JPS62180067A - Method and apparatus for electron beam vapor deposition - Google Patents
Method and apparatus for electron beam vapor depositionInfo
- Publication number
- JPS62180067A JPS62180067A JP2140286A JP2140286A JPS62180067A JP S62180067 A JPS62180067 A JP S62180067A JP 2140286 A JP2140286 A JP 2140286A JP 2140286 A JP2140286 A JP 2140286A JP S62180067 A JPS62180067 A JP S62180067A
- Authority
- JP
- Japan
- Prior art keywords
- crucible
- evaporated
- recess
- electron beam
- hearth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010894 electron beam technology Methods 0.000 title claims abstract description 22
- 238000000034 method Methods 0.000 title claims abstract description 11
- 238000007740 vapor deposition Methods 0.000 title abstract description 11
- 239000000463 material Substances 0.000 claims abstract description 39
- 238000001704 evaporation Methods 0.000 claims abstract description 17
- 230000008020 evaporation Effects 0.000 claims abstract description 16
- 239000010409 thin film Substances 0.000 claims abstract description 11
- 239000000758 substrate Substances 0.000 claims abstract description 8
- 238000005566 electron beam evaporation Methods 0.000 claims description 19
- 230000008018 melting Effects 0.000 claims description 5
- 238000002844 melting Methods 0.000 claims description 5
- 125000006850 spacer group Chemical group 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 abstract description 5
- 230000015572 biosynthetic process Effects 0.000 abstract description 3
- 230000001788 irregular Effects 0.000 abstract description 2
- 230000001678 irradiating effect Effects 0.000 abstract 1
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 16
- 230000000694 effects Effects 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 238000000151 deposition Methods 0.000 description 7
- 229910052763 palladium Inorganic materials 0.000 description 7
- 238000001816 cooling Methods 0.000 description 6
- 230000008021 deposition Effects 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 239000000498 cooling water Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000011651 chromium Substances 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 238000000427 thin-film deposition Methods 0.000 description 2
- FRWYFWZENXDZMU-UHFFFAOYSA-N 2-iodoquinoline Chemical compound C1=CC=CC2=NC(I)=CC=C21 FRWYFWZENXDZMU-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- LTPBRCUWZOMYOC-UHFFFAOYSA-N beryllium oxide Inorganic materials O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- -1 optical memory disks Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Electrodes Of Semiconductors (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は薄膜形成を高性能で行い得る電子ビーム蒸着装
置および電子ビーム蒸着方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an electron beam evaporation apparatus and an electron beam evaporation method capable of forming thin films with high performance.
従来の技術
近年、真空蒸着法はスパッタリング法と並んで薄膜形成
の主たる方法として位置付けられ、半導体、光メモリデ
ィスク、薄膜磁気ヘッド等の薄膜形成に欠くべからざる
技術となってきている。特に電子ビーム蒸着法は従来の
抵抗加熱蒸着法に比べて機構は複雑になるが、電子ビー
ムを絞ることにより、局所的に高能率に高温にすること
ができるため、高融点物質の蒸着に適し、その需要は極
め、て高い。BACKGROUND OF THE INVENTION In recent years, vacuum evaporation has been positioned as a main method for forming thin films, along with sputtering, and has become an indispensable technology for forming thin films for semiconductors, optical memory disks, thin film magnetic heads, and the like. In particular, electron beam evaporation has a more complex mechanism than conventional resistance heating evaporation, but by focusing the electron beam, it is possible to locally raise the temperature to high efficiency, making it suitable for the evaporation of high-melting-point substances. , the demand for it is extremely high.
