JP2006334683A - Polar coordinate control type machining center - Google Patents

Polar coordinate control type machining center Download PDF

Info

Publication number
JP2006334683A
JP2006334683A JP2005159518A JP2005159518A JP2006334683A JP 2006334683 A JP2006334683 A JP 2006334683A JP 2005159518 A JP2005159518 A JP 2005159518A JP 2005159518 A JP2005159518 A JP 2005159518A JP 2006334683 A JP2006334683 A JP 2006334683A
Authority
JP
Japan
Prior art keywords
axis
error amount
point error
turning
polar coordinate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005159518A
Other languages
Japanese (ja)
Other versions
JP4847049B2 (en
Inventor
Masakazu Nakayama
正和 中山
Yasushi Nakamura
靖 中村
Mikio Totsuka
美樹夫 戸塚
Takao Inaguma
孝雄 稲熊
Original Assignee
Yamazaki Mazak Corp
ヤマザキマザック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamazaki Mazak Corp, ヤマザキマザック株式会社 filed Critical Yamazaki Mazak Corp
Priority to JP2005159518A priority Critical patent/JP4847049B2/en
Publication of JP2006334683A publication Critical patent/JP2006334683A/en
Application granted granted Critical
Publication of JP4847049B2 publication Critical patent/JP4847049B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a correction method for a reference point in a polar coordinate control type machining center. <P>SOLUTION: This polar coordinate control type machining center includes: a turning table 50 for placing a work; and a tool head controlled along the Y-axis passing the center C0 of turning of the turning table 50, wherein the tool main shaft of a tool head is controlled along the Z-axis vertical to the turning table 50. A reference point error amount measuring pin 100 is mounted on the turning table 50, the coordinates on the Y-axis are detected by a touch sensor S<SB>1</SB>mounted on the tool main shaft to compute a distance L from the main shaft origin position, and the reference point error amount ΔY on the Y-axis is corrected. The touch sensor S1 is set on the position of a distance R, and the pin 100 is touched from both sides to detect angles θ<SB>1</SB>, θ<SB>2</SB>. The error amount ΔX in the direction of X-axis is computed from the difference between the angles to make correction. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は極座標制御方式のマシニングセンタに関する。   The present invention relates to a polar control system machining center.

1本の直線制御軸と、この直線制御軸上に回転中心を置く回転制御軸を用いて直線制御軸に直交する方向の直線制御軸上の座標を極座標で制御するマシニングが、下記の特許出願として本出願人により提案されている。   The following patent application is applied to machining that controls the coordinates on the linear control axis in the direction orthogonal to the linear control axis by using one linear control axis and the rotation control axis having the rotation center on this linear control axis. As proposed by the present applicant.

この種のマシニングセンタでは、機械の前面にワークを載置する旋回テーブルを有し、旋回テーブルの軸線を通り、機械の前後方向に延びる直線制御軸上に工具ヘッドを備え、工具ヘッドを垂直方向の軸線に沿って制御して旋回テーブル上のワークを加工する。   This type of machining center has a swivel table on which a workpiece is placed on the front surface of the machine, and has a tool head on a linear control axis that passes through the axis of the swivel table and extends in the front-rear direction of the machine. The workpiece on the swivel table is machined by controlling along the axis.

この機械構成により、機械の横方向に延びる直線軸の移動機構を省略することができる。そこで、機械の幅寸法を極めて小さくしたマシニングセンタを構成することができる。
特願2003−198988
With this machine configuration, a linear axis moving mechanism extending in the lateral direction of the machine can be omitted. Therefore, it is possible to configure a machining center in which the machine width dimension is extremely small.
Japanese Patent Application No. 2003-198988

機械加工においては、加工中の熱による熱変形が生ずる。この熱変形により旋回テーブルの旋回中心位置が基準点からズレることがあり、加工精度に悪影響を及ぼす。
本発明は、極座標制御方式のマシニングセンタにおける基準点の補正方法を提供するものである。
In machining, thermal deformation occurs due to heat during processing. This thermal deformation may cause the turning center position of the turning table to deviate from the reference point, which adversely affects machining accuracy.
The present invention provides a method for correcting a reference point in a polar coordinate control type machining center.

