JPH03289344A - Superconducting motor - Google Patents

Superconducting motor

Info

Publication number
JPH03289344A
JPH03289344A JP8587590A JP8587590A JPH03289344A JP H03289344 A JPH03289344 A JP H03289344A JP 8587590 A JP8587590 A JP 8587590A JP 8587590 A JP8587590 A JP 8587590A JP H03289344 A JPH03289344 A JP H03289344A
Authority
JP
Japan
Prior art keywords
superconducting
superconducting coil
armature
liquid helium
motor according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8587590A
Other languages
Japanese (ja)
Other versions
JP2822570B2 (en
Inventor
Hiroshi Sugiura
浩 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP8587590A priority Critical patent/JP2822570B2/en
Publication of JPH03289344A publication Critical patent/JPH03289344A/en
Application granted granted Critical
Publication of JP2822570B2 publication Critical patent/JP2822570B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Motor Or Generator Cooling System (AREA)
  • Superconductive Dynamoelectric Machines (AREA)

Abstract

PURPOSE:To increase flux density drastically by opposing a pair of superconducting coil groups through an armature and employing a superconducting field coil. CONSTITUTION:An armature disc 12 is secured to a shaft 11 and a pair of superconducting coil groups 13 are opposed to each other through the armature 12. In each superconducting coil group 13, a plurality of superconducting coils 13a are arranged, with constant intervals in the circumferential direction, coaxially with corresponding superconducting coil 13a at the opposite side and the pair of superconducting coil groups 13 form a field coil, i.e., a Helmholtz coil. Each superconducting coil group 13 is secured in an annular liquid helium container 14 coupled with a transfer tube 19.

Description

【発明の詳細な説明】 [発明の1」的] (産業上の利用分野) 本発明は超電導モータに関する。[Detailed description of the invention] [First invention] (Industrial application field) The present invention relates to superconducting motors.

(従来の技術) 従来のディスク型コアレスモークは、界磁として永久磁
石が使用されている。
(Prior Art) A conventional disk-type coreless smoke uses a permanent magnet as a field.

(発明が解決しようとする課題) しかして磁気装架は永久磁石の保持磁束密度に制約され
ているので、1.5テラス程度以上のものを得るのは困
難であった。
(Problems to be Solved by the Invention) However, since the magnetic equipment is limited by the retention magnetic flux density of the permanent magnet, it has been difficult to obtain a magnetic equipment with a diameter of about 1.5 terraces or more.

それ故に、本発明は、磁束密度を飛躍的に大きくするこ
とを、その技術的課題とする。
Therefore, the technical objective of the present invention is to dramatically increase the magnetic flux density.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記した技術的課題を解決するために講じた手段は、シ
ャフトに固定された円板状アーマチュア、該アーマチュ
アの一方側に配設され円周方向に等間隔で配置された複
数の超電導コイルを備える第1超電導コイル群、前記ア
ーマチュアの他方側に配設され円周方向に等間隔で配置
された複数の超電導コイルを備える第2超電導コイル群
、前記第1及び第2超電導コイル群を冷却する液体ヘリ
ウム容器、前記円板状アーマチュアとの対向面を除く前
記超電導コイルの全面を覆う輻射シールド体、該輻射シ
ールド体を支持する断熱支持体を介して前記液体ヘリウ
ム容器と連結されたハウジングを兼ねる断熱真空容器を
有する超電導モータを構成したことである。
(Means for Solving the Problems) The measures taken to solve the above-mentioned technical problems include a disc-shaped armature fixed to a shaft, disposed on one side of the armature at equal intervals in the circumferential direction. a first superconducting coil group comprising a plurality of superconducting coils arranged; a second superconducting coil group comprising a plurality of superconducting coils disposed on the other side of the armature and arranged at equal intervals in the circumferential direction; A liquid helium container that cools the second superconducting coil group, a radiation shield that covers the entire surface of the superconducting coil except for the surface facing the disc-shaped armature, and a heat insulating support that supports the radiation shield, the liquid helium is A superconducting motor is constructed that has an insulated vacuum container that also serves as a housing connected to the container.

(作用) 上記した手段によれば、界磁として超電導コイルを用い
ているので従来に比べて磁束密度を飛躍的に増加させる
ことが出来る。
(Function) According to the above-described means, since a superconducting coil is used as the field, the magnetic flux density can be dramatically increased compared to the conventional method.

