JPH06158308A - Target for sputtering for indium-tin oxide film and its production - Google Patents

Target for sputtering for indium-tin oxide film and its production

Info

Publication number
JPH06158308A
JPH06158308A JP33670092A JP33670092A JPH06158308A JP H06158308 A JPH06158308 A JP H06158308A JP 33670092 A JP33670092 A JP 33670092A JP 33670092 A JP33670092 A JP 33670092A JP H06158308 A JPH06158308 A JP H06158308A
Authority
JP
Japan
Prior art keywords
target
sputtering
indium
tin oxide
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33670092A
Other languages
Japanese (ja)
Inventor
Hiromi Kikuchi
Masahiko Sakakibara
正彦 榊原
広実 菊池
Original Assignee
Hitachi Metals Ltd
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd, 日立金属株式会社 filed Critical Hitachi Metals Ltd
Priority to JP33670092A priority Critical patent/JPH06158308A/en
Publication of JPH06158308A publication Critical patent/JPH06158308A/en
Application status is Pending legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Abstract

PURPOSE: To produce a target for sputtering by which an ITO film having low specific resistance is stably formed by compacting fine In2O3-SnO2 compound powder optionally blended with In2O3 powder and/or SnO2 powder and sintering the resulting compact under specified conditions.
CONSTITUTION: Polyvinyl alcohol is added to superfine In2O3-SnO2 compound particles having ≤0.1μm average particle diameter optionally blended with fine In2O3 particles and/or fine SnO2 particles having ≤0.1μm average particle diameter and they are granulated. The resulting granules are cold-compacted and sintered at 1,500-1,700°C in an oxygen atmosphere under 1-10 atm pressure to produce the objective In2O2-SnO2 target. When this target is used and sputtering is carried out with ions of inert gas, an ITO film having such low specific resistance as ≤1×10-3Ω.cm and ≥90% relative density can stably be formed on a substrate.
COPYRIGHT: (C)1994,JPO&Japio

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は、液晶表示装置、薄膜エレクトロルミネッセンス表示装置等に使用され、透明電極となるインジウム・スズ酸化物膜を形成するのに用いられるインジウム・スズ酸化物膜用スパッタリング用ターゲットおよびその製造方法に関する。 BACKGROUND OF THE INVENTION This invention relates to a liquid crystal display device is used in a thin film electroluminescent display devices and the like, indium tin oxide film for sputtering used in forming the indium tin oxide film to be a transparent electrode about the use target and a method of manufacturing the same.

【0002】 [0002]

【従来の技術】酸化インジウムIn 23の中に酸化スズSnO 2をドープした膜であるインジウム・スズ酸化物膜(以下ITO膜と称する)は高い透光性と高い導電性を備えており、液晶表示素子やエレクトロルミネッセンスなどの表示装置、あるいは航空機などの窓ガラスの氷結防止用ヒータなどへの導電経路として広く使用されている。 (Hereinafter referred to as ITO film) BACKGROUND ART indium-tin oxide film of tin oxide SnO 2 is doped film into indium oxide In 2 O 3 has a high light transmitting property and high conductivity , it is widely used as a conductive path for the liquid crystal display display device such as a device or an electroluminescence, or the like icing heater for window glass, such as an aircraft. このようなITO膜は通常スパッタリング法、電子ビーム蒸着、CVD法等により形成されるものである。 Such ITO film is usually sputtering, electron beam evaporation, it is those formed by the CVD method or the like. このなかで、インジウム酸化物とスズ酸化物の焼結体をターゲットとして不活性ガスイオンによりスパッタリングすることによりITO膜を形成するスパッタリング法は、他の方法よりも装置の構成が単純であり、今後主流になっていくものと考えられている。 Among this, the sputtering method for forming an ITO film by sputtering by inert gas ions sintered body of indium oxide and tin oxide as a target is a simpler construction of the apparatus than other methods, future it is believed that will become the mainstream.

【0003】しかし、インジウム酸化物とスズ酸化物の焼結体のように複合焼結体をターゲットとして用いた場合は、スパッタリング中の酸素の解離、インジウム酸化物とスズ酸化物のスパッタリング速度の違いなどの原因によりターゲット組成そのものの組成比では薄膜が形成されないという問題があった。 However, the composite sintered body in the case of using as a target, the dissociation of oxygen in the sputtering, the sputtering rate of the indium oxide and tin oxide difference as a sintered body of indium oxide and tin oxide the composition ratio of the target composition itself has a problem that the thin film is not formed due to causes such as. 特にITO膜を形成する場合、膜の導電性は形成される膜中の酸素量に極めて敏感に影響される。 Particularly when forming the ITO film, a conductive film is extremely sensitive to affect the amount of oxygen in the film to be formed. そのためスパッタリング中の酸素量の変動を抑制することは、スパッタリング法を用いて均質なITO膜を生産する上で重要な課題であった。 Therefore suppressing the variation of the amount of oxygen in the sputtering has been an important issue in the production of homogeneous ITO film by sputtering.

