JPS61145958A - Light projecting and photodetecting device by optical fiber - Google Patents

Light projecting and photodetecting device by optical fiber

Info

Publication number
JPS61145958A
JPS61145958A JP26810884A JP26810884A JPS61145958A JP S61145958 A JPS61145958 A JP S61145958A JP 26810884 A JP26810884 A JP 26810884A JP 26810884 A JP26810884 A JP 26810884A JP S61145958 A JPS61145958 A JP S61145958A
Authority
JP
Japan
Prior art keywords
light
optical fiber
area
projecting
optical fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26810884A
Other languages
Japanese (ja)
Inventor
Masaru Hoshino
優 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP26810884A priority Critical patent/JPS61145958A/en
Publication of JPS61145958A publication Critical patent/JPS61145958A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a photodetecting area under stable conditions on a measured surface by surrounding the periphery of one optical fiber for photodetection with plural optical fibers for projecting the light and incorporating the light projecting and photodetecting parts. CONSTITUTION:Optical fibers T1-T6 are for projecting the light, irradiates the light to an original 4 and receives the reflecting light by means of an optical fiber J1 for photodetection. Presently when an interval DD of an optical fiber 1 and an original 4, and a diameter of one optical fiber are approximately equal, and then, a light projecting area and a photodetecting area of one optical fiber range respectively over the scope of a diameter of about two times or above that of the optical fiber. Consequently, a light projecting area TT by the optical fibers T1-T6 for projecting the light can wholly cover a photodetecting area J1 of the optical fiber Ji for photodetection, and further, when the plural optical fibers incorporated and composed are closely composed, all places on the original 4 are a light projecting area and a photodetecting area, and therefore, the resolution goes to be infinite.

Description

【発明の詳細な説明】 (発明の技術分野) この発明は、光ファイバを用いて被測定面の照明及び測
光を行なう光ファイバによる投受光装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a light projecting/receiving device using an optical fiber that illuminates a surface to be measured and performs photometry using the optical fiber.

被測定面、たとえば原稿の内容を電気信号に変換する場
合、原理的には原稿上にアモルファス光センサなどのフ
ォトセンサを対向させるようにして使用することにより
、原稿面の濃淡を電気信号に変換できる。実際面では、
原稿を高分解能で読取るなどの場合、原稿の近くに多く
のフォトセンサを設置するのは構造上無理があるばかり
ですく、フォトセンサの外形寸法により分解能が制限さ
れてしまうことから、最近ではグラスファイバなどの光
ファイバを用いて原稿面の光量を距離を隔てた場所まで
移送し、その離れた場所で光ファイバの端部にフォトセ
ンサを接続することにより、原稿を読取るといった方法
が実現されている。
When converting the content of a surface to be measured, such as a document, into an electrical signal, in principle, a photosensor such as an amorphous optical sensor is placed facing the document to convert the shading of the document surface into an electrical signal. can. In practical terms,
When reading a document with high resolution, it is structurally impossible to install many photosensors near the document, and the resolution is limited by the external dimensions of the photosensor, so recently glass A method has been realized in which the amount of light on the document surface is transferred to a distant location using an optical fiber, and the document is read by connecting a photosensor to the end of the optical fiber at that remote location. There is.

第3図は一般的な原稿読取装置のブロック図を示すもの
で、光源3により原稿4に光量を供給し、原稿4からの
その反射光は受光用光ファイバlを通じてフォトセンサ
2に達し、このフォトセンサ2により光源変換された電
圧を出力に、不感帯設定及びオフセン)調整がなされる
ことにより所定の電圧値VVとして出力され、この電圧
VVは表示部6に入力され原稿4の内容を表示したり、
また、データ処理部7に入力されディジタル量に変換さ
れた上で記憶及び所定の演算に供せられる。このような
読取装置を実現するための光源3.受光用光ファイバl
及びフォトセンサ2の具体例としては、各種考えられて
いる。
FIG. 3 shows a block diagram of a general document reading device. A light source 3 supplies a light amount to a document 4, and the reflected light from the document 4 reaches a photosensor 2 through a light-receiving optical fiber l. The voltage converted from the light source by the photosensor 2 is output as a predetermined voltage value VV by performing dead band setting and offset adjustment, and this voltage VV is input to the display section 6 to display the contents of the document 4. Or,
The data is also input to the data processing unit 7, converted into a digital quantity, and then stored and subjected to predetermined calculations. Light source for realizing such a reading device 3. Optical fiber for receiving light
Various specific examples of the photosensor 2 have been considered.

