JPH06158308A - Target for sputtering for indium-tin oxide film and its production - Google Patents

Target for sputtering for indium-tin oxide film and its production

Info

Publication number
JPH06158308A
JPH06158308A JP4336700A JP33670092A JPH06158308A JP H06158308 A JPH06158308 A JP H06158308A JP 4336700 A JP4336700 A JP 4336700A JP 33670092 A JP33670092 A JP 33670092A JP H06158308 A JPH06158308 A JP H06158308A
Authority
JP
Japan
Prior art keywords
target
sputtering
indium
tin oxide
sno2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4336700A
Other languages
Japanese (ja)
Inventor
Masahiko Sakakibara
正彦 榊原
Hiromi Kikuchi
広実 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP4336700A priority Critical patent/JPH06158308A/en
Priority to US08/155,813 priority patent/US5435826A/en
Publication of JPH06158308A publication Critical patent/JPH06158308A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To produce a target for sputtering by which an ITO film having low specific resistance is stably formed by compacting fine In2O3-SnO2 compound powder optionally blended with In2O3 powder and/or SnO2 powder and sintering the resulting compact under specified conditions. CONSTITUTION:Polyvinyl alcohol is added to superfine In2O3-SnO2 compound particles having <=0.1mum average particle diameter optionally blended with fine In2O3 particles and/or fine SnO2 particles having <=0.1mum average particle diameter and they are granulated. The resulting granules are cold-compacted and sintered at 1,500-1,700 deg.C in an oxygen atmosphere under 1-10 atm pressure to produce the objective In2O2-SnO2 target. When this target is used and sputtering is carried out with ions of inert gas, an ITO film having such low specific resistance as <=1X10<-3>OMEGA.cm and >=90% relative density can stably be formed on a substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液晶表示装置、薄膜エ
レクトロルミネッセンス表示装置等に使用され、透明電
極となるインジウム・スズ酸化物膜を形成するのに用い
られるインジウム・スズ酸化物膜用スパッタリング用タ
ーゲットおよびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for liquid crystal display devices, thin film electroluminescent display devices, etc., and is used for forming an indium tin oxide film as a transparent electrode for sputtering an indium tin oxide film. Target and manufacturing method thereof.

【0002】[0002]

【従来の技術】酸化インジウムIn23の中に酸化スズ
SnO2をドープした膜であるインジウム・スズ酸化物
膜(以下ITO膜と称する)は高い透光性と高い導電性
を備えており、液晶表示素子やエレクトロルミネッセン
スなどの表示装置、あるいは航空機などの窓ガラスの氷
結防止用ヒータなどへの導電経路として広く使用されて
いる。このようなITO膜は通常スパッタリング法、電
子ビーム蒸着、CVD法等により形成されるものであ
る。このなかで、インジウム酸化物とスズ酸化物の焼結
体をターゲットとして不活性ガスイオンによりスパッタ
リングすることによりITO膜を形成するスパッタリン
グ法は、他の方法よりも装置の構成が単純であり、今後
主流になっていくものと考えられている。
2. Description of the Related Art An indium tin oxide film (hereinafter referred to as an ITO film), which is a film in which tin oxide SnO 2 is doped in indium oxide In 2 O 3 , has high translucency and high conductivity. It is widely used as a conductive path to a liquid crystal display device, a display device such as electroluminescence, or a heater for preventing icing of window glass of an aircraft or the like. Such an ITO film is usually formed by a sputtering method, an electron beam evaporation method, a CVD method, or the like. Among them, the sputtering method in which an ITO film is formed by sputtering a sintered compact of indium oxide and tin oxide with an inert gas ion has a simpler device configuration than other methods. It is considered to become mainstream.

【0003】しかし、インジウム酸化物とスズ酸化物の
焼結体のように複合焼結体をターゲットとして用いた場
合は、スパッタリング中の酸素の解離、インジウム酸化
物とスズ酸化物のスパッタリング速度の違いなどの原因
によりターゲット組成そのものの組成比では薄膜が形成
されないという問題があった。特にITO膜を形成する
場合、膜の導電性は形成される膜中の酸素量に極めて敏
感に影響される。そのためスパッタリング中の酸素量の
変動を抑制することは、スパッタリング法を用いて均質
なITO膜を生産する上で重要な課題であった。
However, when a composite sintered body such as a sintered body of indium oxide and tin oxide is used as a target, dissociation of oxygen during sputtering and a difference in sputtering rate between indium oxide and tin oxide. Due to such reasons, there is a problem that a thin film is not formed with the composition ratio of the target composition itself. In particular, when forming an ITO film, the conductivity of the film is very sensitively affected by the amount of oxygen in the formed film. Therefore, suppressing the fluctuation of the oxygen amount during sputtering has been an important issue in producing a homogeneous ITO film by using the sputtering method.

