JPS6114836A - Coordinates system correcting device of machining position - Google Patents

Coordinates system correcting device of machining position

Info

Publication number
JPS6114836A
JPS6114836A JP13497384A JP13497384A JPS6114836A JP S6114836 A JPS6114836 A JP S6114836A JP 13497384 A JP13497384 A JP 13497384A JP 13497384 A JP13497384 A JP 13497384A JP S6114836 A JPS6114836 A JP S6114836A
Authority
JP
Japan
Prior art keywords
workpiece
center
value
machining
coordinates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13497384A
Other languages
Japanese (ja)
Other versions
JPH0671691B2 (en
Inventor
Mitsutaka Nakano
中野 充孝
Susumu Imai
進 今井
Hikari Ishigaki
石垣 光
Yasuo Oota
安雄 太田
Takeyoshi Ueno
上野 剛義
Masaya Handa
半田 雅也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Hitachi Seiki Co Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Hitachi Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd, Hitachi Seiki Co Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP59134973A priority Critical patent/JPH0671691B2/en
Publication of JPS6114836A publication Critical patent/JPS6114836A/en
Publication of JPH0671691B2 publication Critical patent/JPH0671691B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/182Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by the machine tool function, e.g. thread cutting, cam making, tool direction control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/34Director, elements to supervisory
    • G05B2219/34092Polar interpolation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/36Nc in input of data, input key till input tape
    • G05B2219/36503Adapt program to real coordinates, software orientation

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Numerical Control (AREA)

Abstract

PURPOSE:To increase the precision for circumferential machining by adding the detected value of the center drift between a work and a table in the rectangular coordinates to the machined positional data than correcting the machining head position with the calculated value converted into the polar coordinates from the rotation center. CONSTITUTION:A standard virtual point where a touch sensor is moved during measurement is assumed, rectangular two-axis coordinates are set, then the touch sensor is fitted to a main spindle end, and the centering correction quantities along X, Y axes are measured and stored in RAMs 31-34. Next, an average value is calculated by an arithmetic unit 35 and is stored, and the center position C1 is calculated by an arithmetic unit 38, then the drift quantity against the position C1, i.e., correction velue (a) on the X axis, is obtained by an arithmetic unit 39, the correction value (b) for the Y axis is determined by turning a table by 90 deg., and they are stored in RAMs 40, 41. Next, when machining data are inputted from an information input means 5, the rectangular coodinates value using the work center C1 of the machined position as an origin is calculted, and correction values (a), (b) are read out from the RAMs 40, 41 to correct the coordinates value. Then, it is converted into the polar coordinates from the table rotation center C2, and the table is turned to perform a punching operation.

Description

【発明の詳細な説明】 本発明は、NC旋盤やドリリングマシンなどの工作機械
における加工位置の座標系補正装置に関し、特に、ワー
ク円周上に配列された複数の小穴などを高精度に加工す
るため極座標系で加工ヘッドを制御する工作機械に・好
適な座標系補正装置に関するものである。      
′″ 従来り、X軸、C軸(回転軸)、およびZ軸の3軸制御
されるマシニングセンタも、回動可能なテーブル上にワ
ー°りを載置し、ワーク円周上に配列された複数、の小
孔を高精度に加工するためには、テーブルの前記回動中
心とワーク中心および主軸中心とを正確に一敗させて載
置しなければ、テーブルの回動だけで小孔などの被加工
位置を加工ヘッドの直下へ位置決めすることにならず、
取付精度の向上が要求され、フィクスチュア機構が複雑
かつコスト高になり更に主軸中心の経時変化も相俟って
、しかも、完全に正確な一敗は期し難いという問題があ
った。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a coordinate system correction device for machining positions in machine tools such as NC lathes and drilling machines, and particularly for machining multiple small holes arranged on the circumference of a workpiece with high precision. Therefore, the present invention relates to a coordinate system correction device suitable for machine tools that control machining heads using a polar coordinate system.
''' Conventionally, machining centers that control the three axes of the X-axis, C-axis (rotation axis), and Z-axis also place the workpiece on a rotatable table and arrange it around the circumference of the workpiece. In order to machine multiple small holes with high precision, the rotation center of the table, the workpiece center, and the spindle center must be aligned accurately and placed. This eliminates the need to position the workpiece directly below the processing head.
There is a need for improved mounting accuracy, the fixture mechanism is complicated and expensive, and the center of the spindle changes over time, making it difficult to achieve a completely accurate fix.