第6図に従来の電子ビーム蒸着装置の一例を示す。真空
状態に保った真空容器14内において、被蒸発物1はハ
ース2のハース凹部3に収納される。電子ビーム源15
からの電子ビーム群16はマグネット17により収束偏
向されて被蒸発物1に集中的に当てられ、被蒸発物1を
加熱し、蒸着物質を蒸発させ、基板18に薄膜を形成す
る。なおハース2には水冷パイプ19が埋設されており
、その中を通る冷却水によってノ・−ス2が冷却される
ようになっている。通常、蒸着速度の制御には水晶振動
子法がよく用いられる。水晶振動子板2゜の収められた
水晶振動子モニタヘッド21からの薄膜堆積信号が水晶
振動子蒸着速度制御器22に送られ、設定した蒸着速度
と実際の蒸着速度の差が最小になるように蒸発源加熱用
電源23へ送る電流あるいは電圧をフィードバック制御
し、所定の蒸発速度を得る。FIG. 6 shows an example of a conventional electron beam evaporation apparatus. The material to be evaporated 1 is stored in the hearth recess 3 of the hearth 2 in the vacuum container 14 kept in a vacuum state. Electron beam source 15
A group of electron beams 16 are converged and deflected by a magnet 17 and are focused on the object 1 to be evaporated, heating the object 1 to be evaporated, evaporating the deposition material, and forming a thin film on the substrate 18. A water cooling pipe 19 is embedded in the hearth 2, and the nose 2 is cooled by the cooling water passing through the pipe. Usually, a crystal oscillator method is often used to control the deposition rate. A thin film deposition signal from a crystal oscillator monitor head 21 containing a quartz crystal oscillator plate 2° is sent to a crystal oscillator evaporation speed controller 22 so that the difference between the set evaporation speed and the actual evaporation speed is minimized. Then, the current or voltage sent to the evaporation source heating power source 23 is feedback-controlled to obtain a predetermined evaporation rate.
発明が解決しようとする問題点
第7図aに示すようにハース2のハース凹部3に被蒸発
物1を収納し、収束させた電子ビーム群16を当て、被
蒸発物1を加熱する。例えば、被蒸発物が金Au、銀A
q、アルミニウムへ2のように熱伝導度の高い物質の場
合被蒸発物全体はほぼ均一に加熱され、長時間蒸着を行
っても、第7図すに示すように、被蒸発物1はその形状
を保ったままで、安定な蒸着ができる。ところが、被蒸
発物1がパラジウムPdのように熱伝導度の低い物質の
場合、第7図Cに示すように電子ビーム強度の大きい中
央部に凹部24が形成され、時間の経過に伴ない、その
形状は大きくなる。これは電子ビーム強度の大きな中央
部のみが十分、溶融するのに対し、ハース凹部3に近い
部位は冷却水で冷却されたハース凹部3の影響を受けて
あまシ溶融せず、その加熱溶融程度に差がでるためであ
る。Problems to be Solved by the Invention As shown in FIG. 7a, the object 1 to be evaporated is housed in the hearth recess 3 of the hearth 2, and the object 1 to be evaporated is heated by being irradiated with a group of focused electron beams 16. For example, if the material to be evaporated is gold Au or silver A,
q. To aluminum In the case of a substance with high thermal conductivity such as 2, the entire object to be evaporated is heated almost uniformly, and even if the evaporation is carried out for a long time, as shown in Figure 7, the object to be evaporated 1 is heated almost uniformly. Stable vapor deposition is possible while maintaining the shape. However, when the material to be evaporated 1 is a material with low thermal conductivity, such as palladium Pd, as shown in FIG. Its shape becomes larger. This is because only the central part, where the electron beam intensity is high, is sufficiently melted, whereas the parts near the hearth recess 3 are not melted due to the influence of the hearth recess 3, which is cooled by cooling water, and the extent of the heat melting is This is because there is a difference in
このように被蒸発物1の中央部に凹部24が形成される
現象は熱伝導度が0.4 c a 117cm 、 s
−deg以下の物質を被蒸発物にしたときによく起こる
ものである。電子ビームを広範囲に照射すれば凹部24
の形成は避けられると考えられるかもしれぬが、いくら
広範囲に照射してもその強度分布にはどうしても、大小
が生じてしまい、強度のより強い部分に凹部24が生じ
てしまう。またハース内の冷却水の流量を少なくするな
どして冷却程度を下げればよいと考えられるかもしれぬ
が、ハース全体の熱容量は非常に大きいだめ、その程度
は小さいものの、やはりその冷却作用により、凹部24
が形成されてしまう。The phenomenon in which the recess 24 is formed in the center of the object 1 to be evaporated as described above has a thermal conductivity of 0.4 ca 117 cm, s.