【0004】最近このような酸素量の変動を抑制する手
段として、特開平3−44465号公報に、使用するタ
ーゲットそのものから酸素を事前に減少させておくこと
により、スパッタリング進行中の酸素量の変動を抑制す
る方法が開示された。すなわちこの方法は、焼結後のタ
ーゲットに対して、酸化インジウムおよび酸化スズから
酸素が熱解離する条件で2次焼結を行なって、ターゲッ
ト中の酸素を減らすことにより、スパッタリング進行中
では酸素量の変動が少ないものとする方法である。
Recently, as a means for suppressing such fluctuations in oxygen content, Japanese Patent Application Laid-Open No. 3-44465 discloses a method in which oxygen is reduced in advance from the target itself to be used so that fluctuations in oxygen content during sputtering progress. A method of suppressing the is disclosed. That is, this method performs secondary sintering on the target after sintering under the condition that oxygen is thermally dissociated from indium oxide and tin oxide to reduce the oxygen in the target, thereby reducing the amount of oxygen during the sputtering process. This is a method of reducing the fluctuation of.

【0005】[0005]

【発明が解決しようとする課題】しかし、上述の特開平
3−44465号に記載される方法では、スパッタリン
グ進行中の酸素量の変動は抑えることができるが、もと
もと金属酸化物でなければならない焼結体中の酸素を減
少させることは、化学量論組成からずれることになり、
薄膜中の酸素欠乏によって欠陥が増加することになる。
この酸素欠乏による欠陥の増加は、生成するITO膜の
抵抗値を増加させることになり、本来のITO膜が有す
る導電性が得られないという問題があった。さらに本発
明者が、スパッタリング進行中のターゲットのスパッタ
リング面の組織と得られる薄膜の特性の関係を検討した
ところ、スパッタリングによるエロージョンが進行する
と、スパッタリング面に黒化物が発生し、これに伴って
形成する膜の薄膜抵抗が増大していくという結果になる
ことがわかった。
However, in the method described in the above-mentioned Japanese Patent Laid-Open No. 3-44465, the fluctuation of the oxygen amount during the progress of sputtering can be suppressed, but the firing which originally needs to be a metal oxide. Reducing oxygen in the body will deviate from stoichiometric composition,
Oxygen deficiency in the thin film will increase defects.
The increase in defects due to the oxygen deficiency increases the resistance value of the formed ITO film, and there is a problem that the original conductivity of the ITO film cannot be obtained. Furthermore, the present inventor examined the relationship between the structure of the sputtering surface of the target during sputtering and the characteristics of the obtained thin film, and when erosion due to sputtering progressed, a black oxide was generated on the sputtering surface, which was formed with this. It was found that the thin film resistance of the formed film was increased.

【0006】また、ITO膜の抵抗値の増大はターゲッ
トの密度が低い場合にも発生する。これはターゲットの
密度が低いと、ターゲット自体の熱伝導率が低いものと
なるため、ターゲットと接合したバッキングプレートで
冷却しても十分に冷却できない部分が生じる。このよう
な状態になるとターゲットが部分的に高温のままになる
ので、その部分の酸素が一部解離してしまうためであ
る。このような酸素の解離の発生も、ターゲット中の酸
素欠乏の増加となり、生成するITO膜の抵抗値の増大
の原因となる。本発明の目的はスパッタリング期間にタ
ーゲットが黒化しにくく、安定して低い薄膜抵抗値のI
TO膜が得られるターゲットおよびその製造方法を提供
することである。
The increase in the resistance value of the ITO film also occurs when the target density is low. This is because if the density of the target is low, the thermal conductivity of the target itself will be low, so that even if the target is cooled by the backing plate joined to the target, there will be a portion that cannot be sufficiently cooled. This is because the target partly remains at a high temperature in such a state, and part of the oxygen in that part is dissociated. Occurrence of such oxygen dissociation also increases the oxygen deficiency in the target, and causes an increase in the resistance value of the formed ITO film. It is an object of the present invention that the target is less likely to be blackened during the sputtering period, and that the I value of the thin film resistance value is stable and low.
It is an object of the present invention to provide a target capable of obtaining a TO film and a method for manufacturing the target.

【0007】[0007]

【課題を解決するための手段】本発明者は、ターゲット
表面の黒化とターゲットのミクロ組織を検討したとこ
ろ、ターゲットの黒化はターゲット表面に突起が発生す
ることが原因であること、その突起にはスズが他の部分
より濃縮されていること、突起部は酸素濃度が低く、タ
ーゲット表面に突起が生成したままでスパッタリングを
つづけるとスパッタリングが進行するにつれてITO膜
の抵抗値が増大することを知見した。本発明者は、この
ような突起の発生を抑えるために、ターゲットの組織と
ターゲット密度に着目し検討を行なったところ、90%
以上の相対密度を有し、しかも焼結体を単相構造とする
ことにより、突起の発生しにくいターゲットが得られ、
安定して薄膜抵抗の低いITO膜が形成できることを見
出した。
The present inventor has examined the blackening of the target surface and the microstructure of the target, and it is found that the blackening of the target is caused by the formation of protrusions on the target surface. In this case, tin is more concentrated than other parts, the oxygen concentration in the protrusions is low, and if the sputtering is continued with the protrusions formed on the target surface, the resistance value of the ITO film increases as the sputtering progresses. I found out. The present inventor conducted a study by paying attention to the target structure and the target density in order to suppress the generation of such protrusions.
With the above relative density, and by making the sintered body have a single-phase structure, it is possible to obtain a target in which protrusions are less likely to occur,
It has been found that an ITO film having a low thin film resistance can be stably formed.