第4図(A)〜(D)は原稿を読取る場合の一般的な投
受光装置についての例を挙げたもので、同図(A)は色
評価用蛍光ランプなどの光源3を原稿4に当て、一定量
の光度を保つ原稿4上に光ファイバ1を接近させ、原稿
面の光量をフォトセンサ2まで移送し、このフォトセン
サ2により原稿4の光量を電気信号に変換していること
を示している。そして、フォトセンサ2の出力のデータ
処理(−示せず)と同期して原稿4を移動させ、原稿4
を読取るのである。この場合、光源3により原稿4上の
光度を一定に保つしまったり、特に同図(B)のように
複数本の光ファイバを具える場合は影が大きく出てしま
う。そこで、影を作らないようにするため、原稿4と光
ファイバlの端部との距離を離してしまうと、それだけ
解像度を悪くするなどの不具合点が出てしまう、これを
解決するのが、同図(C)の例であり、光源3A 、 
3Bの2方向から光を照射する装置である。この場合、
光源3Aと3Bによる原稿4面での明るさを等しくする
ための機構が必要であり、これに要するコストとか、光
源が2つであるためのコストが大となるといった欠点が
ある。
Figures 4 (A) to (D) show examples of general light emitting and receiving devices used when reading originals. Figure 4 (A) shows an example of a light source 3 such as a fluorescent lamp for color evaluation used on an original The optical fiber 1 is brought close to the original 4 which maintains a certain amount of light intensity, and the amount of light on the original surface is transferred to the photosensor 2, and this photosensor 2 converts the amount of light from the original 4 into an electrical signal. It shows. Then, the original 4 is moved in synchronization with the data processing of the output of the photosensor 2 (-not shown), and the original 4 is moved.
is read. In this case, the light source 3 may keep the luminous intensity on the document 4 constant, or a large shadow may appear, especially when a plurality of optical fibers are provided as shown in FIG. 4(B). Therefore, if the distance between the original 4 and the end of the optical fiber 1 is increased in order to prevent shadows from being created, problems such as deterioration of the resolution will occur.The solution to this problem is as follows. This is an example of the same figure (C), and the light source 3A,
This is a device that irradiates light from two directions 3B. in this case,
A mechanism is required to equalize the brightness on the four sides of the document by the light sources 3A and 3B, and there are drawbacks such as the cost required for this and the cost due to the use of two light sources.

また、第4図(ロ)の例は原稿4上の2点を同時に測光
しそれらの差を求める場合について示すもので、同じ絵
柄を連続して印刷する場合の流れ方向に1ピツチ絵柄分
ずれた2点に、上述の光ファイバIA及び2Aを設置し
ておくことにより、インキの飛散とかゴミの付着などの
ために絵柄に生ずる結果を検知することができる。つま
り、原稿4を連続して印刷され14N方向に流れる絵柄
と考えられると、点4Aと点4Bは本来は同じ絵柄であ
り、lピッチ分ずらしであるだけであるから、全く同じ
絵柄が印刷されている良品であれば、フォトセンサ2A
と2Bの出力は同じである。しかし、少しでもインキの
飛散などが点4Aと点4Bのどちらかにあれば、フォト
センサ2Aと2Bの出力に差が生じるので、欠陥を判別
することができるのである。この場合、光源3Gと30
のばらつきとか劣化、或いは光[3Gと30の原稿4」
二の点4Aと4Bに対する入射角の違いによる光フアイ
バ自身の影のための光量の差などが少しでもあれば、そ
の分だけ欠陥を検知するスレッショルドが増してしまう
ことになり、高精度な欠陥検知装置を実現することが困
難である。
The example in Figure 4 (b) shows the case where two points on the original 4 are measured simultaneously and the difference between them is determined. By installing the above-mentioned optical fibers IA and 2A at the two points, it is possible to detect the effects that occur on the pattern due to ink scattering, dust adhesion, etc. In other words, if original 4 is considered to be a pattern that is printed continuously and flows in the 14N direction, points 4A and 4B are originally the same pattern, but are only shifted by l pitch, so the exact same pattern is printed. If it is a good product, use the photo sensor 2A.
The outputs of and 2B are the same. However, if there is even a slight scattering of ink at either point 4A or point 4B, there will be a difference in the outputs of the photosensors 2A and 2B, so that a defect can be identified. In this case, light sources 3G and 30
variations, deterioration, or light [3G and 30 originals 4]
If there is even a slight difference in the amount of light due to the shadow of the optical fiber itself due to the difference in the incident angle to the second point 4A and 4B, the threshold for detecting a defect will increase by that amount, and the defect will be detected with high precision. It is difficult to realize a detection device.