This often occurs when a substance below -deg is used as a substance to be evaporated. If the electron beam is irradiated over a wide area, the recess 24
Although it may be thought that the formation of rays can be avoided, no matter how wide the area is irradiated, the intensity distribution will inevitably vary in magnitude, and recesses 24 will occur in areas where the intensity is stronger. Also, it may be thought that it would be better to reduce the degree of cooling by reducing the flow rate of cooling water inside the hearth, but the heat capacity of the whole hearth is extremely large, and although the degree is small, the cooling effect still Recess 24
is formed.
このように被蒸発物に凹部が形成されると被蒸発物の蒸
発方向に不規則な偏りが発生し、水晶振動子板と基板と
の薄膜堆積の比率がずれてしまい、正確な蒸着速度ので
きなくなる。まだ、凹部が大きくなるに従い、ハース凹
部の底面からの冷却作用をさらに受けるようになり、同
じ蒸着速度を得るためにも、電子ビームパワー≠(段々
、ナさくkってしまう。その結果として、第7図dに示
すように凹部24がハース底面13近くまで達し、電子
ビームがハース底面13を加熱し、ハース底面13に穴
をあけてしまう危険性がでてくる問題点を有している。When depressions are formed in the evaporator, the evaporation direction of the evaporator becomes irregular, and the thin film deposition ratio between the crystal oscillator plate and the substrate deviates, making it difficult to accurately determine the evaporation rate. become unable. However, as the recess becomes larger, it is further subjected to cooling action from the bottom of the hearth recess, and in order to obtain the same deposition rate, the electron beam power becomes smaller and smaller.As a result, As shown in FIG. 7d, the concave portion 24 reaches close to the bottom surface 13 of the hearth, and there is a problem that the electron beam heats the bottom surface 13 of the hearth and there is a risk of making a hole in the bottom surface 13 of the hearth. .
本発明は上記問題点を解消するもので、被蒸発物に電子
ビーエを収束させて当て、被蒸発物を加熱しても、被蒸
発物に凹部が形成されず、安定な蒸着ができる電子ビー
ム蒸着装置および電子ビーム蒸着方法を提供することを
目的とするものである。The present invention solves the above-mentioned problems, and the electron beam is focused and applied to the object to be evaporated, and even when the object to be evaporated is heated, no recesses are formed in the object to be evaporated, and stable evaporation can be achieved. An object of the present invention is to provide a vapor deposition apparatus and an electron beam vapor deposition method.
問題点を解決するだめの手段
本発明は、真空容器内において被蒸発物を電子ビームで
加熱して蒸発させ、基板に薄膜を形成する電子ビーム蒸
着装置において、被蒸発物を収納するルツボと、ハース
凹部との間に空間部を設けた状態でルツボを支持する構
成を採るものである。Means for Solving the Problems The present invention provides an electron beam evaporation apparatus that heats and evaporates a material to be evaporated with an electron beam in a vacuum container to form a thin film on a substrate, and provides a crucible for storing a material to be evaporated; The crucible is supported with a space provided between the crucible and the hearth recess.
また、ルツボとハース凹部との間に空間部を設けた状態
で支持した前記ルツボ内に被蒸発物を収納し、前記被蒸
発物に電子ビームを収束して当てることによって被蒸発
物を加熱蒸発させ基板に薄膜を形成する電子ビーム蒸着
方法である。Further, the material to be evaporated is stored in the crucible supported with a space provided between the crucible and the hearth recess, and the material to be evaporated is heated and evaporated by converging and applying an electron beam to the material to be evaporated. This is an electron beam evaporation method that forms a thin film on a substrate.