【0008】すなわち本発明は、実質的にインジウム、
スズおよび酸素からなる焼結体であり、相対密度が90
%以上で単相構造を有し、比抵抗値が1×10-3Ω・c
m以下であることを特徴とするインジウム・スズ酸化物
膜用スパッタリング用ターゲットである。本発明ターゲ
ットにおいて、その組織を単相構造としたのは、スパッ
タリング時の投入電力1W/cm2、スパッタリングガ
ス圧1Pa、基板温度25℃の条件でスパッタリングを
実施したとき、30時間スパッタリングしても抵抗値の
変動を2%以下とすることが可能となったからである。
本発明において組織が単相構造であるとは、スズが酸化
インジウム格子間に存在するドーパント状態にあり、I
nO3相以外にSn02相、In4Sn312相等の中間化
合物相を形成していないことをいう。単相構造であるこ
との確認は、X線回折およびミクロ組織観察により行う
ことができる。図1に単相構造のミクロ組織写真を、ま
た図2に異相を含む複相構造のミクロ組織写真を示す。
図2の異相は、EPMA(電子線マイクロアナライザ)
の分析結果より、In4Sn312であることが同定され
た。また、本発明において相対密度を90%以上とした
のは、90%未満であると低密度に起因して、スパッタ
リング進行中の薄膜抵抗の増加が避けられず、単相構造
とすることによる薄膜抵抗の安定化の効果が明瞭に現れ
ないためである。本発明ターゲットにおいて比抵抗値を
1×10-3Ω・cm以下とするのは、ITO膜の比抵抗
値を10-4Ω・cm台にするために必要だからである。
That is, the present invention is substantially composed of indium,
It is a sintered body composed of tin and oxygen and has a relative density of 90.
% Or more has a single-phase structure and a specific resistance value of 1 × 10 −3 Ω · c
It is a sputtering target for an indium-tin oxide film, which is characterized by being m or less. The target of the present invention has a single-phase structure because it has a single-phase structure when it is sputtered for 30 hours when the sputtering power is 1 W / cm 2 , the sputtering gas pressure is 1 Pa, and the substrate temperature is 25 ° C. This is because it has become possible to reduce the fluctuation of the resistance value to 2% or less.
In the present invention, the structure having a single-phase structure means that tin is in a dopant state in which it exists in the indium oxide lattice, and
nO 3 in addition to phase Sn0 2 phases, means that do not form an intermediate compound phase In 4 Sn 3 0 12 equality. Confirmation of a single-phase structure can be performed by X-ray diffraction and microstructure observation. FIG. 1 shows a microstructure photograph of a single-phase structure, and FIG. 2 shows a microstructure photograph of a multi-phase structure containing different phases.
The different phase in Fig. 2 is EPMA (electron beam microanalyzer).
From the analysis result of 1., it was identified as In 4 Sn 3 O 12 . Further, in the present invention, the reason why the relative density is set to 90% or more is that if the density is less than 90%, an increase in thin film resistance during sputtering is inevitable due to the low density, and a thin film having a single-phase structure is obtained. This is because the effect of stabilizing the resistance does not appear clearly. In the target of the present invention, the specific resistance value is set to 1 × 10 −3 Ω · cm or less because it is necessary to set the specific resistance value of the ITO film to the order of 10 −4 Ω · cm.

【0009】また、本発明者は、ターゲット材を単相構
造とする方法として、平均粒径0.1μm以下の酸化イ
ンジウム−酸化スズ複合粉末を利用すれば良いことを見
いだした。すなわち、本発明のターゲットの製造方法
は、平均粒径0.1μm以下の酸化インジウム−酸化ス
ズ複合粉末をプレス成形した後、1〜10気圧の加圧酸
素雰囲気中、1500〜1700℃で焼結しすることを
特徴とするインジウム・スズ酸化物膜用スパッタリング
用ターゲットの製造方法である。平均粒径0.1μm以
下の酸化インジウム−酸化スズ複合粉末は、例えばイン
ジウム−スズ合金を加熱溶融したものを1300℃程度
に加熱されたチャンバー内に噴霧することにより製造す
ることができる。
The present inventor has also found that as a method for forming a single-phase structure for the target material, indium oxide-tin oxide composite powder having an average particle diameter of 0.1 μm or less may be used. That is, in the target manufacturing method of the present invention, indium oxide-tin oxide composite powder having an average particle diameter of 0.1 μm or less is press-molded and then sintered at 1500 to 1700 ° C. in a pressurized oxygen atmosphere of 1 to 10 atm. Is a method of manufacturing a sputtering target for an indium tin oxide film. The indium oxide-tin oxide composite powder having an average particle diameter of 0.1 μm or less can be produced by, for example, spraying an indium-tin alloy heated and melted into a chamber heated to about 1300 ° C.

【0010】本発明の製造方法の特徴は、ターゲットの
組織を単相構造とするために酸化インジウム−酸化スズ
複合粉末を用いる点にある。すなわち、酸化インジウム
と酸化スズの混合粉末の場合、組織的に均一な焼結体を
得ることができずSn02、In4Sn312などの異相
の発生を抑制することができないのに対し、均一性の優
れた酸化インジウム−酸化スズ複合粉末では焼結体の組
織も均一になりSn02、In4Sn312などの異相の
発生を抑制することができる。
A feature of the manufacturing method of the present invention is that the indium oxide-tin oxide composite powder is used to make the target structure have a single-phase structure. That is, in the case of a mixed powder of indium oxide and tin oxide, it is not possible to obtain a sintered body that is structurally uniform, and it is not possible to suppress the generation of different phases such as Sn0 2 , In 4 Sn 3 O 12. With the highly uniform indium oxide-tin oxide composite powder, the structure of the sintered body is also uniform, and the generation of different phases such as SnO 2 and In 4 Sn 3 O 12 can be suppressed.