(発明の目的) この発明はL述のような事情からなされたものであり、
この発明の目的は、被測定面において一定光量の投光域
の中で、安定した条件での8$ゆ九用!−1+詔4都1
西感卑鯖嬰も徂lμ小ることにある。
(Object of the invention) This invention was made due to the circumstances as stated in L.
The purpose of this invention is to use 8$ yu9 under stable conditions within a projection area of a constant light amount on the surface to be measured! -1 + edict 4 capital 1
The western feeling is also smaller.

(発明の概要) この発明は、被測定面の測光を光ファイバを用いて行な
う場合の投受光装置に関するもので、1本の受光用光フ
ァイバと複数本の投光用光ファイバとを具え、上記受光
用光ファイバの回りを上記複数本の投光用光ファイバで
規則的に配設するようにして囲繞し、役受光部を一体化
するようにしたものである。
(Summary of the Invention) The present invention relates to a light emitting/receiving device for photometry of a surface to be measured using an optical fiber, which comprises one light receiving optical fiber and a plurality of light emitting optical fibers, The light-receiving optical fiber is surrounded by the plurality of light-emitting optical fibers that are arranged regularly, so that a secondary light-receiving section is integrated.

(発明の実施例) 第1図(A)、(B)はこの発明の一実施例を示すもの
であり、同図(A)は光ファイバlが同径の光ファイバ
TiNTO及びJlが互いに接するようにして一体化構
成されていることを示している。
(Embodiment of the Invention) FIGS. 1(A) and 1(B) show an embodiment of the present invention, and in FIG. 1(A), optical fiber l is in contact with optical fibers TiNTO and Jl having the same diameter. This shows that it has an integrated structure.

:frJ1図(B)は同図(A)のAA矢視における断
面図を示すものである。ここで、光ファイバ〒1−76
は投光用であり、原稿4に光を照射し、その反射光を受
光用光ファイバJlにより受光している。いま、光ファ
イバlと原稿4の間隔口りと光光用光フアイバ1本の投
光域は大体光ファイバの直径の約2倍以上の直径の範囲
にわたることがわかっている。同様に、受光域について
も受光用光ファイバは光フアイバ直径の約2倍以上の直
径の範囲の光量を検出できることがわかっている。した
がって、投光用光ファイバT1〜T8による投光城首は
、受光用光ファイバJ1の受光域JJを全てカバーする
ことができ、更に一体化構成される光ファイバ1が複数
個密着して構成された場合には、原稿4上の全ての場所
が投光域であり受光域となるから分解能は無限大となり
、逆の面からみるとフォトセンサの能力による分解能が
決定されることになる。また、第2図はこの発明の応用
例を示すもので、原稿4上に光ファイバlが配置され、
投光用光ファイバT1〜T6は光lI3に、受光用光フ
ァイバJ1はフォトセンサ2にそれぞれ接続される。こ
こで、投光用光ファイバT1〜T8は1つの光源3から
光が供給されるから投光域TTは常に一定光量となって
おり、更にこの光ファイバ1が複数個並置される場合に
は、投光用光ファイバは全て同一の光源から光が供給さ
れることになるから、常に一定な投光域が得られる。そ
して、上述した原稿上の2点を同時に測光し、それらの
差により同じ絵柄が連続印刷される場合のインキの飛散
などの欠陥を検知する場合には、2点間の投光域の光量
が等しいのであるから、その欠陥を検知するためのスレ
ッショルドは殆んど零に近くすることができる。また、
光源3が劣化などにより光量が変化した場合でも、投光
用ファイバには全て同量変化した状態で等しい光量が与
えられるから、この光源3の劣化の影響は受けない。
:frJ1 Figure (B) shows a cross-sectional view taken along the AA arrow in Figure (A). Here, optical fiber 〒1-76
is for light projection, and irradiates the original 4 with light, and the reflected light is received by the light receiving optical fiber Jl. It is now known that the gap between the optical fiber 1 and the document 4 and the light projection area of one optical fiber for light beams cover a diameter range that is approximately twice or more the diameter of the optical fiber. Similarly, regarding the light receiving area, it is known that the light receiving optical fiber can detect the amount of light in a range of diameters approximately twice or more the diameter of the optical fiber. Therefore, the light emitting castle made of the light emitting optical fibers T1 to T8 can cover the entire light receiving area JJ of the light receiving optical fiber J1, and is further configured with a plurality of integrated optical fibers 1 in close contact with each other. In this case, all locations on the document 4 become light projecting areas and light receiving areas, so the resolution becomes infinite, and from the opposite perspective, the resolution is determined by the ability of the photosensor. Further, FIG. 2 shows an example of application of the present invention, in which an optical fiber l is arranged on a document 4,
The light emitting optical fibers T1 to T6 are connected to the light II3, and the light receiving optical fiber J1 is connected to the photosensor 2, respectively. Here, the light projection optical fibers T1 to T8 are supplied with light from one light source 3, so the light projection area TT always has a constant light amount, and furthermore, when a plurality of optical fibers 1 are arranged in parallel, Since all of the light projection optical fibers are supplied with light from the same light source, a constant light projection area is always obtained. When measuring the light at two points on the document at the same time and detecting defects such as ink scattering when the same pattern is printed continuously based on the difference between the two points, the amount of light in the light projection area between the two points can be measured. Since they are equal, the threshold for detecting the defect can be almost zero. Also,
Even if the amount of light changes due to deterioration of the light source 3, the light emitting fibers are all given the same amount of light with the same amount changed, so they are not affected by the deterioration of the light source 3.