本発明の極座標制御方式マシニングセンタの基準点補正方法は、加工物を載置するC軸旋回テーブルと、C軸旋回テーブルの旋回中心を通る直線制御軸(Y軸)上に移動制御されるとともに、C軸旋回テーブルの軸心方向(Z軸)に移動制御される工具主軸を備え、C軸旋回テーブル上に載置される基準点誤差量測定用ピンと、工具主軸に取り付けられるタッチセンサを用い、C軸旋回テーブル中心と工具主軸原点のXY平面上の基準点誤差量ΔX及びΔYを、基準点誤差量測定用ピンのY軸誤差量として基準点誤差量ΔYを計測する工程と、基準点誤差量測定用ピンのC軸誤差量ΔCを計測する工程と、基準点誤差量測定用ピンのC軸旋回テーブルの中心からの距離Lのとき、基準点誤差量ΔXを、ΔX=L×SinΔCとして計算する工程を備える。そして、上述した方法によって得られた基準点誤差量ΔX及びΔYを用いて、極座標制御にて座標(Y1、C1)へ位置決めするときに、ΔY及びΔC=Sin−1(ΔX/Y1)にて補正を行うものである。 The reference point correction method for the polar coordinate machining system of the present invention is controlled to move on a C-axis turning table on which a workpiece is placed and a linear control axis (Y-axis) passing through the turning center of the C-axis turning table. A tool spindle whose movement is controlled in the axial direction (Z-axis) of the C-axis turning table is used, and a reference point error amount measuring pin placed on the C-axis turning table and a touch sensor attached to the tool spindle are used. A step of measuring the reference point error amount ΔY using the reference point error amounts ΔX and ΔY on the XY plane at the center of the C-axis turning table and the tool spindle origin as the Y-axis error amount of the reference point error amount measuring pin; The reference point error amount ΔX is set as ΔX = L × SinΔC when the step of measuring the C axis error amount ΔC of the amount measurement pin and the distance L from the center of the C axis turning table of the reference point error amount measurement pin Prepare the process to calculate Yeah. Then, when positioning to the coordinates (Y1, C1) by the polar coordinate control using the reference point error amounts ΔX and ΔY obtained by the above-described method, ΔY and ΔC = Sin −1 (ΔX / Y1) Correction is performed.

本発明によれば、極座標制御方式のマシニングセンタにあって、熱変形等に起因する旋回テーブルの旋回中心とY軸とX軸のズレを自動的に補正することができる。
請求項4または6の両側計測は、計測部に切粉等の付着による誤差が生じたときにリトライ処理を行うことが出来、より高い精度を得ることが出来る。(測定の過程でピンの厚みを計算することが出来るため、計測異常の検出が可能である。)
請求項7は、部品製造・組立面コストを最小にすることが出来る。
請求項8は、部品製造・組立面コストは増すが、精度を高く保つことが出来る。
請求項9は、故障発生頻度の比較的高いタッチセンサを使用しないため、安定した稼働が期待できる。(参考文献:特開2005−034934)
According to the present invention, in the machining center of the polar coordinate control system, it is possible to automatically correct the deviation between the turning center of the turning table, the Y axis, and the X axis caused by thermal deformation or the like.
The double-sided measurement according to claim 4 or 6 can perform a retry process when an error due to adhesion of chips or the like occurs in the measurement unit, and can obtain higher accuracy. (Because the thickness of the pin can be calculated during the measurement process, measurement anomalies can be detected.)
The seventh aspect of the present invention can minimize the parts manufacturing / assembly surface cost.
According to the eighth aspect of the present invention, although the part manufacturing / assembly surface cost increases, the accuracy can be kept high.
According to the ninth aspect, since a touch sensor having a relatively high frequency of failure is not used, stable operation can be expected. (Reference: JP 2005-034934 A)