【0011】本発明において、原料粉末として均一性に
優れる複合粉末を全量用いることが最も望ましい。しか
し、この複合粉末を主成分とし、平均粒径0.1μm以
下の酸化インジウムおよび平均粒径0.1μm以下の酸
化スズの一種または二種を混合した混合粉末を用いるこ
ともできる。本発明において、用いる粉末の平均粒径を
0.1μm以下とするのは、相対密度が90%以上の焼
結体を得るのが困難だからである。また本発明におい
て、焼結雰囲気を1気圧以上の加圧酸素雰囲気中とする
のは高密度化のために必要だからであるが、10気圧程
度で密度向上の効果は飽和する。したがって、経済面を
も考慮し焼結雰囲気を1気圧〜10気圧の加圧酸素雰囲
気とする。焼結温度は、1500℃未満では相対密度9
0%以上の焼結体が獲られず、一方1700℃を越える
と酸化スズ、酸化インジウムの分解による密度低下が生
ずるので1500〜1700℃とする。
In the present invention, it is most desirable to use the whole amount of the composite powder having excellent uniformity as the raw material powder. However, it is also possible to use a mixed powder in which one or two of indium oxide having an average particle size of 0.1 μm or less and tin oxide having an average particle size of 0.1 μm or less is mixed with the composite powder as a main component. In the present invention, the average particle size of the powder used is 0.1 μm or less because it is difficult to obtain a sintered body having a relative density of 90% or more. Further, in the present invention, the reason why the sintering atmosphere is a pressurized oxygen atmosphere of 1 atm or more is necessary for high density, but the effect of improving the density is saturated at about 10 atm. Therefore, considering the economical aspect, the sintering atmosphere is a pressurized oxygen atmosphere of 1 atm to 10 atm. If the sintering temperature is less than 1500 ° C, the relative density is 9
If 0% or more of the sintered body cannot be obtained, on the other hand, if the temperature exceeds 1700 ° C., the density will decrease due to the decomposition of tin oxide and indium oxide.

【0012】[0012]

【実施例】【Example】

(実施例1)インジウム−スズ合金を加熱溶融後、13
00℃に加熱されたチャンバー内へ噴霧する乾式法によ
り酸化インジウム−酸化スズ複合粉末を製造し、この粉
末を分級し、図1に示す平均粒径を有する粉末を準備し
た。さらに、酸化インジウム粉末、酸化スズ粉末は各々
インジウム、スズを同様に乾式法により図1に示す平均
粒径のものを得た。これらの粉末を混合する場合は、所
定の比率になるようにボールミルによって24時間混合
した。複合粉末単独の場合は、この粉末にポリビニルア
ルコール(PVA)を1%添加して造粒し、これを冷間
プレスで成形圧力3000Kg/cm2で成形した。こ
の成形体を1600℃で5気圧の加圧酸素雰囲気中で6
時間保持し焼結を行なった。得られた焼結体を研削によ
り直径100mm、厚さ5mmのターゲットに加工し
た。図1のターゲットのスパッタ面中央のミクロ組織を
鏡面加工後光学顕微鏡で観察した。図4にNo.1の、
また図5にNo.8のミクロ組織写真を示すが、No.
1は単相構造、またNo.8はIn4Sn312からなる
異相を含む複相構造であることがわかった。他のターゲ
ットの相構造は図1に記載する。
(Example 1) After heating and melting an indium-tin alloy, 13
An indium oxide-tin oxide composite powder was produced by a dry method of spraying into a chamber heated to 00 ° C., and the powder was classified to prepare a powder having an average particle size shown in FIG. Further, indium oxide powder and tin oxide powder were obtained by indium and tin, respectively, in the same manner by a dry method to obtain those having an average particle size shown in FIG. When these powders were mixed, they were mixed by a ball mill for 24 hours so as to have a predetermined ratio. In the case of the composite powder alone, 1% of polyvinyl alcohol (PVA) was added to this powder for granulation, and this was molded by a cold press at a molding pressure of 3000 Kg / cm 2 . This molded body was subjected to 6 at 6600 in a pressurized oxygen atmosphere of 5 atm.
It was held for a time and sintered. The obtained sintered body was processed into a target having a diameter of 100 mm and a thickness of 5 mm by grinding. The microstructure in the center of the sputtering surface of the target in FIG. 1 was observed with an optical microscope after mirror finishing. In FIG. 1,
Further, in FIG. A microstructure photograph of No. 8 is shown.
No. 1 has a single-phase structure, and No. 1 It was found that No. 8 has a multi-phase structure containing a hetero phase composed of In 4 Sn 3 O 12 . The phase structure of other targets is described in FIG.

