JPH08158041A - Production of transparent conductive film and device therefor - Google Patents

Production of transparent conductive film and device therefor

Info

Publication number
JPH08158041A
JPH08158041A JP29424994A JP29424994A JPH08158041A JP H08158041 A JPH08158041 A JP H08158041A JP 29424994 A JP29424994 A JP 29424994A JP 29424994 A JP29424994 A JP 29424994A JP H08158041 A JPH08158041 A JP H08158041A
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive film
vapor deposition
substrate
boat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29424994A
Other languages
Japanese (ja)
Inventor
Hirobumi Ogawa
博文 小川
Kenji Samejima
賢二 鮫島
Kazuyuki Nagatsuma
一之 長妻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP29424994A priority Critical patent/JPH08158041A/en
Publication of JPH08158041A publication Critical patent/JPH08158041A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PURPOSE: To prepare a low resistance smooth transparent conductive film with high transmission free from fine particulate deposition. CONSTITUTION: This device for producing the transparent conductive film is composed of a rotating disk 9 provided with substrates 10 along the circumferential part, a vapor deposition boat 1 installed to face the circumference of the rotating disk 9 and for vaporizing a metal 2 consisting essentially of In and devices 3, 4 for plasma-discharging in the area between the vapor depositing boat 1 to the substrates 10. The metal consisting essentially of In is vapor deposited and oxidized in an atmosphere of a gas containing oxygen by plasma- discharging in the area between the vapor depositing boat 1 and the substrate 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化インジウム系透明
導電膜の製造方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for producing an indium oxide type transparent conductive film.

【0002】[0002]

【従来の技術】従来、光センサ,一次元ラインセンサ,
液晶表示,太陽電池,撮像デバイス等の受光デバイス用
透明導電膜として、酸化インジウムを主体とする透明導
電膜が広く用いられ、上記導電膜は一般に、次の製造方
法が知られている。
2. Description of the Related Art Conventionally, an optical sensor, a one-dimensional line sensor,
As a transparent conductive film for a light receiving device such as a liquid crystal display, a solar cell, and an imaging device, a transparent conductive film mainly containing indium oxide is widely used, and the conductive film is generally known by the following manufacturing method.

【0003】(1)高周波スパッタリング法により、ア
ルゴンまたは酸素雰囲気中で、基板上に、In23とS
nO2 の焼結体からなるターゲットをスパッタさせて、
酸化インジウムを主体とする透明導電膜を得る方法。
(1) In 2 O 3 and S are deposited on a substrate by an RF sputtering method in an argon or oxygen atmosphere.
Sputter a target consisting of a sintered body of nO 2 ,
A method for obtaining a transparent conductive film mainly composed of indium oxide.

【0004】(2)電子ビーム蒸着法により、酸素雰囲
気中で、加熱基板上にIn23とSnO2 からなる焼結
体を蒸着して、酸化インジウムを主体とする透明導電膜
を得る方法。
(2) A method of depositing a sintered body of In 2 O 3 and SnO 2 on a heating substrate in an oxygen atmosphere by an electron beam evaporation method to obtain a transparent conductive film mainly containing indium oxide. .

【0005】(3)電子ビーム蒸着法により、酸素雰囲
気中で、加熱基板上にIn−Sn系合金を蒸着した後、
酸素ガス雰囲気中で加熱処理して、酸化インジウムを主
体とする透明導電膜を得る方法。
(3) After depositing an In--Sn alloy on a heating substrate in an oxygen atmosphere by electron beam evaporation,
A method of obtaining a transparent conductive film containing indium oxide as a main component by heat treatment in an oxygen gas atmosphere.

【0006】(4)抵抗加熱蒸着法により、酸素雰囲気
中で、加熱基板上にIn−Sn系合金を蒸着して、酸化
インジウムを主体とする透明導電膜を得る方法。
(4) A method of vapor-depositing an In--Sn alloy on a heating substrate in an oxygen atmosphere by a resistance heating vapor deposition method to obtain a transparent conductive film mainly containing indium oxide.

【0007】上記方法に関しては、例えば、文献アール
シーエー レビュー(RCAReview)Vol.32,Jun,
289〜296頁(1971)、または応用物理,第4
9巻,第1号,2〜16頁(1980)に記載されてい
る。
[0007] Regarding the above-mentioned method, for example, the document RCA Review Vol. 32, Jun,
289-296 (1971), or Applied Physics, 4th
9, Vol. 1, pp. 2-16 (1980).

【0008】[0008]

【発明が解決しようとする課題】上記従来技術のうち、
(1),(2)の方法では、導電性的は良いが、微粒子状
の欠陥が発生し易く、また、(3),(4)の方法では、
微粒子状の欠陥は発生しにくいが、必ずしも充分な導電
性が得難い欠点があった。また、(4)の方法では、蒸
着ボートが酸素雰囲気中では蒸発源材料と反応したり、
溶断する欠点があった。
Of the above-mentioned conventional techniques,
The methods (1) and (2) have good conductivity, but easily generate fine particle defects, and the methods (3) and (4)
Although fine particle-shaped defects are unlikely to occur, there is a drawback that it is not always possible to obtain sufficient conductivity. In the method (4), the vapor deposition boat reacts with the evaporation source material in the oxygen atmosphere,
There was a drawback of melting.