図1は本発明を適用する極座標制御方式のマシニングセンタの概要を示す説明図である。
全体を符号1で示す極座標制御方式マシニングセンタは、ベース10上にC軸まわりに旋回動する旋回テーブル50を有する。ベース10上にはC軸中心を通り、機械の前後方向に延びるY軸が設定され、Y軸上を移動するコラム20が載置される。コラム前面には、工具ヘッド30がY軸に直交し、C軸に平行なZ軸方向に移動自在に取付けられる。
FIG. 1 is an explanatory diagram showing an outline of a polar coordinate type machining center to which the present invention is applied.
A polar coordinate control machining center denoted as a whole by reference numeral 1 has a turning table 50 that turns around a C axis on a base 10. On the base 10, a Y axis extending in the longitudinal direction of the machine passing through the center of the C axis is set, and a column 20 moving on the Y axis is placed. A tool head 30 is attached to the front surface of the column so as to be movable in the Z-axis direction perpendicular to the Y-axis and parallel to the C-axis.

工具ヘッド30には、工具主軸32が設けられ、工具Tを把持する。マシニングセンタは、自動工具交換装置40を有し、任意の工具を工具主軸32に供給する。
このマシニングセンタにあっては、Y軸に対して水平面で直交するX軸方向の移動機構は装備しない。そのために、機械の幅寸法を極小に構成することができ、フロアスペースを小さくできる。また、マシンを横方向に複数台並べ、ロボット等の搬送装置と組合わせることによってワークを搬送し、FMSを構成することも容易にできる。
The tool head 30, tool spindle 32 is provided, to grip the tool T 1. The machining center has an automatic tool changer 40 and supplies an arbitrary tool to the tool spindle 32.
This machining center is not equipped with a moving mechanism in the X-axis direction perpendicular to the Y-axis in the horizontal plane. Therefore, the width dimension of the machine can be minimized, and the floor space can be reduced. In addition, it is possible to easily configure the FMS by arranging a plurality of machines in the horizontal direction and transferring the workpiece by combining with a transfer device such as a robot.

X軸を直接にもつかわりに、旋回テーブル50のC軸上の角度位置と、旋回中心からの距離により極座標位置を設定することができる。
加工中の熱変形等により、旋回テーブル50のC軸の旋回中心が、基準点からズレることがある。
本発明は、この旋回テーブルの旋回中心のズレを補正する方法を提供する。
Instead of directly using the X axis, the polar coordinate position can be set based on the angular position on the C axis of the turning table 50 and the distance from the turning center.
The turning center of the C-axis of the turning table 50 may be displaced from the reference point due to thermal deformation during processing.
The present invention provides a method for correcting the deviation of the turning center of the turning table.

図2は、本発明を適用する極座標制御方式マシニングセンタの旋回テーブル50の平面図、図3は極座標制御方式の基準点補正に使用する治具の説明図である。
旋回テーブル50は、中心軸線Cを中心として旋回する旋回軸Cを有し、工具主軸ヘッドは、この旋回軸Cを通るY軸方向へのみ制御される。
この極座標制御方式マシニングセンタは、平面上でY軸に直交するX軸方向に制御される機構は備えない。旋回テーブル50上の任意の位置は、Y軸上のCからの距離とC軸上の旋回角度を用いた極座標で表現される。
2 is a plan view of a turning table 50 of a polar coordinate control machining center to which the present invention is applied, and FIG. 3 is an explanatory view of a jig used for reference point correction in the polar coordinate control method.
The swivel table 50 has a swivel axis C that revolves around the central axis C 0 , and the tool spindle head is controlled only in the Y-axis direction passing through the swivel axis C 0 .
The polar coordinate control machining center does not include a mechanism that is controlled in the X-axis direction orthogonal to the Y-axis on a plane. Any position on the turn table 50 is represented by polar coordinates using the distance and the turning angle of the C axis from C 0 on the Y axis.