第1図は、立形マシニングセンタの側面図である0図に
おいて、加工作業は、ペッドDに回動可能に取付けられ
たテーブルTにワークWを載置し、ベンドDに付設され
たコラムLに上下動可能に取付けられた加工ヘッドZの
スピンドルHに挿着されたツールにより実施される。ス
ピンドルHに取付けられるツールはマガジンMからAT
C(図示せず)を介して自動的に交換可能であり、ワー
クなどの計測に際しては、タッチセンサをマガジンMか
ら呼出して取付けることもできる。第2図(イ)および
(υ)は、ワークの載置状態を示す平面および側面図で
、ワークWは、回動可能なテーブルTのベースBに、フ
ィクチュアFにより固定され、テーブルTの回動動作に
連動する。ここで問題とするのに好適な加工作業の一例
は、図(イ)に示されるように、円形のワークWの中心
Cに対して同心円状に配列された被加工位置P+ 、P
a、。
Fig. 1 is a side view of a vertical machining center. In Fig. 0, a workpiece W is placed on a table T rotatably attached to a ped D, and a column L attached to a bend D is used for machining. This is carried out by a tool inserted into the spindle H of the processing head Z, which is mounted so as to be movable up and down. Tools attached to spindle H are from magazine M to AT
C (not shown), and when measuring a workpiece, etc., the touch sensor can be called out from the magazine M and attached. Figures 2 (A) and (υ) are plan and side views showing the state in which the workpiece is placed. The workpiece W is fixed to the base B of the rotatable table T by a fixture F, and the workpiece W is fixed to the base B of the rotatable table T. It is linked to the movement movement. An example of a machining operation suitable for consideration here is as shown in Figure (A), where workpiece positions P+, P are arranged concentrically with respect to the center C of a circular workpiece W.
a.

・・・P、に孔径!の小孔を穿設しようとする場合て、
被加工位置と加工ヘッドの加工位置とは完全に一敗し、
テーブルTを回動させるだけで、被加工位置を加工ヘッ
ド)■に対して位置決めされ、容易に制御できるが、実
際には、前記フィクスチュアFの精度の問題などもあっ
て、ワーク中心とテーブル中心とは正確には一敗しない
、そのため、加工の精度は向上せず、また、このズレを
単なる位置のズレとして処理しようとしたのでは、極座
標のため、やはり精度の低下は免れなかった。
...P, the pore diameter! When attempting to drill a small hole,
The position of the workpiece and the machining position of the machining head are completely different.
By simply rotating the table T, the workpiece position is positioned relative to the machining head) and can be easily controlled. Since the center cannot be accurately determined, the accuracy of machining cannot be improved.Also, if we tried to treat this deviation as a mere positional deviation, the precision would inevitably deteriorate due to polar coordinates.

本発明の目的は、上記の問題点に鑑みて、テーブル側の
中心とワーク側の中心のlk/J々ズレは避 。
In view of the above-mentioned problems, an object of the present invention is to avoid the lk/j misalignment between the center of the table side and the center of the workpiece side.

けられなくても、そのズレを芯出し計測し、座標系の相
違を補正して、円周加工位置に対する高精度な加工を低
コストで実用化しようとするものである。
Even if the circumferential machining position is not offset, the deviation is centered and measured, and the difference in the coordinate system is corrected to realize high-precision machining of circumferential machining positions at low cost.

本発明は、上記の目的を達成するために、ワーク中心と
テーブルの回動中心のズレを直角座標で検出するワーク
芯出し計測手段と、その計測値を芯出し補正量として一
時格納する記憶手段′と、各被加工位置のデータに前記
芯出し補正量を加算し、算出された直角座標値を前記回
動中心からの極座標値に換算する演算手段と、その算出
値を使用してテーブルを回動させ、加工ヘッドの位置を
修正させる順次加工指示を発する中央制御手段とを備え
ることを特徴とする。
In order to achieve the above object, the present invention provides a workpiece centering measuring means for detecting the deviation between the center of the workpiece and the center of rotation of a table using orthogonal coordinates, and a storage means for temporarily storing the measured value as a centering correction amount. ', a calculation means that adds the centering correction amount to the data of each workpiece position and converts the calculated rectangular coordinate value into a polar coordinate value from the rotation center, and a table using the calculated value. The apparatus is characterized by comprising a central control means that sequentially issues machining instructions to rotate the machining head and correct the position of the machining head.