なお、ここでは光ファイバは全て同じ直径としたが、そ
れぞれ異がった直径の光ファイバを用いてもこの発明は
実現できるし、また、ここでは投光用光714371〜
丁Bのように6木により受光用光ファイバハを囲繞した
ものについて説明したが、たとえば投光用光ファイバを
規則的に3本構成にするなどによっても可能である。要
するに、投光域11が受光域JJをカバーするように配
設されるようにすれば、この発明は実現できるのである
。さらに、投光用光ファイ八と受光用光ファイバは全く
同じ材質及び形状をもったものでもよいし、異質の、た
とえば受光用だけ反射特性の優れたものを使用してもよ
い。
Although all the optical fibers have the same diameter here, the present invention can be realized even if optical fibers with different diameters are used.
Although the embodiment has been described in which the light-receiving optical fibers are surrounded by a hexagonal tree as in case B, it is also possible, for example, to arrange three light-emitting optical fibers regularly. In short, the present invention can be realized by disposing the light projecting area 11 so as to cover the light receiving area JJ. Furthermore, the light-emitting optical fiber and the light-receiving optical fiber may have exactly the same material and shape, or they may be different, for example, fibers with excellent reflection characteristics only for light-receiving.

(発明の効果) 以上のようにこの発明によれば、光源に起因する劣化等
の影響を受けないので、一定光情の投光域の中で安定し
た条件での受光域を得ることができ、また受光用光ファ
イバの影ができないので、この受光用光ファイバの端部
と原稿との距離を最少限にとることができるから、極め
て高精度で高解像度をもつ光ファイバにょる投受光装置
を実現できる。
(Effects of the Invention) As described above, according to the present invention, since it is not affected by deterioration caused by the light source, it is possible to obtain a light receiving area under stable conditions within a light emitting area under constant light conditions. Furthermore, since the light-receiving optical fiber does not cast a shadow, the distance between the end of the light-receiving optical fiber and the document can be kept to a minimum, making it possible to use an optical fiber-based light projector/receiver with extremely high precision and high resolution. can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)、(4)はこの発明の一実施例を示す図、
第2図はこの発明の応用例を示す図、第3図は一般的な
原稿読取装置を示すブロック図、第4図(A)〜(D)
は一般的な投受光′!IC丹の一例を示す図である。 l・・・受光用光ファイバ、2・・・フォトセンサ、3
・・・光源、4・・・原稿、5・・・電圧増幅器、6・
・・表示部、7・・・データ処理部。 出願人代理人   安 形 雄 三 早 l 画 羊 2 図 第 3 図
FIGS. 1(A) and 1(4) are diagrams showing an embodiment of the present invention,
Fig. 2 is a diagram showing an application example of the present invention, Fig. 3 is a block diagram showing a general document reading device, and Figs. 4 (A) to (D).
is a general light emitting/receiving method! It is a figure which shows an example of IC tan. l... Optical fiber for light reception, 2... Photo sensor, 3
...Light source, 4.Document, 5.Voltage amplifier, 6.
...Display section, 7...Data processing section. Applicant's agent Yu Yasugata Mishaya l Painter 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 被測定面の測光を光ファイバを用いて行なう場合の投受
光装置において、1本の受光用光ファイバと、複数本の
投光用光ファイバとを具え、前記受光用ファイバの回り
を前記複数本の投光用光ファイバで規則的に配設するよ
うにして囲繞し、投受光部を一体化するようにしたこと
を特徴とする光ファイバによる投受光装置。
A light emitting/receiving device for photometry of a surface to be measured using an optical fiber, comprising one light receiving optical fiber and a plurality of light emitting optical fibers, and the plurality of light receiving fibers are connected around the light receiving fiber. A light emitting/receiving device using an optical fiber, characterized in that the light emitting/receiving unit is surrounded by regularly arranged light emitting optical fibers, and a light emitting/receiving part is integrated.