(実施例) 以下、本発明に従った超電導モータを実施例に基づき説
明する。
(Example) Hereinafter, a superconducting motor according to the present invention will be described based on an example.

第1図において、超電導モータlOはシャフト11を備
える。シャフト11には円板状のアーマチュア12が固
定されており、このアーマチュア12を挟んで1対の超
電導コイル群13が対向している。各超電導コイル群1
3は、円周方向に均等の間隔で配設された複数の超電導
コイル13aは反対側の対応する超電導コイル13aと
同軸となっている。この1対の超電導コイル群13は、
界磁コイルたるヘルムホルツコイルを形成する。
In FIG. 1, a superconducting motor IO includes a shaft 11. As shown in FIG. A disc-shaped armature 12 is fixed to the shaft 11, and a pair of superconducting coil groups 13 are opposed to each other with the armature 12 in between. Each superconducting coil group 1
3, a plurality of superconducting coils 13a arranged at equal intervals in the circumferential direction are coaxial with corresponding superconducting coils 13a on the opposite side. This pair of superconducting coil groups 13 are
Forms a Helmholtz coil, which is a field coil.

各超電導コイル群13はトランスファーチューブ19と
連結された環状の液体ヘリウム容器14の中に固定され
ている。この液体ヘリウム容器14は、断熱支持体17
を介して、モータハウジングを兼ねる断熱真空容器16
に固定されている。
Each superconducting coil group 13 is fixed in an annular liquid helium container 14 connected to a transfer tube 19 . This liquid helium container 14 has a heat insulating support 17
via an insulated vacuum container 16 that also serves as a motor housing.
is fixed.

トランスファーチューブ19の具体的構造は図示こそさ
れないが、1本の断熱真空配管並びにその中に挿通され
た液体ヘリウム供給管、蒸発ヘリウム排出管、液体窒素
供給管及び液体窒素排出管から構成されている。液体ヘ
リウム容器14と断熱真空容器16との間には熱良導体
(例えばアルミニューム)で形成された輻射シールド体
15が設けられており、この輻射シールド体15が、環
状アーマチュア12との対向面を除く各超電導コイル1
3aの全面を覆っている。
Although the specific structure of the transfer tube 19 is not shown, it is composed of a single insulated vacuum pipe, a liquid helium supply pipe, an evaporated helium discharge pipe, a liquid nitrogen supply pipe, and a liquid nitrogen discharge pipe inserted therein. . A radiation shield 15 made of a good thermal conductor (for example, aluminum) is provided between the liquid helium container 14 and the insulating vacuum container 16, and this radiation shield 15 has a surface facing the annular armature 12. Each superconducting coil except 1
It covers the entire surface of 3a.

液体ヘリウム容器14及び真空断熱真空容器16の壁の
内、環状アーマチュア12との対向する部分は薄肉加工
されている。輻射シールド体15の外周には、液体窒素
の通る管が1巻されて且つロー付けされている。また、
断熱支持体17は熱伝導率の低い複合材料で形成されて
おり、輻射シールド体15は断熱支持体17により支持
されている。
Of the walls of the liquid helium container 14 and the vacuum insulated vacuum container 16, the portions facing the annular armature 12 are processed to be thin. A tube through which liquid nitrogen passes is wrapped around the outer periphery of the radiation shield body 15 and brazed thereto. Also,
The heat insulating support 17 is made of a composite material with low thermal conductivity, and the radiation shield 15 is supported by the heat insulating support 17.

各超電導コイル13aと円板状アーマチュア12との間
の間隔を短く設定するために、液体ヘリウノ、容器14
及び断熱真空容器16の円板状アーマチュア12との対
向面には、輻射率の低い物質(金・銅等)の鍍金が施さ
れている。また、環状アーマチュア12を挟んで互いに
対向する超電導:1イル13aは強力な磁力で引き合う
ことに鑑み液体ヘリウム容器14と断熱真空容器16と
の間の間隔は太い目に余裕をもって組付ておき、励磁時
に磁力と断熱支持体17の撓みによる力が釣り合う位置
が正しく設定されるようになっている。
In order to shorten the distance between each superconducting coil 13a and the disc-shaped armature 12, liquid helium, a container 14
The surface of the heat-insulating vacuum vessel 16 facing the disc-shaped armature 12 is plated with a material having low emissivity (gold, copper, etc.). In addition, in view of the fact that the superconducting coils 13a facing each other with the annular armature 12 in between are attracted to each other by strong magnetic force, the gap between the liquid helium container 14 and the heat-insulating vacuum container 16 is wide enough to allow enough space when assembled. The position where the magnetic force and the force due to the deflection of the heat insulating support body 17 are balanced during excitation is set correctly.