以下、本発明の実施例を図面に基づいて詳細に説明する
Embodiments of the present invention will be described in detail below with reference to the drawings.

第3図は、本発明を実施した加工位置座標系補正装置の
一例を示す概略構成図である。同図において、加工位置
座標系補正装置は、中央制御手段(CP U、今後はC
PUと略称する) 1と、ワーク芯出し計測手段又と、
記憶手段ユと、演算段まとを備え、更に、CPUIから
のメインバス11には、加工位置などのデータを入力す
る情報入力手段上と、ワークに対する加工ヘッドの位置
決めをするモータ制御手段工とが接続されている。
FIG. 3 is a schematic configuration diagram showing an example of a machining position coordinate system correction device embodying the present invention. In the figure, the machining position coordinate system correction device is a central control unit (CPU, from now on, C
(abbreviated as PU) 1, a work centering measurement means,
The main bus 11 from the CPU is provided with an information input means for inputting data such as the machining position, and a motor control means for positioning the machining head relative to the workpiece. is connected.

第4図は、上記の座標系補正装置を備えたドリリングマ
シンによる加工手順の一例を示すフローチャートである
。同図において、手順の第1段とし、てはワーク芯出し
手順(rl)を前記ワーク芯出し1演1手段によって実
施し、次に、第2段として小孔加]゛手順(11)を記
憶手段3からの補正量により演算手段4オiよびモータ
制御手段6を介して実施する0手順の第3段である孔計
測手順(III)以降は、加工結果の検査であり、孔径
が正しければOK、小さ過ぎれば再加工、大き過ぎれば
不良品発生となる。
FIG. 4 is a flowchart showing an example of a machining procedure by a drilling machine equipped with the above coordinate system correction device. In the figure, the first stage of the procedure is the workpiece centering procedure (rl) performed by the workpiece centering method, and then the second stage is the small hole drilling procedure (11). The hole measurement procedure (III), which is the third stage of the zero procedure, which is executed using the correction amount from the storage means 3 via the calculation means 4 and the motor control means 6, is an inspection of the machining result, and is performed to check whether the hole diameter is correct. If it is too small, it will be reprocessed, and if it is too large, it will be defective.

次に、前記手順の各段について説明する。。Next, each stage of the above procedure will be explained. .

第5図は、本発明に使用されるワーク芯出し手順の一例
を示すフローチャートである。同図において、定数設定
としては、タッチセッサの長さ、そのプロー”ブの直径
およびタッチセンサのツール番号などが入力され、座標
系の設定としては、タッチセッサが移動する規準になる
ようにテーブル上の仮想点を想定し、直交2軸座標が設
定された□ のち、マガジンからタッチセンサを呼び出
して、前記のように、主軸端へ取付ける。計測は、第6
図(イ)に示すように、設定されたX軸に沿って、ワー
クの外周へXプラス側からとXマイナス側からと接触さ
せ、しかも、そのそれぞれについてプローブを180度
旋旋回せて、計測値へ++A寞+B1.およびB茸を得
る。更に、テーブルを180度回動させて、同様に計測
値As 、Am 、Bs。
FIG. 5 is a flowchart showing an example of a workpiece centering procedure used in the present invention. In the figure, the constant settings include the length of the touch sensor, the diameter of its probe, and the tool number of the touch sensor, and the coordinate system settings include After assuming a virtual point and setting orthogonal two-axis coordinates, the touch sensor is retrieved from the magazine and attached to the spindle end as described above.Measurement is performed at the sixth
As shown in Figure (A), along the set X-axis, the probe is brought into contact with the outer circumference of the workpiece from the X-plus side and the X-minus side, and the probe is rotated 180 degrees for each point. To the value + + A + B1. and B mushrooms are obtained. Furthermore, the table was rotated 180 degrees and similarly measured values As, Am, and Bs were obtained.