JP26810884A 1984-12-19 1984-12-19 Light projecting and photodetecting device by optical fiber Pending JPS61145958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26810884A JPS61145958A (en) 1984-12-19 1984-12-19 Light projecting and photodetecting device by optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26810884A JPS61145958A (en) 1984-12-19 1984-12-19 Light projecting and photodetecting device by optical fiber

Publications (1)

Publication Number Publication Date
JPS61145958A true JPS61145958A (en) 1986-07-03

Family

ID=17454003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26810884A Pending JPS61145958A (en) 1984-12-19 1984-12-19 Light projecting and photodetecting device by optical fiber

Country Status (1)

Country Link
JP (1) JPS61145958A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08261928A (en) * 1995-03-17 1996-10-11 Aretsuku Denshi Kk Turbidity detector
JP2001199607A (en) * 1999-12-15 2001-07-24 Xerox Corp Peeling blade assembly and peeling method
JP2011163953A (en) * 2010-02-10 2011-08-25 Konica Minolta Sensing Inc Light projecting/receiving system, and optical biological information measuring device using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08261928A (en) * 1995-03-17 1996-10-11 Aretsuku Denshi Kk Turbidity detector
JP2001199607A (en) * 1999-12-15 2001-07-24 Xerox Corp Peeling blade assembly and peeling method
JP2011163953A (en) * 2010-02-10 2011-08-25 Konica Minolta Sensing Inc Light projecting/receiving system, and optical biological information measuring device using the same

Similar Documents

Publication Publication Date Title
US3947129A (en) Apparatus for contactless measuring of the dimensions of objects
EP1022675A3 (en) Image reading apparatus
US6462866B1 (en) Imaging optical system and original reading apparatus
EP1081457A3 (en) Optical position measuring device
ATE14246T1 (en) OPTICAL-MECHANICAL SCANNING MECHANISM.
EP0153002A2 (en) Apparatus for controlling light distribution in line scan optical imaging systems
CA2542891A1 (en) Displacement sensor apparatus
MY118374A (en) Apparatus and method for surface inspection
JPS61145958A (en) Light projecting and photodetecting device by optical fiber
JP3114410B2 (en) Image sensor test method
US5706081A (en) Apparatus for inspecting surface defects with regularly reflected light and peripherally scattered light
JPS60209128A (en) Pressure sensor
JPH0626835A (en) Optical apparatus for inspecting lead shape of electronic component and inspecting apparatus for lead shape of electronic component using the optical apparatus
JP2720133B2 (en) Collimator device
JPS60149937A (en) Pressure measuring apparatus
JPH04258705A (en) Position-sensing radiation detecting apparatus
JPS55150073A (en) Pattern input device
JPS55124002A (en) Optical position detector
SU1709361A2 (en) Device for reading data from oscilloscope screen
JP2000310509A (en) Stroke measuring device
JP2584487B2 (en) Light receiving device for luminous flux forming a plane
JPH05231931A (en) Light-sensing device for measuing illuminance and radiance meter
RU2115100C1 (en) Optical method measuring force
SU1597532A1 (en) Device for checking diameter of translucent fibers
JPH04213033A (en) Color measuring apparatus for metal-based applied color