【0009】本発明の目的は、上記問題を解決し得る製
造方法および装置を提供することにある。また、本発明
の他の目的は、低抵抗,高透過率で、微粒子状付着物の
ない平滑な高品質の透明導電膜を安定に提供することに
ある。
An object of the present invention is to provide a manufacturing method and apparatus which can solve the above problems. Another object of the present invention is to stably provide a smooth, high-quality transparent conductive film having a low resistance and a high transmittance, and having no particulate deposits.

【0010】[0010]

【課題を解決するための手段】上記目的は、酸素を含有
するガス雰囲気中で、加熱保持された基板上に、Inを
主体とする金属を蒸着せしめるとき、蒸着ボートと基板
までの領域をプラズマ放電せしめることにより達成され
る。
Means for Solving the Problems The above-mentioned object is to evaporate a metal mainly composed of In on a substrate heated and held in a gas atmosphere containing oxygen when a region up to the deposition boat and the substrate is plasma-deposited. It is achieved by discharging.

【0011】また、Inを主体とする金属を蒸発させる
絶縁性硬質セラミック部材と金属材料からなる蒸着ボー
トを用い、酸素を含有するガス雰囲気圧力が1mTorr以
上,50mTorr以下の圧力で、蒸着速度が0.5nm/m
in以上,7.0nm/min以下,基板温度100℃以上,
300℃以下にすることにより達成される。
In addition, a vapor deposition boat made of a metal material and an insulating hard ceramic member for evaporating a metal containing In as a main component is used, and a gas atmosphere pressure containing oxygen is 1 mTorr or more and 50 mTorr or less, and a vapor deposition rate is 0. 0.5 nm / m
in or more, 7.0 nm / min or less, substrate temperature 100 ° C or more,
It is achieved by keeping the temperature below 300 ° C.

【0012】[0012]

【作用】発明者らは、従来技術における導電率低下、微
粒子状欠陥の発生ならびに蒸着ボートとの反応の要因を
詳細に調査検討した。その結果、通常の抵抗加熱蒸着法
では蒸発物と酸素との反応が不充分で、そのため抵抗値
が下がらないこと、蒸発源にIn23とSnO2 からな
る焼結体を用いると、膜形成中に蒸発源から焼結体の微
少破片が飛来して基板に付着し、微粒子状欠陥となるこ
と、また、蒸着ボート材質がW,MoではIn23と反
応して、その酸化物とInが生成され蒸発したり、T
a,Ptのボートでは速やかに溶断して蒸発の継続がで
きないことが判明した。
The present inventors have investigated in detail the factors of the decrease in conductivity, the generation of fine particle defects and the reaction with the vapor deposition boat in the prior art. As a result, in the usual resistance heating vapor deposition method, the reaction between the vaporized substance and oxygen is insufficient, so that the resistance value does not decrease, and when a sintered body composed of In 2 O 3 and SnO 2 is used as the vaporization source, the film During the formation, minute fragments of the sintered body fly from the evaporation source and adhere to the substrate to form fine particles, and when the vapor deposition boat material is W or Mo, it reacts with In 2 O 3 to form an oxide thereof. And In are generated and evaporated, or T
It was found that the boats of a and Pt were quickly melted and could not continue evaporation.

【0013】本発明では、Inを主体とする金属を、酸
素雰囲気中で蒸発する際、蒸着ボートと基板までの領域
をプラズマ放電させることにより、蒸発物と酸素との反
応を活性化させ、また、蒸着ボートに酸素雰囲気中でも
蒸発源材料と反応しない絶縁性硬質セラミック部材と金
属材料を組み合わせたものを用いることにより、不純物
がなく、かつ蒸着の中断が無い、しかも従来の抵抗加熱
蒸着法では実現できなかった低抵抗のIn系透明導電膜
を容易に出来るようになった。その結果、微粒子状欠陥
のない高導電率,高透過率の透明導電膜が得られた。
In the present invention, when a metal mainly composed of In is vaporized in an oxygen atmosphere, a region between the vapor deposition boat and the substrate is plasma-discharged to activate the reaction between the vaporized substance and oxygen, and By using a combination of an insulating hard ceramic member that does not react with the evaporation source material and a metal material in the vapor deposition boat, there are no impurities and there is no interruption of vapor deposition, and it is possible with the conventional resistance heating vapor deposition method. It has become possible to easily form a low resistance In-based transparent conductive film, which has not been possible. As a result, a transparent conductive film having high conductivity and high transmittance free of fine particle defects was obtained.

【0014】図1(A)は、本発明に使用した真空蒸着
装置の一例を示す概略図である。図中の1は蒸着ボー
ト、2は蒸発源材料、3,4はプラズマ放電電極、5は
電流端子、6はシールド、7はシャッタ、8は回転軸、
9は回転円板、10は基板、11は膜厚モニタ、12は
ヒータ、13は回転モータ、14はベルジャ、15はバ
ルブ、16は酸素導入バルブである。図1(B)は回転
円板9の上面図である。
FIG. 1A is a schematic view showing an example of a vacuum vapor deposition apparatus used in the present invention. In the figure, 1 is a vapor deposition boat, 2 is an evaporation source material, 3 and 4 are plasma discharge electrodes, 5 is a current terminal, 6 is a shield, 7 is a shutter, 8 is a rotating shaft,
Reference numeral 9 is a rotary disk, 10 is a substrate, 11 is a film thickness monitor, 12 is a heater, 13 is a rotary motor, 14 is a bell jar, 15 is a valve, and 16 is an oxygen introduction valve. FIG. 1B is a top view of the rotary disc 9.