図3は、極座標の基準点誤差の計測に使用する治具を示し、外形寸法Dを有する基準点誤差量測定用ピン100や内径寸法Dを有する基準点誤差量測定用ピン110が使用される。 Figure 3 shows a jig used to measure the polar coordinates of the reference point error, using the reference point error measuring pin 110 having a reference point error measuring pin 100 and the inner diameter dimension D 2 with outer dimensions D 1 Is done.

図4は、基準点誤差量測定用ピン100を旋回テーブル50のY軸上の任意の位置に設置した状態を示す。
工具主軸32は、タッチセンサSを装備する。このタッチセンサSは、工具主軸の軸線上に中心を有する球体を先端に備え、球体が計測対象に接触したときに信号を発するものである。
FIG. 4 shows a state in which the reference point error amount measurement pin 100 is installed at an arbitrary position on the Y axis of the turning table 50.
Tool spindle 32 is equipped with touch sensor S 1. The touch sensor S 1 is provided with a sphere having a center on the axis of the tool spindle to the tip, in which emits a signal when the sphere is in contact with the measurement object.

本装置にあっては、Y軸の基準位置は製品出荷時に調整されている。
極座標制御方式マシニングセンタが稼動して、所定の時間が経過すると、熱変形等に伴う基準点誤差の計測工程を実行する。
図4の(a)は、タッチセンサを装備した工具主軸を旋回テーブル50の旋回中心C側から基準点誤差量測定用ピン100に近づけてタッチした状態を示す。極座標制御方式マシニングセンタのNCは、このときのY軸上の座標位置Yを記憶する。
In this apparatus, the reference position of the Y axis is adjusted at the time of product shipment.
When a polar coordinate system machining center is operated and a predetermined time elapses, a reference point error measurement process associated with thermal deformation or the like is executed.
FIG. 4A shows a state in which a tool spindle equipped with a touch sensor is touched from the turning center C 0 side of the turning table 50 toward the reference point error amount measuring pin 100. NC polar coordinate control scheme machining center stores the coordinate position Y 1 on the Y-axis at this time.

次に図4の(b)に示すように、工具主軸を旋回中心Cの遠い方向から基準点誤差量測定用ピン100にタッチさせて、座標位置Y2を記憶する。この結果、NCは工具主軸原点から基準点誤差量測定用ピン100の中心までの距離L’を、YとYを加えた値の半分の値として計算する。そして旋回中心Cから基準点誤差量測定用ピン100の中心までの距離LとL’との差をY軸誤差量ΔYとして記憶する。 Next, as shown in FIG. 4 (b), by touching the tool spindle from the far direction of the turning center C 0 to the reference point error amount measuring pin 100, and stores the coordinate position Y2. As a result, the NC calculates the distance L ′ from the tool spindle origin to the center of the reference point error amount measuring pin 100 as a half value of the sum of Y 1 and Y 2 . The difference between the distances L and L ′ from the turning center C 0 to the center of the reference point error amount measuring pin 100 is stored as the Y-axis error amount ΔY.

次に、X軸の基準点誤差量計測方法を図5により説明する。
タッチセンサSを装備した工具主軸を旋回テーブル50の旋回中心Cから距離Lの位置に置き、旋回テーブル50を反時計回り(CCW)に旋回させて基準点誤差量測定用ピン100をタッチセンサSにタッチさせる。
Next, an X-axis reference point error amount measuring method will be described with reference to FIG.
Place the tool spindle equipped with a touch sensor S 1 from the turning center C 0 of the turn table 50 at a distance L, and turn table 50 is pivoted counterclockwise (CCW) to touch the reference point error measuring pin 100 to touch the sensor S 1.