【0013】図1に示すように、原料の複合粉末の平均
粒径が0.1μmを越える試料No.6は焼結密度が9
0%未満となった。また、スズ含有量が10%のNo.
8は複相構造の組織となり、また混合粉末で製造したN
o.7も複相構造の組織を示した。さらに、スズ量が1
%のNo.9はターゲット自体の比抵抗値が大きいこと
がわかる。これらの試料のターゲットを用いて、次の条
件でスパッタリングを行なった。 スパッタ電力 1.0W/cm2 スパッタガス組成 99%アルゴン+1%酸素の混合ガ
ス スパッタガス圧 1Pa 基板温度 25℃ 初めの2時間スパッタリングすることにより得られた膜
の初期抵抗値(a)と30時間スパッタリングを行なっ
た後、新しい基板に交換しさらにスパッタリングを行な
い得られた膜の抵抗値(b)を図2に示す。
As shown in FIG. 1, sample No. 1 having an average particle size of the composite powder of the raw material exceeding 0.1 μm. 6 has a sintered density of 9
It was less than 0%. In addition, No. 10% tin content.
8 has a multi-phase structure, and N produced by mixed powder
o. 7 also showed the structure of a multiphase structure. Furthermore, the tin content is 1
% No. It can be seen that No. 9 has a large specific resistance value of the target itself. Sputtering was performed under the following conditions using the targets of these samples. Sputtering power 1.0W / cm 2 Sputtering gas composition 99% Argon + 1% Oxygen mixed gas Sputtering gas pressure 1Pa Substrate temperature 25 ° C Initial resistance (a) of film obtained by sputtering for 2 hours and 30 hours After sputtering, the film was replaced with a new substrate and further sputtered, and the resistance value (b) of the obtained film is shown in FIG.

【0014】図2に示すように、本発明のターゲットの
試料No.1ないし5および試料No.10は30時間
スパッタリング後の抵抗値が初期値に対して2%以下し
か変化せず極めて安定して低抵抗のITO薄膜が得られ
た。これに対して、比較例のターゲットである試料N
o.9では初期値の抵抗が高く、および試料No.6な
いし8は抵抗値が初期値に対して15%以上も変化して
おり、長期のスパッタリングには耐えられないものであ
った。また、30時間のスパッタリング終了後のスパッ
タリング面を見ると、比較例のターゲットである試料N
o.6および試料No.8は、本発明のターゲットの試
料No.1ないし5、および試料No.10に比べて極
めて黒く変色していた。
As shown in FIG. 2, the sample No. of the target of the present invention. 1 to 5 and sample No. In No. 10, the resistance value after sputtering for 30 hours changed by 2% or less with respect to the initial value, and an ITO thin film having a low resistance was obtained extremely stably. On the other hand, the sample N which is the target of the comparative example
o. In Sample No. 9, the initial resistance was high, and in Sample No. In Nos. 6 to 8, the resistance value changed by 15% or more from the initial value, and it was not possible to endure long-term sputtering. In addition, looking at the sputtering surface after 30 hours of sputtering, the sample N
o. 6 and sample No. 6 No. 8 is the sample No. of the target of the present invention. 1 to 5, and sample No. It was discolored to be extremely black compared to 10.

【0015】本発明のターゲットの試料No.1および
比較例のターゲットの試料No.7について、スパッタ
リング処理後のスパッタリング面の表面を走査型電子顕
微鏡でスパッタリング面に対して45度方向から観察し
た結果を、図6および図7にそれぞれ示す。図6と図7
を比較すると明らかなように、比較例を示す図7には、
スパッタリング表面に略円錐状の巨大な突起1が多量に
発生している。この突起部をEPMAで分析したところ
突起先端部にスズ原子が濃化していることが確認され、
さらに酸素濃度も他の部分より低下していた。この結果
から、ターゲットの複相化にともなう異相により突起が
発生し、この突起部分の酸素濃度が低下して、成膜する
ITO膜の抵抗値の増大の原因になっていることがわか
った。
Sample No. of the target of the present invention. Sample No. 1 of the target of Comparative Example 1 and Comparative Example. 6 and 7 show the results of observing the surface of the sputtered surface of No. 7 from the direction of 45 degrees with respect to the sputtered surface with a scanning electron microscope. 6 and 7
As is clear from the comparison of FIG.
A large number of substantially conical giant projections 1 are generated on the sputtering surface. When this protrusion was analyzed by EPMA, it was confirmed that tin atoms were concentrated at the tip of the protrusion,
Furthermore, the oxygen concentration was lower than in other parts. From this result, it was found that projections were generated due to the different phases accompanying the multiple phase formation of the target, and the oxygen concentration in the projections was lowered, which was the cause of the increase in the resistance value of the formed ITO film.

【0016】(実施例2)実施例1と同様に製造したス
ズ含有量が4重量%の酸化インジウム−酸化スズ混合粉
末を用いて、最終の焼結温度を図3に示すように145
0℃から1650℃とし、5気圧加圧酸素雰囲気および
大気中とした以外は実施例1と同じ条件でターゲットを
製造した。これらのターゲットを用いて実施例1と同様
にスパッタリングを行ない、ITO膜の抵抗値を測定し
た。
(Example 2) Using an indium oxide-tin oxide mixed powder having a tin content of 4% by weight prepared in the same manner as in Example 1, the final sintering temperature was 145 as shown in FIG.
A target was manufactured under the same conditions as in Example 1 except that the temperature was changed from 0 ° C to 1650 ° C and the atmosphere was pressurized at 5 atm in oxygen and the atmosphere. Sputtering was performed using these targets in the same manner as in Example 1, and the resistance value of the ITO film was measured.