【0015】図1(A)の蒸着ボート1にInを主体と
する金属からなる蒸発源材料2を充填し、回転円板9,
基板10を配置し、蒸着装置内を高真空に排気する。次
に、酸素ガスを導入して蒸着装置内を所定の圧力に保持
しつつ、回転円板9を一定速度で回転させ、基板10を
ヒータ12により所定の温度に加熱保持する。次に、プ
ラズマ放電電極3と4の間を放電させて蒸着ボート1と
基板10間をプラズマ領域にする。次に、蒸着ボート1
の電源から通電し、Inを主体とする金属を加熱溶解蒸
発せしめ、蒸着ボート1からの蒸発量が一定になるよう
に制御する。安定な蒸発量が得られるようになったら、
シャッタ7を開き、回転円板9上の各基板10にInを
主体とする金属を蒸着し、酸化しつつ、Inを主体とす
る酸化物からなる透明導電膜を得る。
The vapor deposition boat 1 shown in FIG. 1A is filled with an evaporation source material 2 made of a metal containing In as a main component, and a rotary disc 9 is provided.
The substrate 10 is placed and the inside of the vapor deposition apparatus is evacuated to a high vacuum. Next, while the oxygen gas is introduced and the inside of the vapor deposition apparatus is maintained at a predetermined pressure, the rotary disk 9 is rotated at a constant speed, and the substrate 12 is heated and maintained at a predetermined temperature by the heater 12. Next, the plasma discharge electrodes 3 and 4 are discharged to form a plasma region between the vapor deposition boat 1 and the substrate 10. Next, the evaporation boat 1
Power is supplied from the power source to heat, melt, and evaporate the metal mainly containing In, and the evaporation amount from the evaporation boat 1 is controlled to be constant. Once you get a stable evaporation,
The shutter 7 is opened, and a metal mainly containing In is vapor-deposited on each substrate 10 on the rotating disk 9 and is oxidized to obtain a transparent conductive film made of an oxide mainly containing In.

【0016】この場合、Inを主体とする金属の蒸発量
は、シャッタの開閉とは無関係に、常に膜厚モニタ11
を用いて、蒸発速度が所定の値になるように制御する。
従って、本方法によれば、基板上に低抵抗のInを主体
とする酸化物透明導電膜を再現性よく得ることができ
る。
In this case, the evaporation amount of the metal mainly consisting of In is always irrespective of whether the shutter is opened or closed, and the film thickness monitor 11
Is used to control the evaporation rate to a predetermined value.
Therefore, according to the present method, it is possible to reproducibly obtain an oxide transparent conductive film mainly composed of In having a low resistance on the substrate.

【0017】蒸着ボートはInを主体とする酸化物なら
びに雰囲気ガスと反応しないことが重要である。このよ
うな目的には、例えば、中心部に蒸発源材料を充填する
ための窪みを有する傍熱型のAl23又はAl23とS
iO2 を主成分とする硬質セラミックボートが使用でき
る。
It is important that the vapor deposition boat does not react with the oxide containing In as a main component and the atmospheric gas. For such a purpose, for example, indirectly heated Al 2 O 3 or Al 2 O 3 and S having a recess for filling the evaporation source material in the center is used.
hard ceramic boat to the iO 2 as a main component can be used.

【0018】図2は本発明に用いる蒸着ボートの一例を
示す外観図である。図中の17は絶縁性硬質セラミッ
ク、18は金属線、19はInを主体とする金属などの
蒸着源材料を充填するための円形状の窪みである。蒸着
ボートを加熱するには、例えば、絶縁性硬質セラミック
の側面の貫通した孔にPt−Rh合金からなる金属線を
通し、金属線に通電すればよい。上記金属線は必ずしも
Pt−Rhである必要はなく、Pt,Ir、ないしはそ
れらの合金でもよい。
FIG. 2 is an external view showing an example of a vapor deposition boat used in the present invention. In the figure, 17 is an insulating hard ceramic, 18 is a metal wire, and 19 is a circular recess for filling a vapor deposition source material such as a metal mainly containing In. To heat the vapor deposition boat, for example, a metal wire made of a Pt-Rh alloy may be passed through a hole penetrating the side surface of the insulating hard ceramic, and the metal wire may be energized. The metal wire is not necessarily Pt-Rh, and may be Pt, Ir, or an alloy thereof.

【0019】以上、蒸発源材料がInを主体とする金属
は、InとSnの場合について述べたが、更にSb,C
d,Zn,Ti等を微量追加ドーピングしたものでもよ
い。
As described above, the case where the evaporation source material is mainly composed of In has been described as In and Sn.
It may be one in which a small amount of d, Zn, Ti or the like is additionally doped.

【0020】また、プラズマ放電させる雰囲気ガスや蒸
着時の反応性ガスとしては酸素に限られるわけではな
く、例えば、酸素と水蒸気,炭酸ガス,アルゴン,窒素
との混合ガスでもよい。
The atmosphere gas for plasma discharge and the reactive gas at the time of vapor deposition are not limited to oxygen, but may be, for example, a mixed gas of oxygen and water vapor, carbon dioxide gas, argon and nitrogen.