以上の構成における作用を説明する。トランスファーチ
ューブ19を介しての供給により液体ヘリウム容器14
の中に液体ヘリウムが充満されると各超電導コイル13
aは絶対温度で4.2度迄冷却されて超電導状態となる
。このとき、液体ヘリウム容RH4への熱浸入を貼止す
るために液体ヘリウム容器I4は断熱支持体17を介し
て断熱真空容器16に固定されている。しかして断熱支
持体17は液体窒素で冷却された輻射シールド体15を
支持するので、液体ヘリウム容器14への熱浸入の程度
は更に著しく低減される。
The operation of the above configuration will be explained. Liquid helium container 14 by supply via transfer tube 19
Each superconducting coil 13 is filled with liquid helium.
A is cooled to an absolute temperature of 4.2 degrees and becomes superconducting. At this time, the liquid helium container I4 is fixed to the heat insulating vacuum container 16 via a heat insulating support 17 in order to prevent heat from entering the liquid helium container RH4. Since the heat insulating support 17 thus supports the radiation shield 15 cooled with liquid nitrogen, the degree of heat infiltration into the liquid helium container 14 is further significantly reduced.

各超電導コイル13aが励磁されると、第2図に矢印で
示されるように、互いに隣接する超電導コイル13a間
に磁力線が発生する。そのため、各超電導コイル13a
の狭い周辺のみに磁界は形成されるので、磁界がモータ
ハウジングの外側には殆ど及ばない。このとき、ブラシ
18を介して円板状アーマチュア12に所定の電流を流
すと、円板状アーマチュア12はローレンツ力により回
転力を得て回転するので、シャツI−11からモータの
出力を取り出すことが出来る。
When each superconducting coil 13a is excited, lines of magnetic force are generated between adjacent superconducting coils 13a, as shown by arrows in FIG. Therefore, each superconducting coil 13a
Since the magnetic field is formed only in a narrow periphery of the motor housing, the magnetic field hardly reaches the outside of the motor housing. At this time, when a predetermined current is applied to the disc-shaped armature 12 via the brush 18, the disc-shaped armature 12 obtains rotational force by the Lorentz force and rotates, so that the output of the motor can be extracted from the shirt I-11. I can do it.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、次のような優れ
た効果を奏する。
As explained above, according to the present invention, the following excellent effects are achieved.

(1)界磁として超電導コイルを用いているので従来に
比べて磁束密度を飛躍的に増加させることが出来る。
(1) Since a superconducting coil is used as the field magnet, the magnetic flux density can be dramatically increased compared to the conventional method.

(2)磁気回路を閉成するための鉄芯・ヨークその他の
強磁性材を必要としないので、モータ自体の軌量化・小
型化を図ることが出来る。
(2) Since no iron core, yoke, or other ferromagnetic material is required to close the magnetic circuit, the motor itself can be made smaller in track and size.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る超電導モータの一実施例の断面図
及び第2図は超電導コイルの励磁状態を説明する図であ
る。 11:シャフト、12 13a :超電導コイル、 15:輻射シールド体、 17:断熱支持体、18 スファーチューブ。 二円板状アーマチュア、 14:液体ヘリウム容器 16:断熱真空容器、 :ブラシ、19ニドラン
FIG. 1 is a sectional view of an embodiment of a superconducting motor according to the present invention, and FIG. 2 is a diagram illustrating an excitation state of a superconducting coil. 11: Shaft, 12 13a: Superconducting coil, 15: Radiation shield, 17: Heat insulating support, 18 Spher tube. Two disc-shaped armature, 14: Liquid helium container 16: Insulated vacuum container, : Brush, 19 Nidoran

Claims (7)