作 用
ルツボの中に被蒸発物を収納し、このルツボと、ハース
凹部との間に空間部を設けた状態でルツボを支持するこ
とにより、被蒸発物は冷却されだハース凹部から遮断さ
れて断熱状態が維持される。By storing the material to be evaporated in the crucible and supporting the crucible with a space provided between the crucible and the hearth recess, the material to be evaporated is cooled and is isolated from the hearth recess. Adiabatic conditions are maintained.
このため、電子ビームで加熱した場合、被蒸発物は全体
がほぼ均一に加熱され、電子ビーム強度の強い部位であ
っても被蒸発物に凹部は形成されず、安定な蒸発状態が
維持できる。Therefore, when heated with an electron beam, the entire object to be evaporated is heated almost uniformly, and even in areas where the electron beam intensity is strong, no recesses are formed in the object to be evaporated, and a stable evaporation state can be maintained.
実施例 以下に本発明の実施例を示す。Example Examples of the present invention are shown below.
第1図は本発明に基づく構成の一例である。ハース2の
ハース凹部3に比べて寸法的に小さなルツボ凹部5の上
端にツバ部6を設け、このツバ部6とハース凹部3の上
端に続くハース上面7とで接触させて、ルツボ4をハー
ス凹部3に支持する。FIG. 1 shows an example of a configuration based on the present invention. A collar portion 6 is provided at the upper end of the crucible recess 5 which is dimensionally smaller than the hearth recess 3 of the hearth 2, and the crucible 4 is brought into contact with the upper surface 7 of the hearth following the upper end of the hearth recess 3. It is supported in the recess 3.
これによってルツボ凹部5とハース凹部3の間の全域に
わたって空間部8を実現する。そしてハース四部3に被
蒸発物1を収納する。例えば、被蒸発物1をパラジウム
Pdとした場合、ルツボ4はパラジウムPdの融点よシ
も高い融点を有する材質にすることが安定な蒸着状態を
得る上で望ましい。パラジウムの融点は約18oo℃で
あるのでルツボとしては融点が約23oo℃のアルミナ
A22o3.約2600℃ノBN、約28oo℃の酸化
ベリリウムBed、約3000℃の窒化シリコンSiC
等を用いることが望ましい。しかし、蒸気圧が高く、融
点以下で蒸発する被蒸発物については、この蒸発温度に
耐えられるルツボ材質を選定してもよい。第2図は第1
図に示す構成で、ルツボ材質をBNとしてパラジウムを
一定蒸着速度で蒸着させたときの、電子ビームパワーを
時間の経過とともに求めたものである。同図に比較のた
め、破線で第6図に示す従来例の構成でパラジウムPd
を同一蒸着速度で蒸着したときの電子ビームパワー値を
示している。比較例(破線)はハース凹部3からの冷却
作用を受けるため同一の蒸着速度を得るためには、よシ
大きいパワーを必要としており、そのパワー値も時間の
経過とともに大きくなっている。これは被蒸発物に凹部
が形成され、それが成長するだめであり、ハース凹部が
らの冷却作用を段々、受けることによるものである。As a result, a space 8 is formed over the entire area between the crucible recess 5 and the hearth recess 3. Then, the material to be evaporated 1 is stored in the four hearth parts 3. For example, when the material to be evaporated 1 is palladium Pd, it is desirable for the crucible 4 to be made of a material having a melting point higher than that of palladium Pd in order to obtain a stable vapor deposition state. Since the melting point of palladium is about 180°C, the crucible should be alumina A22o3. BN at about 2600℃, Beryllium oxide bed at about 28oo℃, silicon nitride SiC at about 3000℃
It is desirable to use the following. However, for substances to be evaporated that have a high vapor pressure and evaporate below the melting point, a crucible material that can withstand this evaporation temperature may be selected. Figure 2 is the first
In the configuration shown in the figure, the electron beam power was determined over time when palladium was deposited at a constant deposition rate using BN as the crucible material. For comparison, the conventional configuration shown in FIG.