【0021】図3は図1の真空蒸着装置及び図2の本発
明の蒸着ボートを用いて、InにSnを5重量%加えた
蒸発源材料で、基板温度200℃,蒸着速度2.5nm
/min の条件下において作製した酸化In−Sn系薄膜
の、比抵抗および微粒子状欠陥数と、作製時の酸素ガス
圧およびプラズマ放電の有無との関係を示す図である。
FIG. 3 shows an evaporation source material obtained by adding 5% by weight of Sn to In using the vacuum evaporation apparatus of FIG. 1 and the evaporation boat of the present invention of FIG. 2, the substrate temperature is 200 ° C., and the evaporation rate is 2.5 nm.
FIG. 3 is a diagram showing the relationship between the specific resistance and the number of fine particle defects of the oxidized In—Sn-based thin film produced under the condition of / min, the oxygen gas pressure during production, and the presence or absence of plasma discharge.

【0022】プラズマ放電有(曲線a)の酸素ガス圧1
0mTorrで形成した薄膜は、比抵抗が同条件でのプラズ
マ放電無(曲線b)に比べて約1/2の値で、約0.3
mΩ・cmとなった。また、可視光での透過率は85%以
上の良好な透明導電性を示した。しかも、曲線(c)に
示されるように、微粒子状欠陥数も少ない。
Oxygen gas pressure 1 with plasma discharge (curve a)
The thin film formed at 0 mTorr has a specific resistance of about 1/2 of that of the case without plasma discharge under the same conditions (curve b), which is about 0.3.
It became mΩ · cm. In addition, the visible light transmittance was 85% or more, indicating good transparent conductivity. Moreover, as shown by the curve (c), the number of fine particle defects is small.

【0023】プラズマ放電有の場合、酸素ガス圧1.0
〜50mTorrの領域Rpでは、比抵抗,透過率とも良好
で、また膜表面の平滑性が極めて良く、微粒子状の欠陥
もない。これに対し、酸素ガス圧が1.0mTorr 以下で
は、抵抗値が急激に大きくなり、一方、50mTorr以上
では、微粒子状の欠陥が増大する。
With plasma discharge, oxygen gas pressure 1.0
In the region Rp of ˜50 mTorr, both the specific resistance and the transmittance are good, the smoothness of the film surface is very good, and there are no fine particle defects. On the other hand, when the oxygen gas pressure is 1.0 mTorr or less, the resistance value sharply increases, while when it is 50 mTorr or more, fine particle defects increase.

【0024】図4は図1の真空蒸着装置及び図2の本発
明蒸着ボートを用いて、InにSnを5重量%加えた蒸
発源材料で、基板温度200℃,酸素ガス10mTorrの
条件下において作製した酸化In−Sn系薄膜の比抵抗
および微粒子状欠陥数と、作製時の蒸着速度およびプラ
ズマ放電の有無との関係を示す図である。プラズマ放電
有(曲線d)での蒸着速度が2.5nm/minで形成した
薄膜は、比抵抗が上記同条件でのプラズマ放電無(曲線
e)の場合に比べて約1/2,約0.3mΩ・cmで、可
視光での透過率は85%以上の良好な透明導電性を示
す。また、同図の曲線(f)のように、微粒子状欠陥数
も少ない。
FIG. 4 shows an evaporation source material obtained by adding 5 wt% of Sn to In using the vacuum vapor deposition apparatus of FIG. 1 and the vapor deposition boat of the present invention of FIG. 2 under the conditions of substrate temperature of 200 ° C. and oxygen gas of 10 mTorr. It is a figure which shows the specific resistance of the produced oxide In-Sn type | system | group thin film, the number of fine particle defects, the vapor deposition rate at the time of production, and the relationship of the presence or absence of plasma discharge. The thin film formed at a deposition rate of 2.5 nm / min with plasma discharge (curve d) has a specific resistance of about 1/2 or about 0 as compared with the case without plasma discharge under the same conditions (curve e). It exhibits good transparent conductivity with a transmittance of visible light of 85% or more at 0.3 mΩ · cm. Further, as shown by the curve (f) in the figure, the number of fine particle defects is small.

【0025】プラズマ放電有の場合、蒸着速度が0.5
〜7.0nm/min の領域(RV )では、比抵抗,透過
率とも良好で、また膜表面の平滑性が極めて良く、微粒
子状の欠陥もない。蒸着速度が0.5nm/min以下では
抵抗値が急激に大きくなり、生産性も悪く、一方、7.
0nm/min以上では、微粒子状の欠陥が増大する。
With plasma discharge, the deposition rate is 0.5.
In the region (R V ) of ˜7.0 nm / min, the specific resistance and the transmittance are good, the smoothness of the film surface is very good, and there are no fine particle defects. When the deposition rate is 0.5 nm / min or less, the resistance value suddenly increases and the productivity is poor. On the other hand, 7.
At 0 nm / min or more, fine particle defects increase.