およびB4を得れば、合計8点当りで、Y軸に沿った芯
出し補正1iaは計測される。ワークWの中心がテーブ
ル中心よりもプラス側にある時の補正量をaOとし、1
80度回動させてマイナス側にな−だ時の補正用をa□
とすれば、 a ■=(八 、   +R,+A、  +B、  )
  +4− (1)a○= (八、→−B3  ”Aa
’+Ba )” 4−+2)(11,+21よりa =
 (a○+a□)+2同様に、Y軸Gこ沿って計測も、
プローブをY軸に沿って接触させるか、テーブルを90
度回動させて前記計測を繰返しプローブを180度回動
さセて計測値C+ 、Cz 、C+ 、Dzを得る。更
に、テーブルを180°回動させて、同様に計測値C3
゜Ca、DsおよびB4を得れば、合計8点当たりで、
Y軸に沿った芯出し補正量 すの−(C+ +D1 +C1+p冨)+4・・・(3
)be−(C3+D! +Ca +DI )+4・13
)131、 (41,k リb −(bΦ+be)+2
をm4.=とがでのる。
and B4, the centering correction 1ia along the Y axis is measured at a total of 8 points. The correction amount when the center of the workpiece W is on the plus side than the center of the table is aO, and 1
For correction when turning 80 degrees to the negative side, use a□
Then, a = (8, +R, +A, +B, )
+4- (1) a○= (8, →-B3 ”Aa
'+Ba)'' 4-+2) (11, +21, a =
(a○+a□)+2Similarly, measurement along the Y-axis G is also
Touch the probe along the Y axis or move the table to 90
Repeat the measurement by rotating the probe 180 degrees to obtain measured values C+, Cz, C+, and Dz. Furthermore, rotate the table 180 degrees and measure value C3 in the same way.
゜If you get Ca, Ds and B4, the total is 8 points,
Centering correction amount along the Y axis - (C+ +D1 +C1+p value) + 4... (3
)be-(C3+D!+Ca+DI)+4・13
)131, (41,k Rib −(bΦ+be)+2
m4. =Togaderu.

即ち、これらの計測値A+ 、As 、C+ 、Csを
α+ 、At 、 Aa 、 Ct 、Caをα8.B
1Bs、Dt、Dsをαs 、Bz 、 Ba 、 D
t 、 Daをα4としてRAM31からRAM34に
格納される。
That is, these measured values A+, As, C+, Cs are α+, At, Aa, Ct, Ca are α8. B
1Bs, Dt, Ds as αs, Bz, Ba, D
t and Da are stored from the RAM 31 to the RAM 34 as α4.

つぎに演算器35で平均値 (α、+α、+α、+α4)+4が算出され、ワークが
0°の場合と180°旋回後の中心位置の計算結果がβ
Φ、βeとしてRAM36.37に格納される。
Next, the computing unit 35 calculates the average value (α, +α, +α, +α4) + 4, and the calculation results of the center position when the workpiece is at 0° and after turning 180° are β
They are stored in the RAM 36.37 as Φ and βe.

つづいて、演算器38で (βΦ+βO)+2 よりワークの中心位置C8が算出されると、該中心位置
に対するズレ量即ちX軸上の補正値aは演算器39で βΦ−G より得られ、Y軸に対する補正(!Ibはテーブルを9
0°旋回しX軸上で座標系シフトにより求めることがで
きる。
Next, when the center position C8 of the workpiece is calculated from (βΦ+βO)+2 in the calculator 38, the amount of deviation from the center position, that is, the correction value a on the X axis is obtained by the calculator 39 from βΦ−G, and Y Correction for the axis (!Ib is the table 9
It can be determined by rotating the coordinate system by 0° and shifting the coordinate system on the X-axis.

そしてこれらの補正量a、bはRAM40.41に格納
される。
These correction amounts a and b are stored in the RAM 40.41.

原点設定が終ると、タッチセッサはマガジンに返還され
てA’rC(自動工具交換手段)状態に復ターする。
When the origin setting is completed, the touch sensor is returned to the magazine and returned to the A'rC (automatic tool changer) state.