It shows the electron beam power value when depositing at the same deposition rate. The comparative example (broken line) receives the cooling effect from the hearth recess 3, and thus requires much higher power in order to obtain the same deposition rate, and the power value also increases with the passage of time. This is due to the fact that a recess is formed in the evaporated material, which grows, and is gradually subjected to the cooling effect of the hearth recess.
これに対し、本発明の実施例では、一定のパワー値が維
持されており、被蒸発物にも凹部は形成されない。この
ように本発明により安定な蒸着が実現できる。On the other hand, in the embodiment of the present invention, a constant power value is maintained and no recess is formed in the evaporated object. In this manner, stable vapor deposition can be achieved by the present invention.
第3図は本発明の別の実施例を示しだものである。実施
例1に示したツバ付きルツボを使用し、ツバ部6とハー
ス凹部3の上端に続くハース上面7との間にスペーサ部
9を介したものである。このスペーサ部9に熱伝導度の
極めて低い二酸化ケイ素3102等を用いることにより
、実施例1よりも断熱効果を上げることができ、さらに
安定な蒸着を実施することができる。FIG. 3 shows another embodiment of the invention. The flanged crucible shown in Example 1 is used, and a spacer portion 9 is interposed between the flanged portion 6 and the hearth upper surface 7 continuing to the upper end of the hearth recessed portion 3. By using silicon dioxide 3102 or the like having extremely low thermal conductivity for the spacer portion 9, it is possible to improve the heat insulation effect more than in Example 1, and to perform more stable vapor deposition.
第4図は本発明の3番目の実施例を示したものである。FIG. 4 shows a third embodiment of the invention.
実施例1のツバ付きルツボのソバ部6に突起部1oを設
け、この突起部10とハース上面7との接触でルツボ4
を支持するものであシ、実施例2と同様に断熱効果を上
げることができる。A protrusion 1o is provided on the buckle part 6 of the flanged crucible of Example 1, and the contact between the protrusion 10 and the top surface 7 of the hearth causes the crucible 4 to
The heat insulating effect can be improved as in the second embodiment.
第6図は本発明の4番目の実施例を示したものである。FIG. 6 shows a fourth embodiment of the invention.
ルツボ凹部5の底面部11に脚部12を設け、脚部12
とハース凹部3の底面13との接触アルツボ4を支持し
て、ハース凹部3とルツボ 4との間に空間部8を形
成するものであり、同様に被蒸発物1に凹部の形成はな
く、安定な蒸着が実現できる。A leg portion 12 is provided on the bottom surface portion 11 of the crucible recessed portion 5, and the leg portion 12
The crucible 4 is supported by contact with the bottom surface 13 of the hearth recess 3, and a space 8 is formed between the hearth recess 3 and the crucible 4. Similarly, there is no recess formed in the material to be evaporated 1. Stable vapor deposition can be achieved.
以上に示した実施例はすべてルツボ凹部5とハース凹部
3の間の全域にわたって空間部8を実現したものである
が、空間部をルツボ凹部5とハース凹部の間の一部に形
成しても、若干、断熱効果は低下するものの、安定な蒸
着が実現できる。In all of the embodiments shown above, the space 8 is formed over the entire area between the crucible recess 5 and the hearth recess 3, but even if the space is formed in a part between the crucible recess 5 and the hearth recess. Although the insulation effect is slightly reduced, stable vapor deposition can be achieved.
また、ここでは被蒸着物をパラジウムPdとして説明し
たが、クロムCr、ニッケルNi、スズSnやアンチモ
ンsbを始めとする熱伝導率が0.4c a 117c
m 、 s −d e g以下の低い他の物質について
も本発明を効果的に適用できる。さらに、電子ビーム加
熱によって被蒸発物を蒸発させ、それをプラズマ中を通
過させて、イオン化して基板に薄膜を形成するイオンブ
レーティング法においても本考案を適用することができ
る。In addition, although the material to be deposited is described here as palladium Pd, other materials having a thermal conductivity of 0.4c a 117c, including chromium Cr, nickel Ni, tin Sn, and antimony sb, are used.