【0026】図5は図1の真空蒸着装置及び図2の蒸着
ボートを用いて、InにSnを5重量%加えた蒸発源材
料で、酸素ガス10mTorr,蒸着速度2.5nm/minの
条件下において作製した酸化In−Sn系薄膜の比抵
抗,透過率、および膜表面の凹凸の大きさと作製時の基
板温度およびプラズマ放電有無との関係を示す図であ
る。プラズマ放電有(曲線g)で基板温度を200℃と
して形成した薄膜は、比抵抗が上記同条件でのプラズマ
放電無(曲線h)の場合に比べて約1/2の値で、約
0.3mΩ・cm となり、可視光での透過率は80%以上
の良好な透明導電性を示す。また、同図の曲線(i)に
示すように膜表面の凹凸も小さい。
FIG. 5 shows an evaporation source material obtained by adding 5 wt% of Sn to In using the vacuum evaporation apparatus of FIG. 1 and the evaporation boat of FIG. 2 under the conditions of oxygen gas of 10 mTorr and evaporation rate of 2.5 nm / min. FIG. 6 is a diagram showing the relationship between the specific resistance, the transmittance, and the size of the irregularities on the film surface, the substrate temperature during production, and the presence or absence of plasma discharge, of the oxide In—Sn-based thin film produced in FIG. The thin film formed with plasma discharge (curve g) at a substrate temperature of 200 ° C. has a specific resistance of about half that of the case without plasma discharge (curve h) under the same conditions as described above, and is about 0.1. It becomes 3 mΩ · cm, and the visible light transmittance is 80% or more, which shows good transparent conductivity. Further, as shown by the curve (i) in the figure, the unevenness of the film surface is small.

【0027】プラズマ放電有の場合、基板温度が100
〜300℃の領域(RT )では、比抵抗,透過率とも良
好で、また膜表面の平滑性が極めて良く、微粒子状の欠
陥もない。基板温度が100℃以下では抵抗値が急激に
大きくなり、また、透過率も悪くなる。一方、300℃
以上では薄膜の結晶性が進むため、膜表面の凹凸が大き
くなって平滑性が悪くなる。
With plasma discharge, the substrate temperature is 100.
In the region ( RT ) of up to 300 ° C, both the specific resistance and the transmittance are good, the smoothness of the film surface is very good, and there are no fine particle defects. When the substrate temperature is 100 ° C. or lower, the resistance value rapidly increases and the transmittance also deteriorates. On the other hand, 300 ° C
As described above, the crystallinity of the thin film progresses, so that the unevenness of the film surface becomes large and the smoothness deteriorates.

【0028】以上のことから、本発明のプラズマ放電中
で、Inを主体とする金属を蒸着ボートから蒸発させて
Inを主体とする酸化物導電性薄膜を形成する方法で
は、酸素ガス圧1.0〜50mTorr ,蒸着速度0.5〜
7.0nm/min ,基板温度が100〜300℃の範囲
が好適で、この場合、比抵抗,透過率とも良好で、また
膜表面の平滑性が極めて良く、微粒子状の欠陥もない等
の、高品質のInを主体とする酸化物透明導電膜が再現
性よく得られる。また、本発明での蒸発源材料のSn重
量%含有量は膜の抵抗値からみて、1〜20%が望まし
い。また、本発明の方法で形成した薄膜の厚みは10n
m以上,40nm以下が望ましく、それ以下では、抵抗
値が大きくなり、それ以上では、薄膜の結晶性が進み、
膜表面の凹凸が大きくなって平滑性が悪くなる恐れがあ
る。
From the above, in the method of forming an oxide conductive thin film containing In as a main component by evaporating a metal containing In as a main component from the vapor deposition boat in the plasma discharge of the present invention, the oxygen gas pressure is 1. 0-50mTorr, vapor deposition rate 0.5-
A range of 7.0 nm / min and a substrate temperature of 100 to 300 ° C. is preferable. In this case, the specific resistance and the transmittance are good, the smoothness of the film surface is very good, and there are no fine particle defects. A high-quality transparent conductive oxide film mainly composed of In can be obtained with good reproducibility. Further, the Sn weight% content of the evaporation source material in the present invention is preferably 1 to 20% in view of the resistance value of the film. The thickness of the thin film formed by the method of the present invention is 10 n.
m or more and 40 nm or less is desirable. Below that, the resistance value becomes large, and above that, the crystallinity of the thin film advances,
The unevenness of the film surface may become large and the smoothness may deteriorate.

【0029】また、本発明による透明導電膜を撮像管の
ターゲット電極に使用すれば、例えば、従来技術のスパ
ッタリング法による酸化インジウム系透明導電膜を用い
た撮像管に比べて、暗電流,白点状の画面欠陥が少な
く、より高い電圧を印加して動作させることが可能とな
り、より高感度の撮像管が実現できる。
Further, when the transparent conductive film according to the present invention is used as a target electrode of an image pickup tube, dark current and white spots are increased as compared with, for example, an image pickup tube using an indium oxide type transparent conductive film formed by a conventional sputtering method. The number of screen defects is small, it is possible to operate by applying a higher voltage, and an image pickup tube with higher sensitivity can be realized.

【0030】本発明による透明導電膜は上述の如き撮像
管だけでなく、透光性基板と透明導電膜と光導電膜とを
少なくとも具備してなる受光デバイス、例えば、光セン
サ,ラインセンサ,二次元センサ,太陽電池,液晶表
示,固体撮像素子等の透明導電膜に使用しても、上述の
撮像管の場合と同様に、暗電流,局所的画像欠陥の少な
い良好な受光デバイスが実現できることは勿論である。
The transparent conductive film according to the present invention is not limited to the above-described image pickup tube, but is also a light receiving device including at least a transparent substrate, a transparent conductive film, and a photoconductive film, such as an optical sensor, a line sensor, and a two-dimensional sensor. Even when used for a transparent conductive film such as a three-dimensional sensor, a solar cell, a liquid crystal display, and a solid-state image sensor, it is possible to realize a good light-receiving device with less dark current and local image defects as in the case of the above-mentioned image pickup tube. Of course.