さて、第3図におりる情報入力手段5から加工データが
入力され、被加工位置の敗N、被加工位置を連ねる円周
ヘーク中心C4からの半径Rなどが得られると、各被加
工位置のワーク中心C+を原点とする直角圧+1(aは
、次のように演算される。
Now, when machining data is input from the information input means 5 shown in FIG. 3, and the loss N of the workpiece position and the radius R from the circumferential hex center C4 connecting the workpiece positions are obtained, each workpiece position Right angle pressure +1 (a is calculated as follows) with the workpiece center C+ as the origin.

Y軸から反時間廻り方向にn番目の被加工位置Pnの直
角座標値x7 ′およびy’aは、Y軸からの口偏位各
αnを、αn−α×n、(α−360/N )として、 x ’n =Rcos (αXn) y ’n −Rsin (crxn) となる、この直角座標値は、演算手段4のRAM40.
41から補正量a、bを跣み出して、次のように座MI
値を補正する。なお、2つのRAM36.37からの数
値βΦ、とβeは、演算器33で加算ののち2等分され
てワーク中心Ctが算出され、演算器39てテーブル回
動中心G!とのX、Y方向の差a、bがそれぞれ補正量
とし°ζ出力される。
The orthogonal coordinate values x7' and y'a of the n-th workpiece position Pn in the counter-time direction from the Y-axis are the mouth deviations αn from the Y-axis, αn-α×n, (α-360/N ), x'n = Rcos (αXn) y'n - Rsin (crxn) This rectangular coordinate value is stored in the RAM 40.
Extract the correction amounts a and b from 41 and calculate the seat MI as follows.
Correct the value. Note that the numerical values βΦ and βe from the two RAMs 36 and 37 are added in the computing unit 33 and then divided into two to calculate the workpiece center Ct, and the computing unit 39 calculates the table rotation center G! The differences a and b in the X and Y directions between the two are outputted as correction amounts, respectively.

第6図(I+)は、座標値演算の幾何学的関係を説明す
る平面図である0図に示されるように、前記直角座標値
Xイ′およびyゎ′に芯出し補正量aおよびbを補正す
ると、被加工位置Pnのテーブル回動中心C8を原点と
する直角座標値XnおよびYnは、(この演算のxs 
 ’、)”eの交換は極/直角回路41で行なわれる。
FIG. 6 (I+) is a plan view illustrating the geometric relationship of coordinate value calculation, and as shown in FIG. When corrected, the orthogonal coordinate values Xn and Yn of the workpiece position Pn with the table rotation center C8 as the origin are (xs of this calculation)
The exchange of ', )'e takes place in the polar/quadrature circuit 41.

) Xn=a +x11’−a +Rcos (αxn)Y
n=b+yll ’−b+Rsin (αxl)であり
、これをテーブル回動中心C!からの極座標に換算する
と、 Rn−、/Xn  +Yn Q n  = jan  −’  ((b+R51n(
αXn))  /(a+Rcos  (&+n)))に
なる、この演算は直角/掻回路42で行なわれCPLI
 1に送られる。
) Xn=a +x11'-a +Rcos (αxn)Y
n=b+yll'-b+Rsin (αxl), which is the table rotation center C! When converted to polar coordinates from Rn-, /Xn +Yn Q n = jan -' ((b+R51n(
αXn)) /(a+Rcos (&+n))) This calculation is performed by the right angle/rake circuit 42 and the CPLI
Sent to 1.

第7図は、小孔加工手順の一例を示すフローチャートで
、上記の座標値演算で変換された極座標値を使用して、
テーブルをQn[i7動させては加工ヘッドのX軸位置
をRnに位置決めすることにより、所定の工具を使用し
てワークWに穿孔作業を実施し、これをN個分ループし
て加工し手順を終了ひする。
FIG. 7 is a flowchart showing an example of a small hole machining procedure, using the polar coordinate values converted by the above coordinate value calculation,
By moving the table Qn [i7 and positioning the X-axis position of the machining head at Rn, perform the drilling work on the workpiece W using the prescribed tool, and process this in a loop for N pieces. Finish.