NCは、このときのC軸上の角度θを記憶する。次に、旋回テーブル50を時計回り(CW)に旋回させて基準点誤差量測定用ピン100をタッチセンサSにタッチさせて、角度θを検知する。
極座標制御方式マシニングセンタの初期状態では、この角度θ,θは等しい値となるように設定されている。
The NC stores the angle θ 1 on the C axis at this time. Next, the turntable 50 by turning clockwise (CW) to touch the reference point error measuring pin 100 in the touch sensor S 1, for detecting the angle theta 2.
In the initial state of the polar coordinate machining system, the angles θ 1 and θ 2 are set to be equal.

図6は、極座標制御方式マシニングセンタを所定時間稼動させた後に、同様の計測を行った状態を示す。
角度θと角度θに差Δθが発生したときには、
L×SinΔθ
をX軸誤差補正量ΔXとして記憶する。
上述した誤差量ΔX,ΔYは、制御装置により位置決め時に以下のように補正量として処理される。
FIG. 6 shows a state in which the same measurement is performed after the polar coordinate machining system has been operated for a predetermined time.
When a difference Δθ occurs between the angle θ 1 and the angle θ 2 ,
L x SinΔθ
Is stored as the X-axis error correction amount ΔX.
The above-described error amounts ΔX and ΔY are processed as correction amounts as follows during positioning by the control device.

図7は、機械原点とワーク原点との関係を示す。
機械原点に対するワーク原点のオフセット量Xα,Yαとすると、
ワーク上の座標(x,y)は次の機械座標(Y,C)で表される。
図は、ΔX,ΔYの誤差が生じた時の、工具主軸が位置決めされる点と、上記で求めた加工点(Y,C)の位置関係が示されている。この図より、補正を加えた機械座標(Y+ΔY,C+Sin−1(ΔX/Y)に位置決めすることにより、誤差を生じた工具主軸の位置に正しく加工点を位置決めすることができることが判る。
本発明は以上のように、極座標制御方式マシニングセンタにおいて、Y軸とX軸の基準点を自動的に補正することができる。
なお、上述した実施例では基準点誤差量測定用ピンの形状を円柱の例で説明したが、図8に示す頂点がテーブル回転中心に一致する台形状のピン130をはじめとして、各種の形状のピンを用いることができる。
FIG. 7 shows the relationship between the machine origin and the workpiece origin.
If the workpiece origin offsets Xα and Yα relative to the machine origin,
The coordinates (x 1 , y 1 ) on the workpiece are represented by the following machine coordinates (Y, C).
The figure shows the positional relationship between the point at which the tool spindle is positioned and the machining point (Y, C) obtained above when ΔX and ΔY errors occur. From this figure, it can be seen that the machining point can be correctly positioned at the position of the tool spindle in which the error has occurred by positioning to the machine coordinates (Y + ΔY, C + Sin −1 (ΔX / Y) with correction.
As described above, the present invention can automatically correct the reference points of the Y-axis and the X-axis in the polar control machining center.
In the above-described embodiment, the shape of the reference point error amount measuring pin is described as an example of a cylinder, but various shapes including a trapezoidal pin 130 whose apex shown in FIG. 8 coincides with the table rotation center are shown. Pins can be used.

本発明を実施する極座標制御方式マシニングセンタの概要を示す斜視図。The perspective view which shows the outline | summary of the polar coordinate type machining center which implements this invention. 極座標制御方式マシニングセンタの旋回テーブルの平面図。The top view of the turning table of a polar control type machining center. 基準点誤差量測定用ピンの斜視図。The perspective view of the reference | standard point error amount measurement pin. 本発明による極座標制御方式マシニングセンタのY軸補正の方法を示す説明図。Explanatory drawing which shows the method of the Y-axis correction | amendment of the polar coordinate type machining center by this invention. 本発明による極座標制御方式マシニングセンタのC軸補正の方法を示す説明図。Explanatory drawing which shows the method of the C-axis correction | amendment of the polar coordinate control type machining center by this invention. 本発明による極座標制御方式マシニングセンタの基準点補正の方法を示す説明図。Explanatory drawing which shows the reference point correction method of the polar coordinate control type machining center by this invention. 機械原点とワーク原点の関係を示す説明図。Explanatory drawing which shows the relationship between a machine origin and a workpiece | work origin. 基準点誤差量測定用ピンの他の例を示す説明図。Explanatory drawing which shows the other example of the pin for reference | standard point error amount measurement.