【0031】[0031]

【実施例】【Example】

(実施例1)図1の真空蒸着装置及び図2の本発明蒸着
ボートを用いて、蒸着ボート1にInとSn5重量%合
金からなる蒸発源材料を充填する。次に、基板10を回
転円板9に配置し、蒸着装置内を真空度2nTorr以下に
排気し、回転円板を毎分50回転の一定速度で回転さ
せ、バルブ15と酸素導入バルブ16の開口率を調整し
て蒸着装置内の圧力を10mTorrに保持し、基板を20
0℃に加熱保持する。次に、プラズマ放電電極3と4間
を放電させて蒸着ボート1と基板10間をプラズマ領域
にする、次に、基板温度ならびに蒸着装置内の圧力を定
常状態に保ちつつ、蒸着ボート1の加熱電源(図示略)
から電流を通じて、蒸着を行う。
(Example 1) Using the vacuum vapor deposition apparatus of FIG. 1 and the vapor deposition boat of the present invention of FIG. 2, the vapor deposition boat 1 is filled with an evaporation source material made of an alloy of In and Sn 5 wt%. Next, the substrate 10 is placed on the rotary disk 9, the inside of the vapor deposition apparatus is evacuated to a vacuum degree of 2 nTorr or less, the rotary disk is rotated at a constant speed of 50 rpm, and the valve 15 and the oxygen introduction valve 16 are opened. The rate is adjusted to maintain the pressure in the vapor deposition device at 10 mTorr, and
Heat and hold at 0 ° C. Next, the plasma discharge electrodes 3 and 4 are discharged to form a plasma region between the vapor deposition boat 1 and the substrate 10. Next, the vapor deposition boat 1 is heated while maintaining the substrate temperature and the pressure in the vapor deposition device in a steady state. Power supply (not shown)
The vapor deposition is performed by passing an electric current from.

【0032】InとSn5重量%合金の蒸発速度は、あ
らかじめ、膜厚モニタ11の蒸発速度指示値と実際に基
板に堆積するInとSn5重量%合金の蒸着量との関係
を調べておき、得られた較正曲線に従って設定する。本
実施例では、InとSn5重量%合金の蒸着速度が2.
0nm/minになるように、蒸発速度を設定する。蒸発
速度が安定したところで、蒸着ボート上のシャッタ7を
開き、厚み25nmの酸化In−Sn系透明導電膜を形
成した。得られた薄膜の比抵抗は0.3mΩ・cm、可視
光での透過率は85%以上で、膜表面の平滑性が極めて
良く、微粒子状の欠陥も観測されなかった。
The evaporation rate of the In and Sn 5 wt% alloy was obtained by previously examining the relationship between the evaporation rate instruction value of the film thickness monitor 11 and the vapor deposition amount of the In and Sn 5 wt% alloy actually deposited on the substrate. Set according to the calibration curve provided. In the present embodiment, the vapor deposition rate of In and Sn 5 wt% alloy is 2.
The evaporation rate is set to be 0 nm / min. When the evaporation rate became stable, the shutter 7 on the evaporation boat was opened to form a 25 nm-thick oxidized In—Sn-based transparent conductive film. The specific resistance of the obtained thin film was 0.3 mΩ · cm, the transmittance with visible light was 85% or more, the smoothness of the film surface was extremely good, and no fine particle defects were observed.

【0033】(実施例2)図6は、撮像管のターゲット
部の概略断面図である。まず初めに、透光性ガラス基板
20の上に、ターゲット21として、実施例1と同じ方
法で酸化In−Sn系透明導電膜を膜厚25nm形成す
る。その上に別の真空蒸着装置で、正孔注入阻止層22
として、膜厚15nmの酸化セリウム薄膜を形成する。
次に、光導電膜23として、膜厚4μmの非晶質Se膜
を形成し、その上に、不活性ガス雰囲気中での蒸着法に
より、電子ビームラディング層24として、膜厚100
nmの多孔質Sb23膜を形成する。
(Embodiment 2) FIG. 6 is a schematic sectional view of a target portion of an image pickup tube. First, an In—Sn oxide transparent conductive film having a thickness of 25 nm is formed as a target 21 on the transparent glass substrate 20 by the same method as in the first embodiment. On top of that, another hole deposition blocking layer 22 is formed by another vacuum deposition apparatus.
As a result, a cerium oxide thin film having a film thickness of 15 nm is formed.
Next, an amorphous Se film having a film thickness of 4 μm is formed as the photoconductive film 23, and an electron beam rubbing layer 24 having a film thickness of 100 is formed on the amorphous Se film by vapor deposition in an inert gas atmosphere.
A porous Sb 2 S 3 film having a thickness of nm is formed.