The present invention can also be effectively applied to other substances with low m, s-de g or lower. Furthermore, the present invention can also be applied to an ion blating method in which a substance to be evaporated is evaporated by electron beam heating, passed through plasma, and ionized to form a thin film on a substrate.
発明の効果
以上のように本発明によれば、電子ビーム蒸着装置およ
び方法において、被蒸発物を収納するルツボと、ハース
凹部との間に空間部を設けた状態でルツボを支持する構
成を採ることにより、たとえ被蒸発物が、0.4cal
l/cm、 g−deg以下の低い熱伝導度の物質であ
っても、被蒸発物には凹部が形成されず、安定な蒸着状
態が維持でき、その工業的価値は非常に高い。Effects of the Invention As described above, according to the present invention, in the electron beam evaporation apparatus and method, a structure is adopted in which the crucible is supported with a space provided between the crucible that accommodates the material to be evaporated and the hearth recess. Therefore, even if the evaporated material is 0.4 cal
Even if the substance has a low thermal conductivity of 1/cm, g-deg or less, no recesses are formed in the evaporator and a stable evaporation state can be maintained, so its industrial value is very high.
第1図は本発明の一実施例における電子ビーム蒸着装置
の要部断正面図、第2図は同装置の効果を説明するため
の特性図、第3図、第4図、第5図は本発明の他の実施
例における電子ビーム蒸着装置の断正面図、第6図およ
び第7図は従来例における電子ビーム蒸着装置断正面図
である。
1・・・・・・被蒸発物、2・・・・・・ハース、3・
・・・・・ハース凹部、4・・・・・・ルツボ、6・・
・・・・ルツボ凹部、8・・・・・・空間部。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図
第2図
Olθ 2θ 3θ 4θ杵 開
(剌
第3図
第4図FIG. 1 is a sectional front view of main parts of an electron beam evaporation apparatus according to an embodiment of the present invention, FIG. 2 is a characteristic diagram for explaining the effects of the apparatus, and FIGS. 3, 4, and 5 are A sectional front view of an electron beam evaporation apparatus according to another embodiment of the present invention, and FIGS. 6 and 7 are sectional front views of an electron beam evaporation apparatus in a conventional example. 1... Evaporate matter, 2... Haas, 3.
... Hearth recess, 4 ... Crucible, 6 ...
... Crucible recess, 8... Space. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Olθ 2θ 3θ 4θ Pestle Open
(Fig. 3, Fig. 4)
Claims (7)
して蒸発させ、基板に薄膜を形成する電子ビーム蒸着装
置において、被蒸発物を収納するルツボと、ハース凹部
との間に空間部を設けた状態でルツボを支持することを
特徴とする電子ビーム蒸着装置。(1) In an electron beam evaporation device that heats and evaporates a material to be evaporated with an electron beam in a vacuum container to form a thin film on a substrate, a space is provided between a crucible that stores the material to be evaporated and a hearth recess. An electron beam evaporation device characterized by supporting a crucible in a provided state.
構成する特許請求の範囲第1項記載の電子ビーム蒸着装
置。(2) The electron beam evaporation apparatus according to claim 1, wherein the crucible is made of a material having a higher melting point than the material to be evaporated.
を設け、このツバ部でルツボを支持する特許請求の範囲
第1項記載の電子ビーム蒸着装置。(3) The electron beam evaporation apparatus according to claim 1, wherein a collar is provided at the upper end of the crucible recess in which the material to be evaporated is accommodated, and the crucible is supported by the collar.
バ部との間にスペーサ部を介してルツボを支持する特許
請求の範囲第4項記載の電子ビーム蒸着装置。(4) The electron beam evaporation apparatus according to claim 4, wherein the crucible is supported via a spacer section between the upper surface of the hearth continuing to the upper end of the hearth recess and the flange of the crucible.
ツボを支持する特許請求の範囲第4項記載の電子ビーム
蒸着装置。(5) The electron beam evaporation apparatus according to claim 4, wherein a protrusion is provided on the flange of the crucible, and the crucible is supported by the protrusion.
