の加熱は、一般にニクロム又はタングステンの如
き金属の線状又は板状のものに電流を流すように
構成した電熱ヒータを、加熱すべき金属試料や絞
に接触させて行なつている。即ち、電熱ヒータを
ビーム通路近傍に設けている。従つて、この電熱
ヒータが発生する磁場がビームに磁気的影響を及
ぼし、結果的に試料上のビーム位置がドリフトし
てしまい、特にビームの位置精度に高いものが要
求される電子ビーム露光装置等においては、大き
な問題となる。周知の様に、磁気遮蔽という外部
磁場の影響を減少させる方法がある。この方法
は、例えば保護したい装置の回りを強磁性体の筒
で囲い、磁束線を中空部分に入り込まないように
したものである。しかし乍ら、従来この様な方法
は、前記荷電ビーム通路に配置された金属試料や
絞を加熱する為の電熱ヒータが発生する磁場の遮
蔽には使用されてない。又、保護したい金属試料
や絞を構造上強磁性体で囲うことは出来ないの
で、強磁性体で加熱ヒータを直接囲つても、通常
斯くの如き加熱ヒータを400℃近くに昇温させね
ばならず、該昇温により強磁性体はキユリーヴア
イスの法則に従い、常磁性と化し、磁場遮蔽が出
来なくなる。然りとて、キユリー点の高い磁性体
でヒータを囲つても、概してキユリー点の高い磁
性体の透磁率は十分に高くないので、十分な磁場
遮蔽が出来ない。
In an electron microscope, a metal sample placed on an electron beam path is heated and an image of the metal sample depending on the temperature is observed. In addition, in a charged beam processing device such as an electron microscope or an electron beam exposure device, a diaphragm disposed on a beam path is heated to reduce the adhesion of contaminants to the diaphragm. By the way, the heating of the metal sample or diaphragm is generally done by bringing an electric heater configured to pass a current through a metal wire or plate, such as nichrome or tungsten, into contact with the metal sample or diaphragm to be heated. is being carried out. That is, an electric heater is provided near the beam path. Therefore, the magnetic field generated by this electric heater has a magnetic effect on the beam, resulting in the beam position on the sample drifting, especially in electron beam exposure equipment that requires high beam position accuracy. It becomes a big problem. As is well known, there is a method of reducing the influence of external magnetic fields called magnetic shielding. In this method, for example, a device to be protected is surrounded by a ferromagnetic cylinder to prevent magnetic flux lines from entering the hollow part. However, conventionally, such a method has not been used to shield the magnetic field generated by the electric heater for heating the metal sample or diaphragm placed in the charged beam path. Furthermore, because it is structurally impossible to surround the metal sample or aperture that you want to protect with ferromagnetic material, even if you directly surround the heater with ferromagnetic material, the temperature of such a heater would normally have to be raised to nearly 400°C. First, due to the temperature increase, the ferromagnetic material becomes paramagnetic according to the Curieve-Ice law, and it becomes impossible to shield the magnetic field. However, even if the heater is surrounded by a magnetic material with a high Kyrie point, the magnetic permeability of the magnetic material with a high Kyrie point is generally not high enough, and therefore sufficient magnetic field shielding cannot be achieved.

本考案は斯くの如き点に鑑みてなされたもの
で、荷電ビーム通路に配置された金属体の一部と
接触しており、且つ、該金属体を加熱する為の電
熱ヒータの回りを接触する様に囲つた該電熱ヒー
タの加熱温度より遥かに高いキユリー点を持つ第
1高透磁率材料と、前記金属体と全く接触せず、
且つ、前記第1高透磁率材料の回りを空間を介し
て囲つた該第1高透磁率材料の透磁率より遥かに
高い透磁率を持つ第2高透磁率材料を具備する事
により、電熱ヒータが発生する磁場のビームへの
磁気的影響を効率良く手段した新規な加熱装置を
提供するものである。
The present invention was developed in view of the above points, and is in contact with a part of the metal body placed in the charged beam path, and also in contact with the area around the electric heater for heating the metal body. A first high magnetic permeability material having a Curie point much higher than the heating temperature of the electric heater surrounded by the metal body does not contact the metal body at all,
Further, by including a second high magnetic permeability material surrounding the first high magnetic permeability material with a space therebetween and having a magnetic permeability far higher than that of the first high magnetic permeability material, the electric heater can be heated. The present invention provides a novel heating device that efficiently suppresses the magnetic influence of the magnetic field generated by the beam on the beam.

第1図は本発明の一実施例として示した加熱装
置の概略図、第2図はその一部断面を拡大した図
である。
FIG. 1 is a schematic diagram of a heating device shown as an embodiment of the present invention, and FIG. 2 is a partially enlarged cross-sectional view of the heating device.