【0017】結果を図3に示す。図3に示すように、焼
結温度の低い比較例の試料No.14は相対密度が87
%と低いため抵抗値の変化率が大きい。一方試料No.
15焼結温度は1600℃と高いにもかかわらず大気中
焼結であるため相対密度が80%と低く、結果として抵
抗値の変化率がきわめて大きいものになった。この結果
から、90%以上の相対密度で安定して抵抗値の低いI
TO膜が得られることがわかる。
The results are shown in FIG. As shown in FIG. 3, the sample No. of the comparative example having a low sintering temperature was used. 14 has a relative density of 87
Since it is as low as%, the rate of change in resistance is large. On the other hand, sample No.
Although the sintering temperature was as high as 1600 ° C., the relative density was as low as 80% because the sintering was performed in the air, and as a result, the rate of change in resistance was extremely large. From this result, I with a stable low resistance value at a relative density of 90% or more is obtained.
It can be seen that a TO film can be obtained.

【0018】[0018]

【発明の効果】本発明の90%以上の相対密度を有し、
単相構造のターゲットによればスパッタリング期間にタ
ーゲットのスパッタリング面に突起の発生が少なく黒化
しにくいため、安定して低い抵抗値のITO膜が得られ
る。これによりターゲットの寿命が長くなり、ターゲッ
トをとりだしてターゲットのスパッタリング表面を再研
磨して変質部分を除くといった作業を大幅に削減でき
る。
The relative density of the present invention is 90% or more,
According to the target having a single-phase structure, since the number of protrusions generated on the sputtering surface of the target is small during the sputtering period and it is difficult to blacken, an ITO film having a stable low resistance value can be obtained. This prolongs the life of the target, and the work of taking out the target and re-polishing the sputtering surface of the target to remove the altered portion can be greatly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明ターゲットと比較例の粒径、相対密度、
結晶相、比抵抗値を表わす図である。
FIG. 1 shows the particle size, relative density, and
It is a figure showing a crystal phase and a specific resistance value.

【図2】本発明ターゲットと比較例の抵抗値、抵抗値変
化率を表わす図である。
FIG. 2 is a diagram showing a resistance value and a resistance value change rate of a target of the present invention and a comparative example.

【図3】本発明ターゲットと比較例の焼結条件による相
対密度、膜抵抗、抵抗値、抵抗値変化率を示す図であ
る。
FIG. 3 is a diagram showing relative density, film resistance, resistance value, and resistance value change rate under the sintering conditions of the target of the present invention and the comparative example.

【図4】光学顕微鏡による本発明ターゲットのミクロ金
属組織写真である。
FIG. 4 is a photomicrograph of the microstructure of the target of the present invention observed by an optical microscope.

【図5】光学顕微鏡による比較例ターゲットのミクロ金
属組織写真である。
FIG. 5 is a photograph of a micro metallographic structure of a comparative target by an optical microscope.

【図6】スパッタリング後の本発明のターゲットのスパ
ッタリング面を走査型電子顕微鏡により観察した時のス
ケッチ図である。
FIG. 6 is a sketch diagram when the sputtering surface of the target of the present invention after sputtering is observed with a scanning electron microscope.

【図7】スパッタリング後の比較例のターゲットのスパ
ッタリング面を走査型電子顕微鏡により観察した時のス
ケッチ図である。
FIG. 7 is a sketch diagram when a sputtering surface of a target of a comparative example after sputtering is observed with a scanning electron microscope.

【符号の説明】[Explanation of symbols]

1 突起 1 protrusion

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 実質的にインジウム、スズおよび酸素か
らなる焼結体であり、相対密度が90%以上で単相構造
を有し、比抵抗値が1×10-3Ω・cm以下であること
を特徴とするインジウム・スズ酸化物膜用スパッタリン
グ用ターゲット。
1. A sintered body consisting essentially of indium, tin, and oxygen, having a relative density of 90% or more, a single-phase structure, and a specific resistance value of 1 × 10 −3 Ω · cm or less. A sputtering target for an indium tin oxide film, which is characterized in that
【請求項2】 平均粒径0.1μm以下の酸化インジウ
ム−酸化スズ複合粉末をプレス成形した後、1〜10気
圧の加圧酸素雰囲気中、1500〜1700℃で焼結し
することを特徴とするインジウム・スズ酸化物膜用スパ
ッタリング用ターゲットの製造方法。
2. An indium oxide-tin oxide composite powder having an average particle diameter of 0.1 μm or less is press-molded and then sintered at 1500 to 1700 ° C. in a pressurized oxygen atmosphere at 1 to 10 atm. A method for manufacturing a sputtering target for an indium-tin oxide film.
【請求項3】 平均粒径0.1μm以下の酸化インジウ
ム−酸化スズ複合粉末と平均粒径0.1μm以下の酸化
インジウムおよび平均粒径0.1μm以下の酸化スズの
一種または二種の混合粉末をプレス成形した後、1〜1
0気圧の加圧酸素雰囲気中、1500〜1700℃で焼
結しすることを特徴とするインジウム・スズ酸化物膜用
スパッタリング用ターゲットの製造方法。
3. A mixed powder of one or two kinds of indium oxide-tin oxide composite powder having an average particle diameter of 0.1 μm or less, indium oxide having an average particle diameter of 0.1 μm or less, and tin oxide having an average particle diameter of 0.1 μm or less. 1 to 1 after press molding
A method for producing a sputtering target for an indium tin oxide film, comprising sintering at 1500 to 1700 ° C. in a pressurized oxygen atmosphere of 0 atmosphere.
JP4336700A 1992-11-24 1992-11-24 Target for sputtering for indium-tin oxide film and its production Pending JPH06158308A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4336700A JPH06158308A (en) 1992-11-24 1992-11-24 Target for sputtering for indium-tin oxide film and its production
US08/155,813 US5435826A (en) 1992-11-24 1993-11-23 Sputtering target and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4336700A JPH06158308A (en) 1992-11-24 1992-11-24 Target for sputtering for indium-tin oxide film and its production