【0034】以上により得られた蒸着基板を撮像管ター
ゲットとして、電子銃を内蔵した撮像管匡体に、蒸着面
が電子銃と対向するようにして組み込み、内部を真空封
止して、光導電形撮像管を得た。光導電形撮像管をカメ
ラに装着して特性を測定した結果、従来技術による透明
導電膜を使用して作成した撮像管で起こりやすい暗電流
の増加や、モニタ上の白点状画面欠陥が大幅に改善さ
れ、より高い電圧での動作が可能となり、ターゲット電
圧を240Vにしたところ、非晶質Se光導電膜内で光
キャリアのアバランシェ増倍が生じて、画期的な高感度
特性が得られた。
The vapor deposition substrate obtained as described above is used as an image pickup tube target and incorporated in an image pickup tube housing containing an electron gun so that the vapor deposition surface faces the electron gun, and the inside is vacuum-sealed to form a photoconductive layer. An image pickup tube was obtained. As a result of mounting the photoconductive type image pickup tube on the camera and measuring the characteristics, an increase in dark current, which is likely to occur in the image pickup tube made by using the conventional transparent conductive film, and white dot-shaped screen defects on the monitor are significantly increased. It is possible to operate at a higher voltage, and when the target voltage is set to 240V, avalanche multiplication of photocarriers occurs in the amorphous Se photoconductive film, and epoch-making high sensitivity characteristics are obtained. Was given.

【0035】[0035]

【発明の効果】本発明によれば、蒸発物と酸素との反応
を活性化させ、高導電率,高透過率で、微粒子状付着物
のない平滑性に優れた良質の透明導電膜を再現性良く得
ることができ、本発明の透明導電膜を撮像管等の受光デ
バイスに使用すれば、従来にない高性能デバイス特性が
実現できる。
EFFECTS OF THE INVENTION According to the present invention, a high-quality transparent conductive film which activates the reaction between an evaporated substance and oxygen, has a high conductivity and a high transmittance, and is excellent in smoothness without particulate deposits is reproduced. If the transparent conductive film of the present invention is used for a light receiving device such as an image pickup tube, high performance device characteristics that have not been obtained can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の真空蒸着装置の説明図。FIG. 1 is an explanatory diagram of a vacuum vapor deposition device according to an embodiment of the present invention.

【図2】本発明の一実施例の蒸着ボートの斜視図。FIG. 2 is a perspective view of a vapor deposition boat according to an embodiment of the present invention.

【図3】本発明および従来法で得られた酸化In−Sn
系薄膜の特性図。
FIG. 3 shows oxidized In—Sn obtained by the present invention and a conventional method.
FIG.

【図4】本発明および従来法で得られた酸化In−Sn
系薄膜の特性図。
FIG. 4 shows oxidized In—Sn obtained by the present invention and the conventional method.
FIG.

【図5】本発明および従来法で得られた酸化In−Sn
系薄膜の特性図。
FIG. 5: In—Sn oxide obtained by the present invention and the conventional method
FIG.

【図6】本発明の一実施例の撮像管のターゲット部の断
面図。
FIG. 6 is a cross-sectional view of a target portion of an image pickup tube according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…蒸着ボート、2…蒸発源材料、3,4…プラズマ放
電電極、5…電流端子、6…シールド、7…シャッタ、
8…回転軸、9…回転円板、10…基板、11…膜厚モ
ニタ、12…ヒータ、13…回転モータ、14…ベルジ
ャ、15…バルブ、16…酸素導入バルブ。
DESCRIPTION OF SYMBOLS 1 ... Evaporation boat, 2 ... Evaporation source material, 3, 4 ... Plasma discharge electrode, 5 ... Current terminal, 6 ... Shield, 7 ... Shutter,
8 ... Rotating shaft, 9 ... Rotating disk, 10 ... Substrate, 11 ... Film thickness monitor, 12 ... Heater, 13 ... Rotating motor, 14 ... Bell jar, 15 ... Valve, 16 ... Oxygen introducing valve.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/203 Z 9545−4M 21/68 N 31/08 Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H01L 21/203 Z 9545-4M 21/68 N 31/08