、 最後に、加工作業の結果を、本実施例で使用した極
座標系をそのまま使用して検査する孔径計測手順を説明
する。第8図は、その孔径計測手順の一例を示すフロー
チャートであり、第9図は、その幾何学的関係を示す平
面図である0両図において、孔径計測手順は、まず測定
しようとするワークWの小孔へタッチセンサのプローブ
Pを挿入し、小孔の内縁が回動の進行方向端で該プロー
ブPに接するテーブル極座標値Q1と、同様に回動の後
退方向端で接するQlとを求める。この両値が得られる
と、小孔の中心の極座標値QsがQl w (Ql −
Ql ) +2 として得られるので、テーブルを回動し、小孔の中心と
タッチセッサとをX軸上に合わせる0次にプローブをX
輪に沿って移動し、小孔の内縁にタッチする座標を左右
それぞれに検出すると、プローブの直径がdであれば、
小孔の直角りはD−d+ (右タフチー左タッチ) として検出される。このDを、指定データの花糸!と比
較して、検査を実施することができる。
Finally, the hole diameter measurement procedure for inspecting the results of the machining work using the polar coordinate system used in this example will be described. Fig. 8 is a flowchart showing an example of the pore diameter measurement procedure, and Fig. 9 is a plan view showing the geometrical relationship. Insert the probe P of the touch sensor into the small hole, and find the table polar coordinate value Q1 where the inner edge of the small hole touches the probe P at the end of the forward direction of rotation, and Ql where the inner edge of the small hole touches the probe P at the end of the backward direction of rotation. . When these two values are obtained, the polar coordinate value Qs of the center of the small hole becomes Ql w (Ql −
Since it is obtained as Ql ) +2, rotate the table and align the center of the small hole and the touch sensor on the X axis, and move the probe to the
Moving along the ring and detecting the coordinates of touching the inner edge of the small hole on the left and right sides, if the diameter of the probe is d, then
The right angle of the small hole is detected as D-d+ (right touch left touch). This D is the specified data filament! Inspections can be carried out in comparison to

以上、説明したとおり、本発明によれば、テーブル側の
中心とワーク側の中心とに微小なズレが存在しても、そ
のズレを芯出し計測し、座標系の相違を補正して、すべ
ての作業をテーブルの回動中心からの極座標で処理でき
ることになり、円周加工位置に対する高精度な加工を容
品に実施可能とし、フィクスチェア部分の余分なコスト
を省くと共に操作の迅速化と合理化をも実現する優れた
効果を発揮するものである。
As explained above, according to the present invention, even if there is a minute deviation between the center of the table side and the center of the workpiece side, the deviation is centered and measured, and the difference in coordinate systems is corrected. can now be processed using polar coordinates from the rotation center of the table, making it possible to perform high-precision machining on containers at circumferential machining positions, eliminating unnecessary costs for fixed chairs, and speeding up and streamlining operations. It also exhibits excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はドリリングマシンの側面図、第2図はワークの
載置状態を示す平面図および側面図、第3図は本発明の
座標系補正装置の概略構成図、第゛4図、第5図、第7
図および第8図は本発明の詳細な説明するフローチャー
ト、第6図および第9図は本発明を幾何学的に説明する
平面図である。 1・・・CPLJ     2・・・ワーク芯出し計測
手段3・・・記憶手段   4・・・演算手段5・・・
情報入力手段 6・・・モータ制御手段W・・・ワーク
    T・・・テーブル■1・・・加工ヘソド  P
 + 、’P x〜P、・・・加工位置。 特許出願人   日立精機株式会社 (ダ) 1′/a
)第4図 第5図 一2弼− 矛7rll
Fig. 1 is a side view of the drilling machine, Fig. 2 is a plan view and side view showing the workpiece placement state, Fig. 3 is a schematic configuration diagram of the coordinate system correction device of the present invention, Figs. Figure, 7th
8 and 8 are flowcharts explaining the invention in detail, and FIGS. 6 and 9 are plan views explaining the invention geometrically. 1...CPLJ 2...Workpiece centering measuring means 3...Storage means 4...Calculating means 5...
Information input means 6...Motor control means W...Workpiece T...Table ■1...Machining head P
+, 'P x ~ P, ... processing position. Patent applicant Hitachi Seiki Co., Ltd. (da) 1'/a
) Figure 4 Figure 5 12 \- Spear 7rll

Claims (1)