Publications (1)

Publication Number Publication Date
JPH06158308A true JPH06158308A (en) 1994-06-07

Family

ID=18301899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4336700A Pending JPH06158308A (en) 1992-11-24 1992-11-24 Target for sputtering for indium-tin oxide film and its production

Country Status (2)

Country Link
US (1) US5435826A (en)
JP (1) JPH06158308A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002030429A (en) * 2000-07-18 2002-01-31 Tosoh Corp Ito sputtering target and manufacturing method

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4427060C1 (en) * 1994-07-29 1995-11-30 Heraeus Gmbh W C Prefabricated part made of indium-tin oxide
US6033620A (en) * 1995-04-18 2000-03-07 Tosoh Corporation Process of preparing high-density sintered ITO compact and sputtering target
EP0761838B1 (en) * 1995-08-18 2001-08-08 W.C. Heraeus GmbH & Co. KG Sputtering target and method for its manufacturing
DE19540379C1 (en) * 1995-08-18 1996-09-26 Heraeus Gmbh W C Target for cathodic sputtering, used in LCD mfr.
JP3862385B2 (en) * 1996-11-08 2006-12-27 Dowaホールディングス株式会社 Tin oxide-containing indium oxide powder and method for producing sintered body
JP3576364B2 (en) * 1997-10-13 2004-10-13 株式会社日鉱マテリアルズ Cleaning method for ITO sputtering target
DE19822570C1 (en) * 1998-05-20 1999-07-15 Heraeus Gmbh W C High density hot isostatically pressed indium-tin oxide sputter target
US6113761A (en) 1999-06-02 2000-09-05 Johnson Matthey Electronics, Inc. Copper sputtering target assembly and method of making same
US6858102B1 (en) * 2000-11-15 2005-02-22 Honeywell International Inc. Copper-containing sputtering targets, and methods of forming copper-containing sputtering targets
EP1232525A2 (en) 1999-11-24 2002-08-21 Honeywell International, Inc. Conductive interconnection
US6451222B1 (en) 1999-12-16 2002-09-17 Honeywell International Inc. Ferroelectric composition, ferroelectric vapor deposition target and method of making a ferroelectric vapor deposition target
US7404877B2 (en) 2001-11-09 2008-07-29 Springworks, Llc Low temperature zirconia based thermal barrier layer by PVD
US20050199861A1 (en) * 2001-12-12 2005-09-15 Wu L. W. Manufacturing method for transparent and conductive coatings
US7378356B2 (en) 2002-03-16 2008-05-27 Springworks, Llc Biased pulse DC reactive sputtering of oxide films
US6884327B2 (en) * 2002-03-16 2005-04-26 Tao Pan Mode size converter for a planar waveguide
US8445130B2 (en) 2002-08-09 2013-05-21 Infinite Power Solutions, Inc. Hybrid thin-film battery
US8236443B2 (en) 2002-08-09 2012-08-07 Infinite Power Solutions, Inc. Metal film encapsulation
US8021778B2 (en) 2002-08-09 2011-09-20 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8394522B2 (en) 2002-08-09 2013-03-12 Infinite Power Solutions, Inc. Robust metal film encapsulation
US20070264564A1 (en) 2006-03-16 2007-11-15 Infinite Power Solutions, Inc. Thin film battery on an integrated circuit or circuit board and method thereof
US8404376B2 (en) 2002-08-09 2013-03-26 Infinite Power Solutions, Inc. Metal film encapsulation
US7993773B2 (en) 2002-08-09 2011-08-09 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8431264B2 (en) 2002-08-09 2013-04-30 Infinite Power Solutions, Inc. Hybrid thin-film battery
WO2004021532A1 (en) 2002-08-27 2004-03-11 Symmorphix, Inc. Optically coupling into highly uniform waveguides
US7205662B2 (en) * 2003-02-27 2007-04-17 Symmorphix, Inc. Dielectric barrier layer films
US7238628B2 (en) 2003-05-23 2007-07-03 Symmorphix, Inc. Energy conversion and storage films and devices by physical vapor deposition of titanium and titanium oxides and sub-oxides
US8728285B2 (en) 2003-05-23 2014-05-20 Demaray, Llc Transparent conductive oxides
EP1656467A2 (en) * 2003-08-21 2006-05-17 Honeywell International Inc. Copper-containing pvd targets and methods for their manufacture
US20070137999A1 (en) * 2004-03-15 2007-06-21 Bekaert Advanced Coatings Method to reduce thermal stresses in a sputter target
CN101931097B (en) 2004-12-08 2012-11-21 希莫菲克斯公司 Deposition of LiCoO2
US7959769B2 (en) 2004-12-08 2011-06-14 Infinite Power Solutions, Inc. Deposition of LiCoO2
US7838133B2 (en) 2005-09-02 2010-11-23 Springworks, Llc Deposition of perovskite and other compound ceramic films for dielectric applications
US8062708B2 (en) 2006-09-29 2011-11-22 Infinite Power Solutions, Inc. Masking of and material constraint for depositing battery layers on flexible substrates
US8197781B2 (en) 2006-11-07 2012-06-12 Infinite Power Solutions, Inc. Sputtering target of Li3PO4 and method for producing same
KR20100102180A (en) 2007-12-21 2010-09-20 인피니트 파워 솔루션스, 인크. Method for sputter targets for electrolyte films
US8268488B2 (en) 2007-12-21 2012-09-18 Infinite Power Solutions, Inc. Thin film electrolyte for thin film batteries
JP5705549B2 (en) 2008-01-11 2015-04-22 インフィニット パワー ソリューションズ, インコーポレイテッド Thin film encapsulation for thin film batteries and other devices
US8350519B2 (en) 2008-04-02 2013-01-08 Infinite Power Solutions, Inc Passive over/under voltage control and protection for energy storage devices associated with energy harvesting
US8906523B2 (en) 2008-08-11 2014-12-09 Infinite Power Solutions, Inc. Energy device with integral collector surface for electromagnetic energy harvesting and method thereof
EP2332127A4 (en) 2008-09-12 2011-11-09 Infinite Power Solutions Inc Energy device with integral conductive surface for data communication via electromagnetic energy and method thereof
WO2010042594A1 (en) * 2008-10-08 2010-04-15 Infinite Power Solutions, Inc. Environmentally-powered wireless sensor module
EP2474056B1 (en) 2009-09-01 2016-05-04 Sapurast Research LLC Printed circuit board with integrated thin film battery
JP2013528912A (en) 2010-06-07 2013-07-11 インフィニット パワー ソリューションズ, インコーポレイテッド Rechargeable high density electrochemical device
CN114436642A (en) * 2020-11-06 2022-05-06 湖南七点钟文化科技有限公司 Preparation method of indium tin oxide alloy target material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5071800A (en) * 1989-02-28 1991-12-10 Tosoh Corporation Oxide powder, sintered body, process for preparation thereof and targe composed thereof
US4962071A (en) * 1989-05-01 1990-10-09 Tektronix, Inc. Method of fabricating a sintered body of indium tin oxide
JPH03207858A (en) * 1990-01-08 1991-09-11 Nippon Mining Co Ltd Production of ito sputtering target
JP2904358B2 (en) * 1990-10-19 1999-06-14 住友金属鉱山株式会社 Manufacturing method of ITO sintered body
JPH04293769A (en) * 1991-03-20 1992-10-19 Tosoh Corp Ito sputtering target for forming film at low temperature