図中1は適宜に排気された鏡筒のビーム通路を
表わしており、2は該通路上に位置する孔3を持
つ絞である。4は電熱ヒータで、該ヒータの回り
を、該ヒータの最高加熱温度(例、約400℃)よ
り遥かに高いキユリー点(約780℃)を持つ第1
高透磁率材料(例、純鉄)5で直接、即ち接触す
る様に囲う。該材料の回りを、空間を介して該材
料の透磁率より遥かに高い透磁率を持つ第2高透
磁率材料6(例、パーマロイ)で囲う。尚、前記
第1高透磁率材料5は前記絞2の端部と接触し、
前記第2高透磁率材料6は絞と全く接触しないよ
うに構成する。7は該第2高透磁率材料を直接包
む様に設けられた熱良導体材料(例、銅)で、適
宜な箇所に冷却水の通路8を持つ。尚、前記加熱
ヒータ4としては、実際には、例えば、第3図に
示す様に一本のヒータ用ニクロム線(アルミナで
電気的に絶縁したもの)Nを円状に往復させた形
状のものを使用し、前記第1高透磁率材料5、第
2高透磁率材料6及び熱良導体材料7に外側(光
軸の反対方向)から貫く小穴(図示せず)を開
け、該穴に該ニクロム線の端部を通し、該ニクロ
ム線に鏡筒外の加熱電源Kから電流を流す様に構
成している。
In the figure, numeral 1 represents a beam path of a suitably evacuated lens barrel, and numeral 2 represents a diaphragm having a hole 3 located above the path. 4 is an electric heater, and surrounding the heater is a first heater having a Curie point (about 780 degrees Celsius) that is much higher than the maximum heating temperature of the heater (for example, about 400 degrees Celsius).
Surround with a high magnetic permeability material (eg, pure iron) 5 directly, that is, in contact. The material is surrounded by a second high magnetic permeability material 6 (eg, permalloy) having a magnetic permeability much higher than that of the material with a space therebetween. Note that the first high magnetic permeability material 5 is in contact with the end of the diaphragm 2,
The second high magnetic permeability material 6 is configured so as not to come into contact with the diaphragm at all. 7 is a thermally conductive material (eg, copper) provided so as to directly enclose the second high magnetic permeability material, and has cooling water passages 8 at appropriate locations. Incidentally, the heater 4 is actually, for example, one in the shape of a single heater nichrome wire (electrically insulated with alumina) N reciprocated in a circular shape, as shown in FIG. A small hole (not shown) is made through the first high magnetic permeability material 5, the second high magnetic permeability material 6, and the thermally conductive material 7 from the outside (in the opposite direction of the optical axis) using a The end of the wire is passed through and a current is applied to the nichrome wire from a heating power source K outside the lens barrel.

斯くの如き装置において、加熱電源Kから電熱
ヒータ4に電流を流し、該電熱ヒータ4を400℃
前後に昇温すれば、第1高透磁率材料5を介して
絞2は加熱される。この際、前記電熱ヒータ4が
発生した磁場は、次に説明するように処理され
る。第1高透磁率材料5は高透磁率材料の中では
然程透磁率の高い材料ではないが、キユリー点が
高いので、前記ヒータ4が発生する熱によつて高
温になつても高い透磁率を維持するので、ヒータ
4が発生した磁束線のある程度のものは該第1高
透磁率材料5内に集中し、それ以外のものが該材
料外へ漏れる。次に、空間を介して該第1高透磁
率材料の周囲に配置された第2高透磁率材料6
は、キユリー点こそ然程高くはないが透磁率が著
しく高く、前記ヒータ4、第1高透磁率材料5及
び絞2に接触していないので、然程高温にならず
に著しく高い透磁率を維持する。従つて、空間に
漏れた磁束線はすべて該第2高透磁率材料内に集
中し、ビーム通路1側に漏れることは無い。尚、
前記第1高透磁率材料5から熱放射があつても、
第2高透磁率材料6は冷却水を循環させた熱良導
体材料7で直接包まれているので、高温になるこ
とはない。
In such a device, a current is passed from the heating power source K to the electric heater 4, and the electric heater 4 is heated to 400°C.
If the temperature is raised back and forth, the aperture 2 is heated through the first high magnetic permeability material 5. At this time, the magnetic field generated by the electric heater 4 is processed as described below. The first high magnetic permeability material 5 does not have a particularly high magnetic permeability among high magnetic permeability materials, but since it has a high Kyrie point, it has a high magnetic permeability even when the temperature becomes high due to the heat generated by the heater 4. Therefore, some of the magnetic flux lines generated by the heater 4 are concentrated within the first high magnetic permeability material 5, and others leak out of the material. Next, a second high magnetic permeability material 6 is placed around the first high magnetic permeability material with a space therebetween.
Although the Curie point is not very high, the magnetic permeability is extremely high, and since it is not in contact with the heater 4, the first high magnetic permeability material 5, and the diaphragm 2, it has a significantly high magnetic permeability without becoming extremely high temperature. maintain. Therefore, all magnetic flux lines leaking into the space are concentrated within the second high magnetic permeability material and do not leak to the beam path 1 side. still,
Even if there is heat radiation from the first high magnetic permeability material 5,
Since the second high magnetic permeability material 6 is directly wrapped in a thermally conductive material 7 in which cooling water is circulated, it does not reach a high temperature.