【0004】最近このような酸素量の変動を抑制する手段として、特開平3−44465号公報に、使用するターゲットそのものから酸素を事前に減少させておくことにより、スパッタリング進行中の酸素量の変動を抑制する方法が開示された。 [0004] As recently means for suppressing such variation in oxygen content, in JP-A-3-44465, by keeping oxygen beforehand reduces from the target itself to be used, variation in the amount of oxygen in the sputtering progress method of inhibiting have been disclosed. すなわちこの方法は、焼結後のターゲットに対して、酸化インジウムおよび酸化スズから酸素が熱解離する条件で2次焼結を行なって、ターゲット中の酸素を減らすことにより、スパッタリング進行中では酸素量の変動が少ないものとする方法である。 That this method, the target after sintering, and subjected to secondary sintering under the conditions of oxygen is thermally dissociated from indium oxide and tin oxide, by reducing the oxygen in the target, the amount of oxygen in the sputtering progress a method shall fluctuation of less.

【0005】 [0005]

【発明が解決しようとする課題】しかし、上述の特開平3−44465号に記載される方法では、スパッタリング進行中の酸素量の変動は抑えることができるが、もともと金属酸化物でなければならない焼結体中の酸素を減少させることは、化学量論組成からずれることになり、 [SUMMARY OF THE INVENTION] However, baked in the method described in JP-A-3-44465 described above, it is possible to suppress variation of the oxygen content in the sputtering progress must originally metal oxide reducing the oxygen in the body is will be deviated from the stoichiometric composition,
薄膜中の酸素欠乏によって欠陥が増加することになる。 So that the defect is increased by oxygen deficiency in the thin film.
この酸素欠乏による欠陥の増加は、生成するITO膜の抵抗値を増加させることになり、本来のITO膜が有する導電性が得られないという問題があった。 Increase in defects due to oxygen deficiency, results in increasing the resistance value of the resulting ITO film, there is a problem that can not be obtained having conductive the original ITO film. さらに本発明者が、スパッタリング進行中のターゲットのスパッタリング面の組織と得られる薄膜の特性の関係を検討したところ、スパッタリングによるエロージョンが進行すると、スパッタリング面に黒化物が発生し、これに伴って形成する膜の薄膜抵抗が増大していくという結果になることがわかった。 The present inventors have, was examined the relationship between the characteristics of the thin film obtained with the tissues of the sputtering surface of the target during sputtering progress, and the erosion caused by sputtering progresses, black product is generated in the sputtering surface, along with this form thin film resistor of the membrane was found to result in gradually increasing to.

【0006】また、ITO膜の抵抗値の増大はターゲットの密度が低い場合にも発生する。 Further, increase in the resistance value of the ITO film also occur if the density of the target is low. これはターゲットの密度が低いと、ターゲット自体の熱伝導率が低いものとなるため、ターゲットと接合したバッキングプレートで冷却しても十分に冷却できない部分が生じる。 This is the density of the target is low, since as the thermal conductivity of the target itself is low, the portion that can not be sufficiently cooled by cooling with a backing plate bonded to the target occurs. このような状態になるとターゲットが部分的に高温のままになるので、その部分の酸素が一部解離してしまうためである。 Since such becomes a state target partially it remains hot, oxygen that portion because the thus partially dissociated. このような酸素の解離の発生も、ターゲット中の酸素欠乏の増加となり、生成するITO膜の抵抗値の増大の原因となる。 Such generation of oxygen dissociation also an increase of the oxygen deficiency in the target, causing an increase in the resistance value of the resulting ITO film. 本発明の目的はスパッタリング期間にターゲットが黒化しにくく、安定して低い薄膜抵抗値のI Purpose target is hardly blackening the sputtering period of the present invention, the stable and low film resistance I
TO膜が得られるターゲットおよびその製造方法を提供することである。 TO film to provide a target and its manufacturing method are obtained.

【0007】 [0007]

【課題を解決するための手段】本発明者は、ターゲット表面の黒化とターゲットのミクロ組織を検討したところ、ターゲットの黒化はターゲット表面に突起が発生することが原因であること、その突起にはスズが他の部分より濃縮されていること、突起部は酸素濃度が低く、ターゲット表面に突起が生成したままでスパッタリングをつづけるとスパッタリングが進行するにつれてITO膜の抵抗値が増大することを知見した。 The present inventors SUMMARY OF THE INVENTION may, was examined blackening and target microstructure of the target surface, it blackening of the target is caused by a protrusion on the target surface occurs, the projections the tin is more concentrated than other portions, the protruding portion has a low oxygen concentration, that resistance of the ITO film as the sputtering when continued sputtering while protrusions on the target surface is generated proceeds increases and knowledge. 本発明者は、このような突起の発生を抑えるために、ターゲットの組織とターゲット密度に着目し検討を行なったところ、90% The present inventors, in order to suppress the occurrence of such projections, was conducted focusing on the tissue and the target density of the target study, 90%
以上の相対密度を有し、しかも焼結体を単相構造とすることにより、突起の発生しにくいターゲットが得られ、 It has more relative density, yet by a sintered body with a single-phase structure, hardly generated target projections obtained,
安定して薄膜抵抗の低いITO膜が形成できることを見出した。 It found that stable low ITO film with a thin film resistance can be formed.