符号の説明Explanation of symbols

1 極座標制御方式マシニングセンタ
10 ベース
20 コラム
30 工具ヘッド
32 工具主軸
40 自動工具交換装置
50 旋回テーブル
100 基準点誤差量測定用ピン
タッチセンサ
工具
DESCRIPTION OF SYMBOLS 1 Polar coordinate control type machining center 10 Base 20 Column 30 Tool head 32 Tool spindle 40 Automatic tool changer 50 Turning table 100 Reference point error amount measuring pin S 1 Touch sensor T 1 Tool

Claims (9)

加工物を載置するC軸旋回テーブルと、C軸旋回テーブルの旋回中心を通る直線制御軸(Y軸)上に移動制御されるとともに、C軸旋回テーブルの軸心方向(Z軸)に移動制御される工具主軸を備えた極座標制御方式マシニングセンタにおいて、
C軸旋回テーブル上に載置される基準点誤差量測定用ピンと、工具主軸に取り付けられるタッチセンサを用い、
C軸旋回テーブル中心と工具主軸原点のXY平面上の基準点誤差量ΔX及びΔYを、
基準点誤差量測定用ピンのY軸誤差量として基準点誤差量ΔYを計測する工程と、
基準点誤差量測定用ピンのC軸誤差量ΔCを計測する工程と、
基準点誤差量測定用ピンのC軸旋回テーブルの中心からの距離Lのとき、基準点誤差量ΔXを、ΔX=L×SinΔCとして計算する工程と、
から構成される基準点誤差計測方法を有することを特徴とする極座標制御方式マシニングセンタ。
The movement is controlled on the C-axis turning table on which the workpiece is placed and on the linear control axis (Y-axis) passing through the turning center of the C-axis turning table, and also moved in the axial direction (Z-axis) of the C-axis turning table. In a polar coordinate machining center with a controlled tool spindle,
Using a reference point error amount measuring pin placed on the C-axis turning table and a touch sensor attached to the tool spindle,
Reference point error amounts ΔX and ΔY on the XY plane between the center of the C-axis turning table and the tool spindle origin are expressed as follows:
Measuring a reference point error amount ΔY as the Y-axis error amount of the reference point error amount measurement pin;
Measuring a C-axis error amount ΔC of the reference point error amount measurement pin;
Calculating the reference point error amount ΔX as ΔX = L × SinΔC when the distance L from the center of the C-axis turning table of the reference point error amount measurement pin is;
A polar coordinate machining system having a reference point error measurement method comprising:
請求項1に記載される方法によって得られた基準点誤差量ΔX及びΔYを用いて、極座標制御にて座標(Y1、C1)へ位置決めするときに、ΔY及びΔC=Sin−1(ΔX/Y1)にて補正を行うことを特徴とする極座標制御方式マシニングセンタ。 When positioning to the coordinates (Y1, C1) by polar coordinate control using the reference point error amounts ΔX and ΔY obtained by the method described in claim 1, ΔY and ΔC = Sin −1 (ΔX / Y1 ), A polar coordinate control type machining center. 基準点誤差量ΔYを計測する方法は、
Y軸上に測定点を設定した基準点誤差量測定用ピンに対して、Y軸上の正方向または負方向からタッチセンサをタッチさせて検知した座標位置を演算して計測する請求項1または2記載の極座標制御方式マシニングセンタ。
The method of measuring the reference point error amount ΔY is as follows:
2. A coordinate position detected by touching a touch sensor from a positive direction or a negative direction on a Y axis with respect to a reference point error amount measuring pin having a measurement point set on the Y axis is measured and measured. 2. Polar coordinate control machining center according to 2.
基準点誤差量ΔYを計測する方法は、
Y軸上に測定点を設定した基準点誤差量測定用ピンに対して、Y軸上の正方向からタッチセンサをタッチさせて検知した座標位置と負方向からタッチセンサをタッチさせて検知した座標位置を演算して計測する請求項1または2記載の極座標制御方式マシニングセンタ。
The method of measuring the reference point error amount ΔY is as follows:
The coordinate position detected by touching the touch sensor from the positive direction on the Y axis and the coordinate detected by touching the touch sensor from the negative direction for the reference point error amount measurement pin with the measurement point set on the Y axis The polar coordinate machining system according to claim 1, wherein the position is calculated and measured.
基準点誤差量測定用ピンのC軸誤差量ΔCを計測する方法は、
基準点誤差量測定用ピンの測定点のY軸位置に設定したタッチセンサに対して、C軸旋回テーブルを正方向または負方向からタッチさせて検知した角度座標を演算して計測する請求項1または2記載の極座標制御方式マシニングセンタ。
The method of measuring the C-axis error amount ΔC of the reference point error amount measurement pin is as follows:
2. An angular coordinate detected by touching a C-axis turning table from a positive direction or a negative direction with respect to a touch sensor set at a Y-axis position of a measurement point of a reference point error amount measurement pin is calculated and measured. Or the polar coordinate control type machining center of 2.
基準点誤差量測定用ピンのC軸誤差量ΔCを計測する方法は、
基準点誤差量測定用ピンの測定点のY軸位置に設定したタッチセンサに対して、C軸旋回テーブルを正方向からタッチさせて検知した角度座標と、負方向からタッチさせて検知した角度座標を演算して計測する請求項1または2記載の極座標制御方式マシニングセンタ。
The method of measuring the C-axis error amount ΔC of the reference point error amount measurement pin is as follows:
Angular coordinates detected by touching the C-axis swivel table from the positive direction with respect to the touch sensor set at the Y-axis position of the measurement point of the reference point error amount measurement pin, and angular coordinates detected by touching from the negative direction The polar coordinate control type machining center according to claim 1 or 2, which calculates and measures
前記基準点誤差量測定用ピンが円柱形状をなす請求項1乃至請求項6記載の極座標制御方式マシニングセンタ。   7. A polar coordinate machining system according to claim 1, wherein said reference point error amount measuring pin has a cylindrical shape. 前記基準点誤差量測定用ピンがC軸旋回テーブルに載置された状態で、鉛直線がC軸旋回中心を通る対向する平面と、延長面がC軸旋回中心を通る対向する側面からなる四角柱をなす請求項1乃至請求項6記載の極座標制御方式マシニングセンタ。   In a state where the reference point error amount measuring pin is placed on the C-axis turning table, the vertical line includes four opposing planes passing through the C-axis turning center, and the extended surface includes four opposing sides passing through the C-axis turning center. The polar coordinate control type machining center according to claim 1, which forms a prism. 前記タッチセンサは、サーボ電流の制御にて同等の働きをする機能を含む請求項1乃至請求項8記載の極座標制御方式マシニングセンタ。   9. The polar coordinate machining center according to claim 1, wherein the touch sensor includes a function that performs an equivalent function in controlling a servo current.
JP2005159518A 2005-05-31 2005-05-31 Reference point error measuring method and polar coordinate control machining center in polar coordinate machining center Active JP4847049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005159518A JP4847049B2 (en) 2005-05-31 2005-05-31 Reference point error measuring method and polar coordinate control machining center in polar coordinate machining center

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005159518A JP4847049B2 (en) 2005-05-31 2005-05-31 Reference point error measuring method and polar coordinate control machining center in polar coordinate machining center

Publications (2)

Publication Number Publication Date
JP2006334683A true JP2006334683A (en) 2006-12-14
JP4847049B2 JP4847049B2 (en) 2011-12-28

Family

ID=37555656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005159518A Active JP4847049B2 (en) 2005-05-31 2005-05-31 Reference point error measuring method and polar coordinate control machining center in polar coordinate machining center

Country Status (1)

Country Link
JP (1) JP4847049B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018514399A (en) * 2015-03-23 2018-06-07 クリンゲルンベルク・アクチェンゲゼルシャフトKlingelnberg AG Method for driving a gear machining apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106181576B (en) * 2016-08-08 2019-04-19 中国空空导弹研究院 A kind of center positioning method and device of machining center rotary table

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548556A (en) * 1978-10-04 1980-04-07 Toyoda Mach Works Ltd Numerically controlled machine tool with hole position approval punction
JPS6114836A (en) * 1984-06-29 1986-01-23 Hitachi Seiki Co Ltd Coordinates system correcting device of machining position
JPH11300580A (en) * 1998-04-15 1999-11-02 Okuma Corp Method for automatically determining spindle or attachment correction value
JP2005034934A (en) * 2003-07-18 2005-02-10 Yamazaki Mazak Corp Numerically controlled apparatus, machine tool equipped with the same, and method for calculating coordinate of workpiece

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548556A (en) * 1978-10-04 1980-04-07 Toyoda Mach Works Ltd Numerically controlled machine tool with hole position approval punction
JPS6114836A (en) * 1984-06-29 1986-01-23 Hitachi Seiki Co Ltd Coordinates system correcting device of machining position
JPH11300580A (en) * 1998-04-15 1999-11-02 Okuma Corp Method for automatically determining spindle or attachment correction value
JP2005034934A (en) * 2003-07-18 2005-02-10 Yamazaki Mazak Corp Numerically controlled apparatus, machine tool equipped with the same, and method for calculating coordinate of workpiece

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018514399A (en) * 2015-03-23 2018-06-07 クリンゲルンベルク・アクチェンゲゼルシャフトKlingelnberg AG Method for driving a gear machining apparatus

Also Published As

Publication number Publication date
JP4847049B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
JP6126067B2 (en) Collaborative system with machine tool and robot
CN105091807B (en) The bearing calibration of robot tool coordinate system
JP6295070B2 (en) Geometric error identification method for multi-axis machine tools and multi-axis machine tools
US8494800B2 (en) Method and program for identifying mechanical errors
JP2015203567A (en) Metrology system
TWI714729B (en) Method and device for measuring mechanical accuracy of machine tool
JP2014191607A (en) Numerical control machine tool, and correction method of main shaft error in numerical control machine tool
JP6091826B2 (en) Processing device control device, processing device, and processing data correction method
JP6667376B2 (en) Component press-in method and component press-in system
JP2007168013A (en) Tool knife edge position computing method and machine tool
JP2010058239A (en) Machining method
JP5272598B2 (en) Method for specifying jig coordinates of machining apparatus and machining apparatus using the method
JP4847049B2 (en) Reference point error measuring method and polar coordinate control machining center in polar coordinate machining center
TWI647037B (en) Fixture correction device and method
TWI645274B (en) Work piece processing method and processing system thereof
JP6586112B2 (en) Error identification method and error identification system for machine tools
JP2018128328A (en) Geometrical error measuring method of machine tool
WO2020230568A1 (en) Workpiece machining method and workpiece machining device
JP2017124485A (en) Machine tool and correction method of tool tip position
JP2011102767A (en) Non-contact type position/attitude measuring method, non-contact type position/attitude measuring device, and semiconductor mounting device equipped with the non-contact type position/attitude measuring device
JP2005103720A (en) Measuring device and measuring method
JP2003121134A (en) Measuring method for geometric accuracy of motion
JP4312724B2 (en) Automatic soldering method and apparatus
KR101809244B1 (en) Five-axis cnc machine calibration method using calibration jig
JP6647308B2 (en) Teaching system of articulated robot

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110502

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111013

R150 Certificate of patent or registration of utility model

Ref document number: 4847049

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250