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】酸素を含有するガス雰囲気中で、Inを主
体とする金属を蒸着ボートから蒸発させ、加熱保持され
た基板上に、蒸着して透明導電膜を製造する方法におい
て、前記蒸着ボートから前記基板までの間の少なくとも
一部を、プラズマ放電領域にすることを特徴とする透明
導電膜の製造方法。
1. A method for producing a transparent conductive film by evaporating a metal mainly composed of In from a vapor deposition boat in a gas atmosphere containing oxygen and vapor-depositing it on a substrate which is heated and held. A method for manufacturing a transparent conductive film, characterized in that at least a part between the substrate and the substrate is a plasma discharge region.
【請求項2】円周部に沿って基板を配備した回転円板
と、前記回転円板の円周部に対向して設置されたInを
主体とする金属を蒸発させる蒸着ボートと、前記蒸着ボ
ートから前記基板までの領域を、プラズマ放電させるた
めの手段とを含む透明導電膜の製造装置。
2. A rotary disk having a substrate arranged along the circumference thereof, a vapor deposition boat for facing the circumference of the rotary disk to vaporize a metal mainly composed of In, and the vapor deposition. An apparatus for producing a transparent conductive film, comprising means for plasma-discharging a region from a boat to the substrate.
【請求項3】請求項2に記載の前記蒸着ボートが、側面
に1個以上の貫通した孔と、上面の中央部に窪みを設け
た絶縁性硬質セラミックと、前記孔に貫通せしめた金属
線又は金属薄板とからなる透明導電膜の製造装置。
3. The vapor deposition boat according to claim 2, wherein the vapor deposition boat has one or more through holes on a side surface thereof, an insulative hard ceramic having a recess at a central portion of an upper surface thereof, and a metal wire penetrated through the hole. Alternatively, an apparatus for manufacturing a transparent conductive film including a thin metal plate.
【請求項4】請求項3に記載の前記蒸着ボートの絶縁性
硬質セラミックがAl23又はAl23とSiO2 から
なる材質で、金属線又は金属薄板がIr,Pt又はPt
とRhの合金からなる透明導電膜の製造装置。
4. The insulating hard ceramic of the vapor deposition boat according to claim 3, wherein the insulating hard ceramic is made of Al 2 O 3 or Al 2 O 3 and SiO 2 , and the metal wire or metal thin plate is Ir, Pt or Pt.
For manufacturing a transparent conductive film made of an alloy of Rh and Rh.
【請求項5】請求項1において、酸素を含有するガス雰
囲気の圧力が1mTorr以上,50mTorr以下である透明
導電膜の製造方法。
5. The method for producing a transparent conductive film according to claim 1, wherein the pressure of the gas atmosphere containing oxygen is 1 mTorr or more and 50 mTorr or less.
【請求項6】請求項1または5において、蒸着速度が
0.5nm/min以上,7.0nm/min以下である透明導
電膜の製造方法。
6. The method for producing a transparent conductive film according to claim 1, wherein the vapor deposition rate is 0.5 nm / min or more and 7.0 nm / min or less.
【請求項7】請求項1,5または6において、基板温度
が100℃以上,300℃以下である透明導電膜の製造
方法。
7. The method for producing a transparent conductive film according to claim 1, wherein the substrate temperature is 100 ° C. or higher and 300 ° C. or lower.
【請求項8】少なくとも透光性基板と透明導電膜と光導
電膜を具備する撮像管を製造する工程において、上記透
明導電膜を製造する工程が、請求項1または5乃至7の
いずれか記載の製造方法からなることを特徴とする光導
電形撮像管の製造方法。
8. The step of manufacturing the transparent conductive film in the step of manufacturing an image pickup tube including at least a transparent substrate, a transparent conductive film, and a photoconductive film, the method according to claim 1 or 5. A method for manufacturing a photoconductive type image pickup tube, comprising:
JP29424994A 1994-11-29 1994-11-29 Production of transparent conductive film and device therefor Pending JPH08158041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29424994A JPH08158041A (en) 1994-11-29 1994-11-29 Production of transparent conductive film and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29424994A JPH08158041A (en) 1994-11-29 1994-11-29 Production of transparent conductive film and device therefor

Publications (1)

Publication Number Publication Date
JPH08158041A true JPH08158041A (en) 1996-06-18

Family

ID=17805287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29424994A Pending JPH08158041A (en) 1994-11-29 1994-11-29 Production of transparent conductive film and device therefor

Country Status (1)

Country Link
JP (1) JPH08158041A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011162102A1 (en) * 2010-06-23 2011-12-29 パイオニア株式会社 Imaging device
JP2013001991A (en) * 2011-06-21 2013-01-07 Ulvac Japan Ltd Deposition method
JP2016060691A (en) * 2014-09-15 2016-04-25 許 國明Hsu, Kuo−Ming Indium oxide nanorod and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011162102A1 (en) * 2010-06-23 2011-12-29 パイオニア株式会社 Imaging device
JP5481688B2 (en) * 2010-06-23 2014-04-23 パイオニア株式会社 Imaging device
JP2013001991A (en) * 2011-06-21 2013-01-07 Ulvac Japan Ltd Deposition method
JP2016060691A (en) * 2014-09-15 2016-04-25 許 國明Hsu, Kuo−Ming Indium oxide nanorod and method for producing the same

Similar Documents

Publication Publication Date Title
US4170662A (en) Plasma plating
JPH06158308A (en) Target for sputtering for indium-tin oxide film and its production
Randhawa et al. SnO2 films prepared by activated reactive evaporation
US5470618A (en) Method of making zinc-based transparent conductive film
JP2004511655A (en) Preparation method of indium tin oxide thin film using magnetron negative ion sputtering source
Valentini et al. The stability of zinc oxide electrodes fabricated by dual ion beam sputtering
JP4164068B2 (en) Controlling the stoichiometry and morphology of silver selenide films in sputter deposition.
US4698235A (en) Siting a film onto a substrate including electron-beam evaporation
JPH08158041A (en) Production of transparent conductive film and device therefor
US5473456A (en) Method for growing transparent conductive gallium-indium-oxide films by sputtering
JP2000222944A (en) Substrate with ito transparent conductive film, and method of depositing ito transparent conductive film
JPH06212403A (en) Production of in/sn oxide transparent conductive film
JP2697753B2 (en) Deposition method of metal film by DC glow discharge
JPS6210269A (en) Vacuum evaporation device and production of thin film
JPS6389656A (en) Electrically conductive transparent film and its formation
JP2686266B2 (en) Manufacturing method of light receiving element
JPH05263219A (en) Production of copper indium selenide thin film
KR100258056B1 (en) The method for making tin oxide film of gas sensor by sn target with ion beam sputtering
JP3095232B2 (en) Method for producing transparent conductive film
JP3206760B2 (en) K cell for vacuum evaporation
JPH02240250A (en) Conductive color filter substrate and coating method
JP2507963B2 (en) Method of manufacturing oxide thin film
JP3831433B2 (en) Transparent conductive film and method for producing the same
US3967151A (en) Sustained conductivity device comprising a plurality of Schottky barriers
JP2880188B2 (en) Light receiving device