【0008】すなわち本発明は、実質的にインジウム、 That is, the present invention provides substantially indium,
スズおよび酸素からなる焼結体であり、相対密度が90 A sintered body made of tin and oxygen, the relative density of 90
%以上で単相構造を有し、比抵抗値が1×10 -3 Ω・c It has a single phase structure or%, specific resistance 1 × 10 -3 Ω · c
m以下であることを特徴とするインジウム・スズ酸化物膜用スパッタリング用ターゲットである。 Indium-tin oxide sputtering target membrane, characterized in that m or less. 本発明ターゲットにおいて、その組織を単相構造としたのは、スパッタリング時の投入電力1W/cm 2 、スパッタリングガス圧1Pa、基板温度25℃の条件でスパッタリングを実施したとき、30時間スパッタリングしても抵抗値の変動を2%以下とすることが可能となったからである。 In the present invention the target, to that the tissue and single-phase structure, input power 1W / cm 2 at the time of sputtering, the sputtering gas pressure 1 Pa, when carrying out the sputtering under conditions of a substrate temperature of 25 ° C., even if 30 hours sputtering the variation in resistance because it has become possible to 2% or less.
本発明において組織が単相構造であるとは、スズが酸化インジウム格子間に存在するドーパント状態にあり、I The tissue in the present invention is a single-phase structure is in the dopant state tin is present between indium oxide lattice, I
nO 3相以外にSn0 2相、In 4 Sn 312相等の中間化合物相を形成していないことをいう。 nO 3 in addition to phase Sn0 2 phases, means that do not form an intermediate compound phase In 4 Sn 3 0 12 equality. 単相構造であることの確認は、X線回折およびミクロ組織観察により行うことができる。 Confirmation that a single phase structure may be carried out by X-ray diffraction and microstructure observation. 図1に単相構造のミクロ組織写真を、また図2に異相を含む複相構造のミクロ組織写真を示す。 The microstructure photograph of single-phase structure in FIG. 1, also showing a microstructure photograph of multi phase structure containing a heterogeneous phase in FIG.
図2の異相は、EPMA(電子線マイクロアナライザ) Heterogeneous phase 2, EPMA (electron microprobe)
の分析結果より、In 4 Sn 312であることが同定された。 From the analytical results, it was identified as the In 4 Sn 3 O 12. また、本発明において相対密度を90%以上としたのは、90%未満であると低密度に起因して、スパッタリング進行中の薄膜抵抗の増加が避けられず、単相構造とすることによる薄膜抵抗の安定化の効果が明瞭に現れないためである。 Further, the relative density in the present invention was 90% or more, due to the low density is less than 90%, can not be avoided an increase in the thin film resistor in the sputtering progress, a thin film by a single-phase structure the effect of stabilization of the resistance is due to not appear clearly. 本発明ターゲットにおいて比抵抗値を1×10 -3 Ω・cm以下とするのは、ITO膜の比抵抗値を10 -4 Ω・cm台にするために必要だからである。 To a specific resistance less 1 × 10 -3 Ω · cm in the present invention the target is because we need to make the specific resistance of the ITO film 10 -4 Ω · cm stand.

【0009】また、本発明者は、ターゲット材を単相構造とする方法として、平均粒径0.1μm以下の酸化インジウム−酸化スズ複合粉末を利用すれば良いことを見いだした。 Further, the present inventors as a way to the target material a single phase structure, the average particle diameter of 0.1μm or less of indium oxide - found that may be utilized tin oxide composite powder. すなわち、本発明のターゲットの製造方法は、平均粒径0.1μm以下の酸化インジウム−酸化スズ複合粉末をプレス成形した後、1〜10気圧の加圧酸素雰囲気中、1500〜1700℃で焼結しすることを特徴とするインジウム・スズ酸化物膜用スパッタリング用ターゲットの製造方法である。 That is, the production method of the target present invention has an average particle size of 0.1μm or less of indium oxide - after tin composite oxide powder was press-molded, in a pressurized oxygen atmosphere 1-10 atm, sintered at 1500 to 1700 ° C. a method for producing an indium-tin oxide film sputtering target for, characterized in that contribute. 平均粒径0.1μm以下の酸化インジウム−酸化スズ複合粉末は、例えばインジウム−スズ合金を加熱溶融したものを1300℃程度に加熱されたチャンバー内に噴霧することにより製造することができる。 The average particle size of 0.1μm or less of indium - tin composite oxide powder, for example, indium - those heated molten tin alloy can be produced by spraying into a chamber heated to about 1300 ° C..

【0010】本発明の製造方法の特徴は、ターゲットの組織を単相構造とするために酸化インジウム−酸化スズ複合粉末を用いる点にある。 [0010] Features of the method of the present invention, indium oxide to the target tissue and single-phase structure - lies in the use of tin oxide composite powder. すなわち、酸化インジウムと酸化スズの混合粉末の場合、組織的に均一な焼結体を得ることができずSn0 2 、In 4 Sn 312などの異相の発生を抑制することができないのに対し、均一性の優れた酸化インジウム−酸化スズ複合粉末では焼結体の組織も均一になりSn0 2 、In 4 Sn 312などの異相の発生を抑制することができる。 That is, in the case of mixed powder of indium oxide and tin oxide, whereas it is impossible to suppress heterophase the occurrence of organizationally impossible to obtain a uniform sintered body Sn0 2, In 4 Sn 3 O 12 uniformity of excellent indium oxide - it is possible to suppress the generation of heterogeneous phases such as Sn0 2, in 4 Sn 3 O 12 becomes sintered body tissue even uniform tin oxide composite powder.