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002030429A (en) * 2000-07-18 2002-01-31 Tosoh Corp Ito sputtering target and manufacturing method

Also Published As

Publication number Publication date
US5435826A (en) 1995-07-25

Similar Documents

Publication Publication Date Title
JPH06158308A (en) Target for sputtering for indium-tin oxide film and its production
EP1734150B1 (en) Oxide sintered body, oxide transparent conductive film and manufacturing method thereof
US7011691B2 (en) Oxide sintered body
JP4926977B2 (en) Gallium oxide-zinc oxide sintered sputtering target
KR101880783B1 (en) Oxide Sintered Body and Tablets Obtained by Processing Same
KR20080071973A (en) A method to deposit a coating by sputtering
US5470618A (en) Method of making zinc-based transparent conductive film
KR20190112857A (en) Sintered body target and method for producing sintered body
JP2013173658A (en) Tin oxide-based sintered body and method for manufacturing the same
KR20150120996A (en) Niobium oxide sputtering target, production method therefor, and niobium oxide film
JP5418751B2 (en) ZnO vapor deposition material, method for producing the same, and method for forming the ZnO film
Sun et al. Effects of oxygen contents on the electrical and optical properties of indium molybdenum oxide films fabricated by high density plasma evaporation
JP3780932B2 (en) Sintered target for producing transparent conductive thin film and method for producing the same
JP4175071B2 (en) Oxide sintered body and sputtering target
JP5418752B2 (en) ZnO vapor deposition material, method for producing the same, and method for forming the ZnO film
JP2007246318A (en) Oxide sintered compact, method for manufacturing the same, method for manufacturing oxide transparent conductive film, and oxide transparent conductive film
JP5499453B2 (en) ZnO vapor deposition material, method for producing the same, and method for forming the ZnO film
JP5516838B2 (en) Method for producing ZnO vapor deposition material
JP4760499B2 (en) Oxide sintered body and manufacturing method of oxide film transparent conductive film using the same
JP2009096713A (en) Zno vapor deposition material, its production method, and zno film and the like formed therefrom
JP2002275624A (en) Sintered compact target for depositing transparent electrically conductive thin film, production method therefor and transparent electrically conductive thin film obtained therefrom
JPH11302017A (en) Transparent electrically conductive film
JP2003239063A (en) Transparent conductive thin film, its manufacturing method, and sputtering target used for its manufacture
JP2012197216A (en) Oxide sintered compact, method for manufacturing the same and target using the same
JP5993700B2 (en) Method for producing zinc oxide-based sintered body