で支持した前記ルツボ内に被蒸発物を収納し、前記被蒸
発物に電子ビームを収束して当てることによって被蒸発
物を加熱蒸発させ基板に薄膜を形成する電子ビーム蒸着
方法。(6) The material to be evaporated is stored in the crucible supported with a space provided between the crucible and the hearth recess, and the material to be evaporated is heated by converging and applying an electron beam to the material to be evaporated. An electron beam evaporation method that uses evaporation to form a thin film on a substrate.
・s−deg以下であることを特徴とする特許請求の範
囲第6項記載の電子ビーム蒸着方法。(7) The thermal conductivity of the material to be evaporated is 0.4 cal/cm
- The electron beam evaporation method according to claim 6, wherein the electron beam evaporation is s-deg or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2140286A JPS62180067A (en) | 1986-02-03 | 1986-02-03 | Method and apparatus for electron beam vapor deposition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2140286A JPS62180067A (en) | 1986-02-03 | 1986-02-03 | Method and apparatus for electron beam vapor deposition |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62180067A true JPS62180067A (en) | 1987-08-07 |
Family
ID=12054056
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2140286A Pending JPS62180067A (en) | 1986-02-03 | 1986-02-03 | Method and apparatus for electron beam vapor deposition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62180067A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0211156U (en) * | 1988-06-30 | 1990-01-24 | ||
JP2009287087A (en) * | 2008-05-29 | 2009-12-10 | Dainippon Printing Co Ltd | Vacuum film deposition apparatus |
WO2013001827A1 (en) * | 2011-06-29 | 2013-01-03 | パナソニック株式会社 | Heating apparatus, vacuum-heating method and method for manufacturing thin film |
-
1986
- 1986-02-03 JP JP2140286A patent/JPS62180067A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0211156U (en) * | 1988-06-30 | 1990-01-24 | ||
JP2009287087A (en) * | 2008-05-29 | 2009-12-10 | Dainippon Printing Co Ltd | Vacuum film deposition apparatus |
WO2013001827A1 (en) * | 2011-06-29 | 2013-01-03 | パナソニック株式会社 | Heating apparatus, vacuum-heating method and method for manufacturing thin film |
JP5584362B2 (en) * | 2011-06-29 | 2014-09-03 | パナソニック株式会社 | Heating device, vacuum heating method and thin film manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4339300A (en) | Process for smoothing surfaces of crystalline materials | |
US4856457A (en) | Cluster source for nonvolatile species, having independent temperature control | |
JPS62180067A (en) | Method and apparatus for electron beam vapor deposition | |
JP4807901B2 (en) | Thin film production method | |
US20050268855A1 (en) | Evaporative deposition with enhanced film uniformity and stoichiometry | |
US7022191B2 (en) | Method of crystallizing amorphous silicon layer and crystallizing apparatus thereof | |
JP2719039B2 (en) | Method for forming CuInSe 2 lower compound thin film | |
JPH0927454A (en) | Mask for selective evaporation | |
JPH0644893A (en) | Cathode structure | |
JP3451694B2 (en) | Vacuum deposition equipment | |
JPH0558775A (en) | Molecular-beam epitaxy device | |
JPS61104071A (en) | Vapor depositing method and device therefor | |
JPH0313566A (en) | Production of thin film | |
JP2790654B2 (en) | Method for forming titanium dioxide film on plastic lens substrate | |
JPH0241165Y2 (en) | ||
JPH08158041A (en) | Production of transparent conductive film and device therefor | |
JP2835977B2 (en) | Temperature control device | |
JPS6043914B2 (en) | Sputtering film forming method | |
JPS58165315A (en) | Forming method of thin crystal film | |
JPH026385A (en) | Method for forming thin film and apparatus therefor | |
JPH03138925A (en) | Semiconductor-film crystallizing method | |
JPH02149402A (en) | Process and device for preparing oxide superconductor | |
JPH03274257A (en) | Method and apparatus for producing thin oxide film | |
JPH04350164A (en) | Planar magnetron sputtering device | |
JPS61149474A (en) | Heating method of thin film material in vacuum deposition |