【0011】本発明において、原料粉末として均一性に優れる複合粉末を全量用いることが最も望ましい。 [0011] In the present invention, it is most desirable to use the whole amount composite powder having excellent uniformity as a raw material powder. しかし、この複合粉末を主成分とし、平均粒径0.1μm以下の酸化インジウムおよび平均粒径0.1μm以下の酸化スズの一種または二種を混合した混合粉末を用いることもできる。 However, this composite powder as a main component, it is also possible to use a mixed powder alone or a mixture of two kinds of mean particle size 0.1μm or less of indium oxide and average particle diameter 0.1μm or less of tin oxide. 本発明において、用いる粉末の平均粒径を0.1μm以下とするのは、相対密度が90%以上の焼結体を得るのが困難だからである。 In the present invention, the average particle size of the 0.1μm or less of the powder used, the relative density is because it is difficult to obtain over 90% of the sintered body. また本発明において、焼結雰囲気を1気圧以上の加圧酸素雰囲気中とするのは高密度化のために必要だからであるが、10気圧程度で密度向上の効果は飽和する。 In the present invention, but to the sintering atmosphere in pressurized oxygen atmosphere or 1 atm is because required for densification, the effect of improving the density of about 10 atm saturated. したがって、経済面をも考慮し焼結雰囲気を1気圧〜10気圧の加圧酸素雰囲気とする。 Therefore, the pressurized oxygen atmosphere of 1 atm to 10 atm consideration sintering atmosphere also economic. 焼結温度は、1500℃未満では相対密度9 Sintering temperature, relative density 9 is less than 1500 ° C.
0%以上の焼結体が獲られず、一方1700℃を越えると酸化スズ、酸化インジウムの分解による密度低下が生ずるので1500〜1700℃とする。 0% or more without being sintered body caught, whereas exceeding the tin oxide 1700 ° C., and 1500 to 1700 ° C. at the density lowering by the decomposition of the indium oxide is produced.

【0012】 [0012]

【実施例】 【Example】

(実施例1)インジウム−スズ合金を加熱溶融後、13 (Example 1) Indium - after heating and melting the tin alloy, 13
00℃に加熱されたチャンバー内へ噴霧する乾式法により酸化インジウム−酸化スズ複合粉末を製造し、この粉末を分級し、図1に示す平均粒径を有する粉末を準備した。 The 00 ° C. dry method of spraying the heated chamber indium oxide - to prepare a tin oxide composite powder, the powder was classified to prepare a powder having an average particle size shown in FIG. さらに、酸化インジウム粉末、酸化スズ粉末は各々インジウム、スズを同様に乾式法により図1に示す平均粒径のものを得た。 Further, indium oxide powder, tin oxide powder was obtained each indium, having an average particle diameter shown in FIG. 1 by a dry method in the same manner as the tin. これらの粉末を混合する場合は、所定の比率になるようにボールミルによって24時間混合した。 When mixing these powders were mixed for 24 hours by a ball mill so as to have a predetermined ratio. 複合粉末単独の場合は、この粉末にポリビニルアルコール(PVA)を1%添加して造粒し、これを冷間プレスで成形圧力3000Kg/cm 2で成形した。 For composite powder alone, the powder of polyvinyl alcohol (PVA) was added 1% was granulated, which was molded at a molding pressure of 3000 Kg / cm 2 with cold press. この成形体を1600℃で5気圧の加圧酸素雰囲気中で6 The molded body in a pressurized oxygen atmosphere of 5 atm at 1600 ° C. 6
時間保持し焼結を行なった。 It was subjected to time held by sintering. 得られた焼結体を研削により直径100mm、厚さ5mmのターゲットに加工した。 The obtained sintered body 100mm diameter by grinding, was processed into 5mm thick targets. 図1のターゲットのスパッタ面中央のミクロ組織を鏡面加工後光学顕微鏡で観察した。 The sputtering surface center of the microstructure of the target 1 were observed in the mirror-finished after the optical microscope. 図4にNo. Figure 4 No. 1の、 Of 1,
また図5にNo. The No. 5 8のミクロ組織写真を示すが、No. Show the 8 microstructure photograph of it, No.
1は単相構造、またNo. 1 is a single-phase structure, also No. 8はIn 4 Sn 312からなる異相を含む複相構造であることがわかった。 8 was found to be a multi-phase structure comprising a secondary phase consisting of In 4 Sn 3 O 12. 他のターゲットの相構造は図1に記載する。 Phase structure of the other targets are described in Figure 1.

【0013】図1に示すように、原料の複合粉末の平均粒径が0.1μmを越える試料No. [0013] As shown in FIG. 1, the sample mean particle size of the composite powder of the raw material exceeds 0.1 [mu] m No. 6は焼結密度が9 6 sintered density is 9
0%未満となった。 It was less than 0%. また、スズ含有量が10%のNo. Further, No. tin content of 10%
8は複相構造の組織となり、また混合粉末で製造したN 8 becomes a tissue of multiphase structure and were prepared with a mixed powder N
o. o. 7も複相構造の組織を示した。 7 also shows the structure of the dual-phase structure. さらに、スズ量が1 In addition, the amount of tin is 1
%のNo. % Of No. 9はターゲット自体の比抵抗値が大きいことがわかる。 9 it can be seen that a large specific resistance of the target itself. これらの試料のターゲットを用いて、次の条件でスパッタリングを行なった。 Using these sample target was carried out sputtering under the following conditions. スパッタ電力 1.0W/cm 2スパッタガス組成 99%アルゴン+1%酸素の混合ガス スパッタガス圧 1Pa 基板温度 25℃ 初めの2時間スパッタリングすることにより得られた膜の初期抵抗値(a)と30時間スパッタリングを行なった後、新しい基板に交換しさらにスパッタリングを行ない得られた膜の抵抗値(b)を図2に示す。 Sputtering power 1.0 W / cm 2 sputtering initial resistance value of the film obtained by 2 hours sputtering of mixed gas sputtering gas pressure 1Pa substrate temperature 25 ° C. early gas composition of 99% argon + 1% oxygen (a) and 30 hours after performing sputtering shows the resistance of the film obtained performs further sputtering was replaced with a new substrate (b) in FIG.

【0014】図2に示すように、本発明のターゲットの試料No. [0014] As shown in FIG. 2, the target of the present invention Sample No. 1ないし5および試料No. 1 to 5 and the sample No. 10は30時間スパッタリング後の抵抗値が初期値に対して2%以下しか変化せず極めて安定して低抵抗のITO薄膜が得られた。 10 the resistance value after 30 hours sputtering is extremely stable and low resistance ITO film not only not change more than 2% were obtained for an initial value. これに対して、比較例のターゲットである試料N In contrast, the sample N is the target of Comparative Example
o. o. 9では初期値の抵抗が高く、および試料No. High resistance of initial value at 9, and Sample No. 6ないし8は抵抗値が初期値に対して15%以上も変化しており、長期のスパッタリングには耐えられないものであった。 6-8 is also changed by 15% or more the resistance value relative to the initial value, it was those not stand up to long sputtering. また、30時間のスパッタリング終了後のスパッタリング面を見ると、比較例のターゲットである試料N Looking at the sputtering surface after the end of the sputtering of 30 hours, the sample N is the target of Comparative Example
o. o. 6および試料No. 6 and the sample No. 8は、本発明のターゲットの試料No. 8, Sample No. Target of the invention 1ないし5、および試料No. 1 to 5, and the sample No. 10に比べて極めて黒く変色していた。 It was discolored extremely black, compared to 10.

【0015】本発明のターゲットの試料No. [0015] The sample of the target of the present invention No. 1および比較例のターゲットの試料No. Samples of the target 1 and Comparative Example No. 7について、スパッタリング処理後のスパッタリング面の表面を走査型電子顕微鏡でスパッタリング面に対して45度方向から観察した結果を、図6および図7にそれぞれ示す。 For 7, the results of observation from the direction of 45 degrees with respect to the sputtering surface of the surface of the sputtering surface after sputtering a scanning electron microscope, respectively shown in FIGS. 図6と図7 Figures 6 and 7
を比較すると明らかなように、比較例を示す図7には、 As is apparent from a comparison of, in FIG. 7 showing a comparative example,
スパッタリング表面に略円錐状の巨大な突起1が多量に発生している。 Huge projections 1 of a substantially conical shape was largely generated in the sputtering surface. この突起部をEPMAで分析したところ突起先端部にスズ原子が濃化していることが確認され、 This can tin atoms are concentrated confirmed projections the protruding tip was analyzed by EPMA,
さらに酸素濃度も他の部分より低下していた。 Further the oxygen concentration was also lower than other portions. この結果から、ターゲットの複相化にともなう異相により突起が発生し、この突起部分の酸素濃度が低下して、成膜するITO膜の抵抗値の増大の原因になっていることがわかった。 From this result, protrusions caused by different phase due to dual-phase targets, decreases the oxygen concentration of the protruding portion, it was found that is causing the increase in the resistance of the ITO film to be formed.

【0016】(実施例2)実施例1と同様に製造したスズ含有量が4重量%の酸化インジウム−酸化スズ混合粉末を用いて、最終の焼結温度を図3に示すように145 [0016] (Example 2) Example 1 produced as in tin content of 4 wt% of indium oxide - with tin oxide powder mixture, the final sintering temperature, as shown in FIG. 3 145
0℃から1650℃とし、5気圧加圧酸素雰囲気および大気中とした以外は実施例1と同じ条件でターゲットを製造した。 From 0 ℃ and 1650 ° C., except for using 5 atm pressurized oxygen atmosphere and the atmosphere to produce a target under the same conditions as in Example 1. これらのターゲットを用いて実施例1と同様にスパッタリングを行ない、ITO膜の抵抗値を測定した。 It performs sputtering in the same manner as in Example 1 by using these targets were measured the resistance of the ITO film.

【0017】結果を図3に示す。 [0017] The results are shown in Figure 3. 図3に示すように、焼結温度の低い比較例の試料No. As shown in FIG. 3, the samples of the low comparative example of the sintering temperature No. 14は相対密度が87 14 relative density 87
%と低いため抵抗値の変化率が大きい。 % And low for the rate of change of the resistance value is large. 一方試料No. On the other hand sample No.
15焼結温度は1600℃と高いにもかかわらず大気中焼結であるため相対密度が80%と低く、結果として抵抗値の変化率がきわめて大きいものになった。 15 sintering temperature is 1600 ° C. and higher even though the atmosphere as low as 80% relative density for a sintered, resulting rate of change of the resistance value becomes extremely large. この結果から、90%以上の相対密度で安定して抵抗値の低いI This result, less stable resistance value relative density of 90% or more I
TO膜が得られることがわかる。 It can be seen that the TO film can be obtained.

【0018】 [0018]

【発明の効果】本発明の90%以上の相対密度を有し、 It had 90% or more of the relative density of the present invention,
単相構造のターゲットによればスパッタリング期間にターゲットのスパッタリング面に突起の発生が少なく黒化しにくいため、安定して低い抵抗値のITO膜が得られる。 Because hardly less blackening generation of protrusions on the sputtering surface of the target in the sputtering period, according to the single-phase structure targets, ITO film of stable and low resistance can be obtained. これによりターゲットの寿命が長くなり、ターゲットをとりだしてターゲットのスパッタリング表面を再研磨して変質部分を除くといった作業を大幅に削減できる。 Thus the life of the target is prolonged, the work such as taking out the target except deteriorated portion by repolishing the sputtering surface of the target can be significantly reduced.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明ターゲットと比較例の粒径、相対密度、 [1] The present invention targets a comparative example of the particle size, relative density,
結晶相、比抵抗値を表わす図である。 Crystalline phase is a diagram showing a specific resistance value.

【図2】本発明ターゲットと比較例の抵抗値、抵抗値変化率を表わす図である。 [2] The present invention targets the resistance of the comparative example, a diagram showing the resistance value change rate.

【図3】本発明ターゲットと比較例の焼結条件による相対密度、膜抵抗、抵抗値、抵抗値変化率を示す図である。 Relative density by [3] Sintering conditions of Comparative Example with the present invention the target, the film resistance, the resistance value is a diagram showing the resistance change ratio.

【図4】光学顕微鏡による本発明ターゲットのミクロ金属組織写真である。 4 is a microstructure metallographic photograph of the present invention the target with an optical microscope.

【図5】光学顕微鏡による比較例ターゲットのミクロ金属組織写真である。 5 is a microscopic metallic structure photograph of Comparative Example target using an optical microscope.

【図6】スパッタリング後の本発明のターゲットのスパッタリング面を走査型電子顕微鏡により観察した時のスケッチ図である。 6 is a sketch view of the sputtering surface of the target of the present invention after sputtering was observed with a scanning electron microscope.

【図7】スパッタリング後の比較例のターゲットのスパッタリング面を走査型電子顕微鏡により観察した時のスケッチ図である。 7 is a sketch view of the sputtering surface of the target of Comparative Example after sputtering was observed with a scanning electron microscope.

【符号の説明】 DESCRIPTION OF SYMBOLS

1 突起 1 projections

Claims (3)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 実質的にインジウム、スズおよび酸素からなる焼結体であり、相対密度が90%以上で単相構造を有し、比抵抗値が1×10 -3 Ω・cm以下であることを特徴とするインジウム・スズ酸化物膜用スパッタリング用ターゲット。 1. A substantially indium, a sintered body consisting of tin and oxygen, relative density have a single phase structure with greater than 90%, specific resistance is not more than 1 × 10 -3 Ω · cm indium-tin oxide film sputtering target for, characterized in that.
  2. 【請求項2】 平均粒径0.1μm以下の酸化インジウム−酸化スズ複合粉末をプレス成形した後、1〜10気圧の加圧酸素雰囲気中、1500〜1700℃で焼結しすることを特徴とするインジウム・スズ酸化物膜用スパッタリング用ターゲットの製造方法。 Wherein the average particle diameter 0.1μm or less of indium oxide - after tin composite oxide powder was press-molded, in a pressurized oxygen atmosphere 1-10 atm, and characterized in that death sintered at 1500 to 1700 ° C. manufacturing method of a sputtering target for an indium tin oxide film.
  3. 【請求項3】 平均粒径0.1μm以下の酸化インジウム−酸化スズ複合粉末と平均粒径0.1μm以下の酸化インジウムおよび平均粒径0.1μm以下の酸化スズの一種または二種の混合粉末をプレス成形した後、1〜1 Wherein the average particle diameter 0.1μm or less of indium - tin oxide composite powder with an average particle size of 0.1μm or less of indium oxide and one of the following tin oxide average particle diameter 0.1μm or two of the mixed powder after the press molding, 1 to 1
    0気圧の加圧酸素雰囲気中、1500〜1700℃で焼結しすることを特徴とするインジウム・スズ酸化物膜用スパッタリング用ターゲットの製造方法。 In a pressurized oxygen atmosphere 0 atm method of indium-tin oxide film sputtering target for, characterized by death sintered at 1500 to 1700 ° C..
JP33670092A 1992-11-24 1992-11-24 Target for sputtering for indium-tin oxide film and its production Pending JPH06158308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33670092A JPH06158308A (en) 1992-11-24 1992-11-24 Target for sputtering for indium-tin oxide film and its production

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP33670092A JPH06158308A (en) 1992-11-24 1992-11-24 Target for sputtering for indium-tin oxide film and its production
US08/155,813 US5435826A (en) 1992-11-24 1993-11-23 Sputtering target and method for producing same

Publications (1)

Publication Number Publication Date
JPH06158308A true JPH06158308A (en) 1994-06-07

Family

ID=18301899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33670092A Pending JPH06158308A (en) 1992-11-24 1992-11-24 Target for sputtering for indium-tin oxide film and its production

Country Status (2)

Country Link
US (1) US5435826A (en)
JP (1) JPH06158308A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002030429A (en) * 2000-07-18 2002-01-31 Tosoh Corp Ito sputtering target and manufacturing method

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4427060C1 (en) * 1994-07-29 1995-11-30 Heraeus Gmbh W C Prefabricated part made of indium-tin oxide
US6033620A (en) * 1995-04-18 2000-03-07 Tosoh Corporation Process of preparing high-density sintered ITO compact and sputtering target
EP0761838B1 (en) * 1995-08-18 2001-08-08 W.C. Heraeus GmbH & Co. KG Sputtering target and method for its manufacturing
JP3862385B2 (en) * 1996-11-08 2006-12-27 Dowaホールディングス株式会社 Tin oxide-containing indium oxide powder and method for producing sintered body
JP3576364B2 (en) * 1997-10-13 2004-10-13 株式会社日鉱マテリアルズ The cleaning method of Ito sputtering target
DE19822570C1 (en) * 1998-05-20 1999-07-15 Heraeus Gmbh W C High density hot isostatically pressed indium-tin oxide sputter target
US6113761A (en) 1999-06-02 2000-09-05 Johnson Matthey Electronics, Inc. Copper sputtering target assembly and method of making same
WO2001039250A2 (en) 1999-11-24 2001-05-31 Honeywell International Inc. Conductive interconnection
US6451222B1 (en) * 1999-12-16 2002-09-17 Honeywell International Inc. Ferroelectric composition, ferroelectric vapor deposition target and method of making a ferroelectric vapor deposition target
US6858102B1 (en) 2000-11-15 2005-02-22 Honeywell International Inc. Copper-containing sputtering targets, and methods of forming copper-containing sputtering targets
US7404877B2 (en) 2001-11-09 2008-07-29 Springworks, Llc Low temperature zirconia based thermal barrier layer by PVD
US20050199861A1 (en) * 2001-12-12 2005-09-15 Wu L. W. Manufacturing method for transparent and conductive coatings
US6884327B2 (en) * 2002-03-16 2005-04-26 Tao Pan Mode size converter for a planar waveguide
US7378356B2 (en) 2002-03-16 2008-05-27 Springworks, Llc Biased pulse DC reactive sputtering of oxide films
US8236443B2 (en) 2002-08-09 2012-08-07 Infinite Power Solutions, Inc. Metal film encapsulation
US8021778B2 (en) 2002-08-09 2011-09-20 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8404376B2 (en) 2002-08-09 2013-03-26 Infinite Power Solutions, Inc. Metal film encapsulation
US8445130B2 (en) 2002-08-09 2013-05-21 Infinite Power Solutions, Inc. Hybrid thin-film battery
US8394522B2 (en) 2002-08-09 2013-03-12 Infinite Power Solutions, Inc. Robust metal film encapsulation
US20070264564A1 (en) 2006-03-16 2007-11-15 Infinite Power Solutions, Inc. Thin film battery on an integrated circuit or circuit board and method thereof
US9793523B2 (en) 2002-08-09 2017-10-17 Sapurast Research Llc Electrochemical apparatus with barrier layer protected substrate
US8431264B2 (en) 2002-08-09 2013-04-30 Infinite Power Solutions, Inc. Hybrid thin-film battery
AU2003261463A1 (en) 2002-08-27 2004-03-19 Symmorphix, Inc. Optically coupling into highly uniform waveguides
EP1597408B1 (en) * 2003-02-27 2012-12-05 Symmorphix, Inc. Method for forming dielectric barrier layers
US7238628B2 (en) 2003-05-23 2007-07-03 Symmorphix, Inc. Energy conversion and storage films and devices by physical vapor deposition of titanium and titanium oxides and sub-oxides
US8728285B2 (en) 2003-05-23 2014-05-20 Demaray, Llc Transparent conductive oxides
EP1656467A2 (en) * 2003-08-21 2006-05-17 Honeywell International Inc. Copper-containing pvd targets and methods for their manufacture
US20070137999A1 (en) * 2004-03-15 2007-06-21 Bekaert Advanced Coatings Method to reduce thermal stresses in a sputter target
US7959769B2 (en) 2004-12-08 2011-06-14 Infinite Power Solutions, Inc. Deposition of LiCoO2
WO2006063308A2 (en) 2004-12-08 2006-06-15 Symmorphix, Inc. DEPOSITION OF LICoO2
US7838133B2 (en) 2005-09-02 2010-11-23 Springworks, Llc Deposition of perovskite and other compound ceramic films for dielectric applications
KR20090069323A (en) 2006-09-29 2009-06-30 인피니트 파워 솔루션스, 인크. Masking of and material constraint for depositing battery layers on flexible substrates
US8197781B2 (en) 2006-11-07 2012-06-12 Infinite Power Solutions, Inc. Sputtering target of Li3PO4 and method for producing same
US8268488B2 (en) 2007-12-21 2012-09-18 Infinite Power Solutions, Inc. Thin film electrolyte for thin film batteries
CN101903560B (en) 2007-12-21 2014-08-06 无穷动力解决方案股份有限公司 Method for sputter targets for electrolyte films
US8518581B2 (en) 2008-01-11 2013-08-27 Inifinite Power Solutions, Inc. Thin film encapsulation for thin film batteries and other devices
JP5595377B2 (en) 2008-04-02 2014-09-24 インフィニット パワー ソリューションズ, インコーポレイテッド Control and protection of passive over and under voltage for energy storage devices associated with energy intake
EP2319101B1 (en) 2008-08-11 2015-11-04 Sapurast Research LLC Energy device with integral collector surface for electromagnetic energy harvesting and method thereof
CN102150185B (en) 2008-09-12 2014-05-28 无穷动力解决方案股份有限公司 Energy device with integral conductive surface for data communication via electromagnetic energy and method thereof
US8508193B2 (en) * 2008-10-08 2013-08-13 Infinite Power Solutions, Inc. Environmentally-powered wireless sensor module
WO2011028825A1 (en) 2009-09-01 2011-03-10 Infinite Power Solutions, Inc. Printed circuit board with integrated thin film battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5071800A (en) * 1989-02-28 1991-12-10 Tosoh Corporation Oxide powder, sintered body, process for preparation thereof and targe composed thereof
US4962071A (en) * 1989-05-01 1990-10-09 Tektronix, Inc. Method of fabricating a sintered body of indium tin oxide
JPH0530905B2 (en) * 1990-01-08 1993-05-11 Nitsuko Kyoseki Kk
JP2904358B2 (en) * 1990-10-19 1999-06-14 住友金属鉱山株式会社 Manufacturing method of Ito sintered body
JPH04293769A (en) * 1991-03-20 1992-10-19 Tosoh Corp Ito sputtering target for forming film at low temperature

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002030429A (en) * 2000-07-18 2002-01-31 Tosoh Corp Ito sputtering target and manufacturing method

Also Published As

Publication number Publication date
US5435826A (en) 1995-07-25

Similar Documents

Publication Publication Date Title
Enoki et al. The Electrical and Optical Properties of the ZnO‐SnO2 Thin Films Prepared by RF Magnetron Sputtering
JP4087447B2 (en) Sputtering target and manufacturing method thereof
JP4850378B2 (en) Sputtering target, transparent conductive oxide, and method for producing sputtering target
CN1066782C (en) Process for producing cathode sputtering target and the similar targets
EP0578046B1 (en) Transparent conductive film, and target and material for vapor deposition to be used for its production
US20090197757A1 (en) Zinc oxide ceramics and a manufacturing method for the same, a sputtering target
KR100624677B1 (en) Transparent and conductive zinc oxide film with low growth temperature
US20110121244A1 (en) Sputtering target, transparent conductive film and transparent electrode
JP3746094B2 (en) Target and manufacturing method thereof
US8524123B2 (en) Sputtering target, transparent conductive film and transparent electrode
US7011691B2 (en) Oxide sintered body
WO1996035650A1 (en) Mixed oxide high index optical coating material and method
US5045235A (en) Transparent conductive film
US5435826A (en) Sputtering target and method for producing same
US20080217162A1 (en) Method to Deposit a Coating By Sputtering
CN102543250A (en) Oxide sintered body, manufacturing method therefor, manufacturing method for transparent conductive film using the same, and resultant transparent conductive film
JP3864425B2 (en) Aluminum-doped zinc oxide sintered body, method for producing the same, and use thereof
JP2005219982A (en) Translucent conductive material
JP2000256061A (en) Transparent conductive material, transparent conductive glass and transparent conductive film
US7431808B2 (en) Sputter target based on titanium dioxide
JPH10306367A (en) Zno-ga2o3 sintered body for sputtering target and its production
US4962071A (en) Method of fabricating a sintered body of indium tin oxide
KR100957733B1 (en) Gallium oxide-zinc oxide sputtering target, method of forming transparent conductive film and transparent conductive film
GB1577364A (en) Method for producing high strength polycrystalline titanium dioxide ceramic member
KR101006037B1 (en) Gallium oxide/zinc oxide sputtering target, method of forming transparent conductive film and transparent conductive film