【特許請求の範囲】[Claims] (1)シャフトに固定された円板状アーマチュア、該ア
ーマチュアの一方側に配設され円周方向に等間隔で配置
された複数の超電導コイルを備える第1超電導コイル群
、前記アーマチュアの他方側に配設され円周方向に等間
隔で配置された複数の超電導コイルを備える第2超電導
コイル群、前記第1及び第2超電導コイル群を冷却する
液体ヘリウム容器、前記円板状アーマチュアとの対向面
を除く前記超電導コイルの全面を覆う輻射シールド体、
該輻射シールド体を支持する断熱支持体を介して前記液
体ヘリウム容器と連結されたハウジングを兼ねる断熱真
空容器を有する超電導モータ。
(1) A disc-shaped armature fixed to a shaft, a first superconducting coil group including a plurality of superconducting coils disposed on one side of the armature and arranged at equal intervals in the circumferential direction, and a first superconducting coil group provided on the other side of the armature. a second superconducting coil group including a plurality of superconducting coils disposed and arranged at equal intervals in the circumferential direction; a liquid helium container for cooling the first and second superconducting coil groups; and a surface facing the disc-shaped armature. a radiation shield body covering the entire surface of the superconducting coil except for
A superconducting motor having an insulating vacuum container that also serves as a housing and connected to the liquid helium container via an insulating support that supports the radiation shield.
(2)請求項(1)において前記液体ヘリウム容器及び
前記断熱真空容器の前記円板状アーマチュアとの対向面
には輻射率の低い材質が鍍金されている超電導モータ。
(2) The superconducting motor according to claim 1, wherein surfaces of the liquid helium container and the insulating vacuum container facing the disc-shaped armature are plated with a material having a low emissivity.
(3)請求項(2)において前記輻射率の低い材質が金
である超電導モータ。
(3) The superconducting motor according to claim (2), wherein the material with low emissivity is gold.
(4)請求項(2)において前記輻射率の低い材質が銅
である超電導モータ。
(4) The superconducting motor according to claim (2), wherein the material with low emissivity is copper.
(5)請求項(1)において前記液体ヘリウム容器及び
前記断熱真空容器の前記円板状アーマチュアとの対向面
が薄肉加工で形成されている超電導モータ。
(5) The superconducting motor according to claim (1), wherein surfaces of the liquid helium container and the insulating vacuum container that face the disc-shaped armature are formed by thin-wall processing.
(6)請求項(1)において前記輻射シールド体が熱良
導体材料で形成されている超電導モータ。
(6) The superconducting motor according to claim (1), wherein the radiation shield body is formed of a material with good thermal conductivity.
(7)請求項(6)において前記熱良導体材料はアルミ
ニュームである超電導モータ。
(7) A superconducting motor according to claim (6), wherein the thermally conductive material is aluminum.
JP8587590A 1990-03-31 1990-03-31 Superconducting motor Expired - Fee Related JP2822570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8587590A JP2822570B2 (en) 1990-03-31 1990-03-31 Superconducting motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8587590A JP2822570B2 (en) 1990-03-31 1990-03-31 Superconducting motor

Publications (2)

Publication Number Publication Date
JPH03289344A true JPH03289344A (en) 1991-12-19
JP2822570B2 JP2822570B2 (en) 1998-11-11

Family

ID=13871075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8587590A Expired - Fee Related JP2822570B2 (en) 1990-03-31 1990-03-31 Superconducting motor

Country Status (1)

Country Link
JP (1) JP2822570B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0643471A1 (en) * 1993-09-15 1995-03-15 IMRA MATERIAL R&D CO., LTD. Superconducting motor
WO2006068042A1 (en) * 2004-12-24 2006-06-29 Sumitomo Electric Industries, Ltd. Axial gap motor
WO2006068039A1 (en) * 2004-12-24 2006-06-29 Sumitomo Electric Industries, Ltd. Axial-gap superconducting motor
US7315103B2 (en) 2004-03-03 2008-01-01 General Electric Company Superconducting rotating machines with stationary field coils
US7489060B2 (en) 2006-06-30 2009-02-10 General Electric Company Superconducting rotating machines with stationary field coils
US7492073B2 (en) 2006-06-30 2009-02-17 General Electric Company Superconducting rotating machines with stationary field coils
ITMI20112386A1 (en) * 2011-12-27 2013-06-28 Phase Motion Control S P A "SYNCHRONOUS GENERATOR MOTOR TO SUPERCONDUCTORS"
KR20210093941A (en) * 2018-11-21 2021-07-28 제네럴 일렉트릭 컴퍼니 superconducting generator powered by wind turbine