本考案によれば、電熱ヒータが発生する磁場の
ビームへの磁気的影響を効率良く遮蔽することが
出来る。
According to the present invention, it is possible to efficiently shield the magnetic influence of the magnetic field generated by the electric heater on the beam.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例として示した加熱装
置の概略図、第2図はその一部断面を拡大した
図、第3図は電熱ヒータの一例を示したものであ
る。 1:ビーム通路、2:絞、4:電熱ヒータ、
5:第1高透磁率材料、6:第2高透磁率材料、
7:熱良導体材料。
FIG. 1 is a schematic diagram of a heating device shown as an embodiment of the present invention, FIG. 2 is a partially enlarged cross-sectional view thereof, and FIG. 3 is a diagram showing an example of an electric heater. 1: Beam path, 2: Diaphragm, 4: Electric heater,
5: first high magnetic permeability material, 6: second high magnetic permeability material,
7: Good thermal conductor material.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 荷電ビーム通路1に配置された金属体2の一部
と接触しており、且つ、該金属体2を加熱する為
の電熱ヒータ4の回りを接触する様に囲つた該電
熱ヒータ4の加熱温度より遥かに高いキユリー点
を持つ第1高透磁率材料5と、前記金属体2と全
く接触せず、且つ、前記第1高透磁率材料5の回
りを空間を介して囲つた該第1高透磁率材料5の
透磁率より遥かに高い透磁率を持つ第2高透磁率
材料6を具備した加熱装置。
The heating temperature of the electric heater 4 that is in contact with a part of the metal body 2 disposed in the charged beam path 1 and that surrounds the electric heater 4 for heating the metal body 2 so as to be in contact with it. a first high magnetic permeability material 5 having a much higher Curie point; and a first high magnetic permeability material 5 that does not contact the metal body 2 at all and surrounds the first high magnetic permeability material 5 with a space in between. A heating device comprising a second high magnetic permeability material 6 having a much higher magnetic permeability than the magnetic permeability material 5.
JP1478981U 1981-02-04 1981-02-04 Expired JPS6247167Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1478981U JPS6247167Y2 (en) 1981-02-04 1981-02-04

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1478981U JPS6247167Y2 (en) 1981-02-04 1981-02-04

Publications (2)

Publication Number Publication Date
JPS57128759U JPS57128759U (en) 1982-08-11
JPS6247167Y2 true JPS6247167Y2 (en) 1987-12-25

Family

ID=29812817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1478981U Expired JPS6247167Y2 (en) 1981-02-04 1981-02-04

Country Status (1)

Country Link
JP (1) JPS6247167Y2 (en)

Also Published As

Publication number Publication date
JPS57128759U (en) 1982-08-11

Similar Documents

Publication Publication Date Title
JP3771947B2 (en) Magnet assembly of superconducting magnetic resonance imaging system
US10497503B2 (en) Superconducting magnetic field stabilizer
ATE111672T1 (en) INDUCTION HEATING COIL.
JPH0133548B2 (en)
JP2021502527A5 (en)
JPS6247167Y2 (en)
US3394254A (en) Electron-optical system with a magnetic focussing lens having a cooling means
US3268648A (en) Apparatus for vaporizing materials by an electron beam
JPS6358747A (en) Electron microscope
JPH03289344A (en) Superconducting motor
JPS57149616A (en) Heat roll device
US3297869A (en) Specimen heating device for an electron microscope specimen holder made of a single piece of material
US3919553A (en) Integrated device for controlling charging artifacts in scanning electron microscopes
GB1183751A (en) Charged Particle Generator with Electromagnetic Current Control.
US2939995A (en) Traveling wave tube
JP2836689B2 (en) Magnet device
US4214117A (en) Furnace heated by radiation
JPS5864790A (en) Method and device for heating and cooling metal unit
US3407322A (en) Infrared camera tube with cooling means for internal elements
US3127538A (en) Packaged traveling wave electron discharge device having magnetic directing means
JPH0228604Y2 (en)
EP0333240A1 (en) Charged particle beam apparatus
JP2609346B2 (en) Gradient magnetic field coil device
JPH0719081Y2 (en) Ion source
JPH0727864B2 (en) Electron beam heating device