【特許請求の範囲】[Claims] 回動可能なテーブルにワークを載置し、その回動中心か
らの極座標で制御される加工ヘッドにより、ワーク表面
に配列された複数の被加工位置へ加工を実施する工作機
械の座標系補正装置において、被加工位置を連ねる仮想
同心円の中心であるワーク中心とテーブルの回動とのズ
レを直角座標で検出するワーク芯出し計測手段と、その
計測値を芯出し補正量として一時格納する記憶手段と、
各被加工位置のデータに前記芯出し補正量を加算し、算
出された直角座標値を前記回動中心からの極座標値に換
算する演算手段と、その算出値を使用してテーブルを回
動させ、加工ヘッドの位置を修正させる順次加工指示を
発する中央御手段とを備えることを特徴とする加工位置
の座標系補正装置。
A coordinate system correction device for machine tools that places a workpiece on a rotatable table and performs machining at multiple workpiece positions arranged on the workpiece surface using a machining head controlled by polar coordinates from the center of rotation. , a workpiece centering measuring means for detecting the deviation between the workpiece center, which is the center of a virtual concentric circle connecting the workpiece positions, and the rotation of the table using rectangular coordinates, and a storage means for temporarily storing the measured value as a centering correction amount. and,
a calculation means that adds the centering correction amount to the data of each workpiece position and converts the calculated rectangular coordinate value into a polar coordinate value from the rotation center; and a calculation means that uses the calculated value to rotate the table. , and central control means for sequentially issuing processing instructions to correct the position of the processing head.
JP59134973A 1984-06-29 1984-06-29 Machining position coordinate system correction device Expired - Lifetime JPH0671691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59134973A JPH0671691B2 (en) 1984-06-29 1984-06-29 Machining position coordinate system correction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59134973A JPH0671691B2 (en) 1984-06-29 1984-06-29 Machining position coordinate system correction device

Publications (2)

Publication Number Publication Date
JPS6114836A true JPS6114836A (en) 1986-01-23
JPH0671691B2 JPH0671691B2 (en) 1994-09-14

Family

ID=15140931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59134973A Expired - Lifetime JPH0671691B2 (en) 1984-06-29 1984-06-29 Machining position coordinate system correction device

Country Status (1)

Country Link
JP (1) JPH0671691B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03234454A (en) * 1990-02-05 1991-10-18 Nissan Motor Co Ltd Chamfer grinding method
JPH04302002A (en) * 1991-03-29 1992-10-26 Kobe Steel Ltd Working line correction control method for industrial robot
JP2006297486A (en) * 2005-04-15 2006-11-02 Shin Nippon Koki Co Ltd Machining device and machining method using the same
JP2006334683A (en) * 2005-05-31 2006-12-14 Yamazaki Mazak Corp Polar coordinate control type machining center
JP2007533471A (en) * 2004-04-09 2007-11-22 サンパワー・インコーポレーテツド Method and system for centering a workpiece on the central axis of a cylindrical hole
JP2015085440A (en) * 2013-10-31 2015-05-07 高丸工業株式会社 Robot system
CN108145531A (en) * 2018-01-08 2018-06-12 内蒙古科技大学 A kind of device and method for detecting machine tool motion characteristic and precision deterioration law
CN110736407A (en) * 2019-09-27 2020-01-31 西安爱德华测量设备股份有限公司 machine tool external working condition simulator based on automatic precision machining and alignment method
CN113953891A (en) * 2021-11-12 2022-01-21 中国航发沈阳黎明航空发动机有限责任公司 Process method for quickly calibrating center of rotary table
CN114406803A (en) * 2022-01-17 2022-04-29 中国第一汽车股份有限公司 Zero point recovery and calibration device for machine tool of machining center and using method of zero point recovery and calibration device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5495915B2 (en) * 2010-04-19 2014-05-21 株式会社神戸製鋼所 Sensing motion generation method and sensing motion generation device for work manipulator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4844546A (en) * 1971-10-12 1973-06-26
JPS54142673A (en) * 1978-04-28 1979-11-07 Hitachi Ltd Automatic centering device
JPS5548556A (en) * 1978-10-04 1980-04-07 Toyoda Mach Works Ltd Numerically controlled machine tool with hole position approval punction
JPS55106748A (en) * 1979-02-05 1980-08-15 Hitachi Seiki Co Ltd Automatic instrument for machine tool

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4844546A (en) * 1971-10-12 1973-06-26
JPS54142673A (en) * 1978-04-28 1979-11-07 Hitachi Ltd Automatic centering device
JPS5548556A (en) * 1978-10-04 1980-04-07 Toyoda Mach Works Ltd Numerically controlled machine tool with hole position approval punction
JPS55106748A (en) * 1979-02-05 1980-08-15 Hitachi Seiki Co Ltd Automatic instrument for machine tool

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03234454A (en) * 1990-02-05 1991-10-18 Nissan Motor Co Ltd Chamfer grinding method
JPH04302002A (en) * 1991-03-29 1992-10-26 Kobe Steel Ltd Working line correction control method for industrial robot
JP2007533471A (en) * 2004-04-09 2007-11-22 サンパワー・インコーポレーテツド Method and system for centering a workpiece on the central axis of a cylindrical hole
JP2006297486A (en) * 2005-04-15 2006-11-02 Shin Nippon Koki Co Ltd Machining device and machining method using the same
JP2006334683A (en) * 2005-05-31 2006-12-14 Yamazaki Mazak Corp Polar coordinate control type machining center
JP2015085440A (en) * 2013-10-31 2015-05-07 高丸工業株式会社 Robot system
CN108145531A (en) * 2018-01-08 2018-06-12 内蒙古科技大学 A kind of device and method for detecting machine tool motion characteristic and precision deterioration law
CN110736407A (en) * 2019-09-27 2020-01-31 西安爱德华测量设备股份有限公司 machine tool external working condition simulator based on automatic precision machining and alignment method
CN113953891A (en) * 2021-11-12 2022-01-21 中国航发沈阳黎明航空发动机有限责任公司 Process method for quickly calibrating center of rotary table
CN114406803A (en) * 2022-01-17 2022-04-29 中国第一汽车股份有限公司 Zero point recovery and calibration device for machine tool of machining center and using method of zero point recovery and calibration device
CN114406803B (en) * 2022-01-17 2023-11-21 中国第一汽车股份有限公司 Zero point recovery and calibration device for machining center machine tool and application method of zero point recovery and calibration device

Also Published As

Publication number Publication date
JPH0671691B2 (en) 1994-09-14

Similar Documents

Publication Publication Date Title
CN102001021B (en) Method for measuring geometric error parameter value of rotary oscillation axis of five-axis linkage numerical control machine tool
JP6538503B2 (en) Geometrical error identification method for machine tool and geometric error identification program
CN101249618A (en) Machine tool having workpiece reference position setting function by contact detection
JPH0238342B2 (en)
CN103962889A (en) Machining machine probe measuring system and method
JP7337664B2 (en) Correction value measurement method and correction value measurement system for position measurement sensor in machine tool
JPS6114836A (en) Coordinates system correcting device of machining position
CN112318180A (en) Alignment tool and method for machining part with closed angle
CN216846033U (en) Inner wall measuring system based on deep rise workpiece
CN115922439A (en) Method for detecting machining precision of numerical control five-axis machine tool
JPH07266194A (en) Tool cutting edge measurement compensator
JP2023010002A (en) Machine tool error identification method, error identification program, and machine tool
JP3880030B2 (en) V-groove shape measuring method and apparatus
JP7266511B2 (en) POSITION MEASURING METHOD OF OBJECT IN MACHINE TOOL, POSITION MEASURING SYSTEM, AND POSITION MEASURING PROGRAM
CN214722795U (en) Alignment measuring device for numerical control machining center
JP2019190941A (en) Measuring ability evaluation method of machine tool, and program
JP2002001568A (en) Parameter setting method for laser beam machining head of nc control three-dimensional laser beam machine and nc control three-dimensional laser beam machine
CN113427320A (en) Multi-axis on-machine measurement planning method for reducing measurement uncertainty
JPH081405A (en) Device and method for detecting lost motion
JP7412297B2 (en) Calibration method of touch probe of machine tool and geometric error identification method
JP3087075B2 (en) Scroll shape processing device
JPS6250252B2 (en)
CN111090259A (en) Method for checking and correcting workpiece rotating shaft coordinate deviation in numerical control system
JP5305193B2 (en) V-groove shape measuring method and apparatus
JP2782302B2 (en) Non-circular workpiece measurement method