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5581135A (en) * 1993-09-15 1996-12-03 Imra Material R & D Co., Ltd. Superconducting motor
EP0643471A1 (en) * 1993-09-15 1995-03-15 IMRA MATERIAL R&D CO., LTD. Superconducting motor
US7315103B2 (en) 2004-03-03 2008-01-01 General Electric Company Superconducting rotating machines with stationary field coils
US7821169B2 (en) 2004-12-24 2010-10-26 Sumitomo Electric Industries, Ltd. Axial gap type motor
US7872393B2 (en) 2004-12-24 2011-01-18 Sumitomo Electric Industries, Ltd. Axial gap type superconducting motor
WO2006068039A1 (en) * 2004-12-24 2006-06-29 Sumitomo Electric Industries, Ltd. Axial-gap superconducting motor
JP4690032B2 (en) * 2004-12-24 2011-06-01 住友電気工業株式会社 Axial gap type motor
JP2006187055A (en) * 2004-12-24 2006-07-13 Sumitomo Electric Ind Ltd Axial gap motor
WO2006068042A1 (en) * 2004-12-24 2006-06-29 Sumitomo Electric Industries, Ltd. Axial gap motor
US7492073B2 (en) 2006-06-30 2009-02-17 General Electric Company Superconducting rotating machines with stationary field coils
US7489060B2 (en) 2006-06-30 2009-02-10 General Electric Company Superconducting rotating machines with stationary field coils
ITMI20112386A1 (en) * 2011-12-27 2013-06-28 Phase Motion Control S P A "SYNCHRONOUS GENERATOR MOTOR TO SUPERCONDUCTORS"
EP2611007A2 (en) 2011-12-27 2013-07-03 Phase Motion Control S.p.A. A superconductive synchronous motor generator
EP2611007A3 (en) * 2011-12-27 2017-04-12 Phase Motion Control S.p.A. A superconductive synchronous motor generator
KR20210093941A (en) * 2018-11-21 2021-07-28 제네럴 일렉트릭 컴퍼니 superconducting generator powered by wind turbine
CN113316886A (en) * 2018-11-21 2021-08-27 通用电气公司 Superconducting generator driven by wind turbine
JP2022518327A (en) * 2018-11-21 2022-03-15 ゼネラル・エレクトリック・カンパニイ Superconducting generator driven by a wind turbine
US11764644B2 (en) 2018-11-21 2023-09-19 General Electric Company Superconducting generator driven by a wind turbine

Also Published As

Publication number Publication date
JP2822570B2 (en) 1998-11-11

Similar Documents

Publication Publication Date Title
US5389908A (en) Coil of superconducting material for electric appliance and motor utilizing said coil
US5670835A (en) Cooling apparatus for an AC generator
JPH03289344A (en) Superconducting motor
JPS6322605B2 (en)
JP4142610B2 (en) Actuator coil cooling system
US3443134A (en) Homopolar dynamoelectric machine
JPH104641A (en) Stator for rotary machine
JP2003032999A (en) High power density superconducting electrical apparatus
JPS6362138A (en) Deflection yoke for oscilloscope with heat radiation mechanism
JPS61113218A (en) Superconductive magnet
JP4035371B2 (en) Power lead part of high temperature superconducting rotor
JPH0341705A (en) Device for propagating quentch within superconductive magnet
US5533567A (en) Method and apparatus for uniform heating and cooling
JPS63268204A (en) Superconducting magnet
JP7115185B2 (en) Moving coil type voice coil motor
JP2609346B2 (en) Gradient magnetic field coil device
JPH08275470A (en) Rotor of permanent-magnet type electric rotating machine and manufacture thereof
JPH0137841B2 (en)
JPH11144940A (en) Superconducting magnet device
JPS64805B2 (en)
JP2821549B2 (en) Superconducting magnet system
JPH0715936A (en) Single-pole motor
JP3849824B2 (en) Gradient magnetic field coil and magnetic resonance imaging apparatus provided with the same
JPS59116376A (en) Confronting target type sputtering device
JPH04246330A (en) Magnetic resonance imaging device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees