JPS60149937A - Pressure measuring apparatus - Google Patents

Pressure measuring apparatus

Info

Publication number
JPS60149937A
JPS60149937A JP615984A JP615984A JPS60149937A JP S60149937 A JPS60149937 A JP S60149937A JP 615984 A JP615984 A JP 615984A JP 615984 A JP615984 A JP 615984A JP S60149937 A JPS60149937 A JP S60149937A
Authority
JP
Japan
Prior art keywords
light
area plate
reflected
pressure
photo detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP615984A
Other languages
Japanese (ja)
Inventor
Shosaku Maeda
前田 昌作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP615984A priority Critical patent/JPS60149937A/en
Publication of JPS60149937A publication Critical patent/JPS60149937A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0076Transmitting or indicating the displacement of flexible diaphragms using photoelectric means
    • G01L9/0077Transmitting or indicating the displacement of flexible diaphragms using photoelectric means for measuring reflected light

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To achieve a highly accurate measurement of the S/N ratio with a simple construction by employing a linear array of numerous ON-OFF type light receiving elements as a photo detector. CONSTITUTION:A fine light beam 14 from a light source 11 is introduced to the surface of an area plate 10b at an angle theta from a slant direction with a light transmission path 13. The reflect light is received with a photo detector 12 to be converted to an electrical signal. The photo detector 12 is made up of a photo diode array in which numerous ON-OFF type light receiving elements 12a-12n are arranged linearly and placed in the direction of receiving the reflected light 18 from the area plate 10b in such a manner as to be orthogonal to the reflected light 18.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は圧力変化による感圧素子の機械的変位量を光信
号を利用して電気信号に変換する圧力測定装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a pressure measuring device that converts the amount of mechanical displacement of a pressure-sensitive element due to a pressure change into an electrical signal using an optical signal.

〔従来技術〕[Prior art]

従来、圧力変化を検出するのに、シリコンダイヤフラム
の撓みをピエゾ抵抗の変化で検出したシ、金属ダイヤス
ラムの撓みを静電容量の変化で検出したルしている。し
かしながら、これらの検出方式はいずれも電子式で直接
電気信号として取り出すものであるため、防爆を考慮す
ると微弱な信号によらざ石を得す、電磁誘導に対して弱
くなる。
Conventionally, pressure changes have been detected by detecting the deflection of a silicon diaphragm using changes in piezoresistance, and by detecting the deflection of a metal diaphragm using changes in capacitance. However, since all of these detection methods are electronic and directly extract electrical signals, they are vulnerable to electromagnetic induction, which can cause blemishes due to weak signals when considering explosion protection.

そのため、バリア等を要してシステム的に安全を確保す
る必要があった。
Therefore, it was necessary to ensure system safety by using barriers, etc.

そこで、最近では光信号を利用して機械的な変位量を電
気信号に変換する変位変換装置が種々提案されている。
Therefore, recently, various displacement conversion devices have been proposed that convert mechanical displacement amounts into electrical signals using optical signals.

これは第1図に示すように光源1からの光を光伝送路2
でダイヤフラム3に導いて反射させ、前記ダイヤフラム
3が圧力Pを受けた時の変位dを反射光量の変化として
受光器4で横用し電気信号に変換するよりにしたもので
、電気ノイズを受けずしかも防爆性に優れているという
大きな長所を有している。
As shown in Figure 1, this transfers light from a light source 1 to an optical transmission line 2.
The light is guided to the diaphragm 3 for reflection, and the displacement d when the diaphragm 3 receives pressure P is used as a change in the amount of reflected light by the receiver 4 and converted into an electrical signal. Moreover, it has the great advantage of being excellent in explosion-proof properties.

この場合、半導体光源、半導体受光器は一般的に周囲温
度や電源の変動、その他の影響を受けて微妙に振らつい
ているため、安定性に欠け、好ましい性能を期待するこ
とができない。そこで、通常第2図に示すようにダイヤ
フラム3の両側においてその変位量dl 、dlを2つ
の受光器4A 。
In this case, semiconductor light sources and semiconductor photodetectors generally fluctuate slightly due to fluctuations in ambient temperature, power supply, and other influences, so they lack stability and cannot be expected to provide favorable performance. Therefore, as shown in FIG. 2, two light receivers 4A are used to measure the displacement dl and dl on both sides of the diaphragm 3.

4Bで検出し、dl dlを演算することによ多温度変
化、電源変動等によるノイズを相殺し、性能の向上を計
ったシ、更には特公昭57−29646号公報に開示さ
れているようにdl、d、を検出した2組の受光器から
の信号の和信号が一定になるように光源の強さを制御す
るようにしたものが知られている。
By detecting 4B and calculating dl dl, noise caused by multiple temperature changes, power fluctuations, etc. can be canceled out, and performance has been improved. It is known that the intensity of the light source is controlled so that the sum signal of the signals from two sets of light receivers that detect dl and d is constant.

しかるにかかる方式はいずれも受光器からの電気信号が
アナログ的であるため、信号対雑音比(S/N)は依然
として満足を与える程のものではなかった。
However, in all of these systems, the electrical signal from the photoreceiver is analog, so the signal-to-noise ratio (S/N) remains unsatisfactory.

〔発明の概要〕[Summary of the invention]

本発明は上述したような点に鑑みてなされたもので、受
光器として多数のオンオフ型受光素子を一次元的に配列
したアレイを用いるという極めて簡単な構成によυ、機
械的変位をデジタル信号で検出し、半導体の光源および
受光器が本来的に持っている不安定性を克服し、S/N
比が高く高精度な測定を可能にした圧力測定装置を提供
するものである。
The present invention has been made in view of the above-mentioned points, and uses an extremely simple structure in which a one-dimensional array of a large number of on-off type light receiving elements is used as a light receiver, and mechanical displacement is converted into a digital signal. The S/N is improved by overcoming the inherent instability of semiconductor light sources and receivers.
The present invention provides a pressure measuring device that enables highly accurate measurement with a high ratio.

以下、本発明を図面に示す実施例に基づいて詳細に説明
する。
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.

〔実 施 例〕〔Example〕

第3図は本発明の一実施例を示す構成図である。 FIG. 3 is a configuration diagram showing an embodiment of the present invention.

同図において10は感圧素子、11は半導体光源、12
は受光器で、前記感圧素子10は周縁が固定され中央に
剛体からなる面積板10bを備えた金属ダイヤスラム1
0aで構成され、かつ前記面積板10bの表面が鏡面に
仕上げ加工されている。
In the figure, 10 is a pressure sensitive element, 11 is a semiconductor light source, and 12 is a pressure sensitive element.
is a light receiver, and the pressure sensitive element 10 is a metal diamond slam 1 having a fixed peripheral edge and a rigid area plate 10b in the center.
0a, and the surface of the area plate 10b is finished to a mirror surface.

この場合、前記感圧素子16としてはダイヤフラムに限
らず、例えば第4図(、)に示すように中央に厚肉部1
5mを一体に有したシリコンダイヤフラム15で形成し
、前記厚肉部15aの表面を鏡面仕上げしたシあるいは
同図(b)に示すようにベローズ16の一端開口部に剛
体からなる面積板17を取付け、該面積板17の表面を
鏡面仕上げしてもよい。要するに圧力を受けた時平行に
変位する可動部を有し、かつ該可動部に光を効果的に反
射する鏡面部分を設けた感圧素子であれば何でもよい。
In this case, the pressure sensitive element 16 is not limited to a diaphragm, and for example, as shown in FIG.
The bellows 16 is formed of a silicon diaphragm 15 having an integral diameter of 5 m, and the surface of the thick wall portion 15a is mirror-finished, or a rigid area plate 17 is attached to the opening at one end of the bellows 16 as shown in FIG. The surface of the area plate 17 may be mirror-finished. In short, any pressure-sensitive element may be used as long as it has a movable part that displaces in parallel when pressure is applied, and the movable part is provided with a mirror surface part that effectively reflects light.

前記光源11からの細い元ビーム14は元伝送路13に
よって前記面積板10bの表面に斜め方向からある角度
θをもって導かれて該表面を照射する。そして、その反
射光18が前記受光器12によって受光され電気信号に
変換されるように構成されている。
A thin original beam 14 from the light source 11 is guided obliquely to the surface of the area plate 10b at a certain angle θ by the original transmission line 13, and irradiates the surface. The reflected light 18 is then received by the light receiver 12 and converted into an electrical signal.

ここで、本発明を特徴ずける前記受光器12は多数のオ
ンオフ型受光素子12a 、 12b 、 12c・・
・・12nを一次元的に配列したフォトダイオードアレ
イによって構成され、前記面積板10bで反射した反射
光18を受ける方向に該反射光18と直交するように配
設されている。そして、各オンオフ型受光素子12a、
12b、12c・・・・12nは図示を省略したシフト
レジスタによって順次動作し、光を受けた時オン、元を
受けないときオフの信号を出すように構成されている。
Here, the light receiver 12 that characterizes the present invention includes a large number of on/off type light receiving elements 12a, 12b, 12c...
It is constituted by a photodiode array in which 12n of . And each on-off type light receiving element 12a,
12b, 12c, . . . , 12n are sequentially operated by a shift register (not shown), and are configured to output an on signal when receiving light and an off signal when not receiving light.

今、圧力Pを受けて前記面積板10bが第5図破線で示
すようにdだけ平行に変位したとすると、この時の反射
光18aは初期状態における反射光18からe(=2d
dnθ)だけ変位する。これに対して前記受光器12を
第6図に示すように反射光18に対して可屈ψだけ傾け
ると、該受光器12上での反射光18aの移動量(距離
)fはとなる。
Now, suppose that the area plate 10b is displaced in parallel by an amount d as shown by the broken line in FIG.
dnθ). On the other hand, when the light receiver 12 is tilted by the bending angle ψ with respect to the reflected light 18 as shown in FIG. 6, the amount of movement (distance) f of the reflected light 18a on the light receiver 12 becomes.

そこで、e=2ds(nθを上記(1)式に代入すると
、2dslnθ f= 帖ψ となる。
Therefore, by substituting e=2ds(nθ into the above equation (1), it becomes 2dslnθ f=庖ψ.

ここで、θ=ψ=70°にすると、 f=5.5d また、θ−ψ=800にすると f=11.3d となる。Here, if θ=ψ=70°, f=5.5d Also, if θ−ψ=800, f=11.3d becomes.

すなわち、前記面積板10bの変位量dは受光器12上
に5〜11倍程度に拡大されたことになる。
That is, the amount of displacement d of the area plate 10b on the light receiver 12 is expanded by about 5 to 11 times.

前記受光器12を構成する最近のオンオフ受光素子から
なるフォトダイオードアレイは、光センサノピッチが1
0μm位で累子数が500以上にも及ぶため、受光して
いる(オンしている)光センサの移つp変わシで受光素
子の微小な変位(μオーダ)を良好なS/N比で検出で
きる。
The recent photodiode array consisting of on/off light receiving elements constituting the light receiver 12 has a light sensor pitch of 1.
Since the number of elements reaches more than 500 at around 0 μm, the small displacement (μ order) of the light receiving element due to the change in p of the light sensor that is receiving light (turning on) can be detected with a good S/N ratio. It can be detected by

すなわち、従来の受光器にあっては受光器によって受光
される反射光の光量が感圧素子の変位量に応じて変化す
るため、減少した際ノイズの影響を受けやすいが、本発
明のように7オトダイオードアレイを用いて反射光を検
出すると、各党センサからのパルス信号の強度はほぼ一
定で、感圧素子の変位量に応じては大きく変化せず、し
たがってノイズの影gを受けにくく、Sハ比を向上させ
ることができる。
In other words, in conventional light receivers, the amount of reflected light received by the light receiver changes depending on the amount of displacement of the pressure-sensitive element, so when it decreases, it is easily affected by noise. 7 When reflected light is detected using an Otodiode array, the intensity of the pulse signal from each party sensor is almost constant and does not change greatly depending on the amount of displacement of the pressure-sensitive element, so it is less susceptible to the influence of noise. It is possible to improve the S ratio.

第7図は本発明の他の実施例を示す要部側面図である。FIG. 7 is a side view of essential parts showing another embodiment of the present invention.

この実施例は面積板10bの表面に別個独立に製作され
たミラー25を適宜角度で取付けたものである。このよ
うな構成によれば光源の光軸方向および光源と受光器1
2の配設位Rを自由に変えることができる利点を有して
いる。
In this embodiment, separately manufactured mirrors 25 are attached to the surface of the area plate 10b at appropriate angles. According to such a configuration, the optical axis direction of the light source, the light source and the light receiver 1
It has the advantage that the arrangement position R of 2 can be changed freely.

なお、上記実施例はいずれも感圧素子10の一面に圧力
Pを作用させた場合について説明したが本発明はこれに
限らず両面にそれぞれ被測定圧を導いて、その差圧を測
定するようにしてもよいことは勿論である。
Incidentally, in each of the above embodiments, the case where the pressure P is applied to one side of the pressure sensitive element 10 has been explained, but the present invention is not limited to this. Of course, it is also possible to do so.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明に係る圧力測定装置は、感圧
素子の可動部に鏡面部分を設け、該鏡面部分に斜め方向
から元を照射してその反射光を多数のオンオフ型受光素
子を一次元的に配列したアレイからなる受光器でデジタ
ル的に検出するように構成したので、従来のアナログ的
に検出するものに比べて前記可動部の微小な機械的変位
を高信号対雑音比で検出でき、測定精度を向上させるこ
とができる。
As explained above, in the pressure measuring device according to the present invention, a movable part of a pressure sensitive element is provided with a mirror surface part, the mirror surface part is irradiated with a source from an oblique direction, and the reflected light is sent to the primary light receiving element of a large number of on/off type. Since the configuration is configured to digitally detect a photodetector consisting of an originally arranged array, minute mechanical displacements of the movable part can be detected with a higher signal-to-noise ratio than conventional analog detection. It is possible to improve measurement accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はそれぞれ従来の光信号を利用して
機械的変位量を電気信号に変換する装置の構成図、第3
図は本発明の一実施例を示す構成図、第4図(、) 、
 (b)はそれぞれ感圧素子の他の実施例を示す図、第
5図および第6図は面積板の変位と反射光の移動の関係
を示す図、第7図は本発明の他の実施例を示す要部側面
図である01011・・・感圧素子、10a・・・・ダ
イヤフラム、10b・−・・面積板、11・・・・光源
、12@・・・受光器、14・−・・光ビーム、1B・
・・・反射光、25・・・・(ツー。 特許出願人 山弐)・ネウエル株式会社代理人山川政樹
(ほか2名) 第4図 (a) (b) 第6図 R 第5図 4 第7図
Figures 1 and 2 are block diagrams of a device that converts mechanical displacement into electrical signals using conventional optical signals, respectively.
The figure is a configuration diagram showing one embodiment of the present invention, Fig. 4 (, ),
(b) is a diagram showing another embodiment of the pressure sensitive element, FIGS. 5 and 6 are diagrams showing the relationship between displacement of the area plate and movement of reflected light, and FIG. 7 is a diagram showing another embodiment of the present invention. 01011: Pressure sensitive element, 10a: diaphragm, 10b: area plate, 11: light source, 12@: light receiver, 14: -・Light beam, 1B・
...Reflected light, 25... (2. Patent applicant Yamani) / Newel Co., Ltd. agent Masaki Yamakawa (and 2 others) Figure 4 (a) (b) Figure 6 R Figure 5 4 Figure 7

Claims (1)

【特許請求の範囲】[Claims] 感圧素子の可動部に鏡面部分を設け、光源からの光を前
記鏡面部分に斜め方向から導いて該部分で反射させ、そ
の反射光を多数のオンオフ型受光素子を一次元配列して
なるアレイによって受光するようにしたことを特徴とす
る圧力測定装置。
A mirror surface part is provided in the movable part of the pressure sensitive element, light from a light source is guided obliquely to the mirror surface part and reflected by the mirror surface part, and the reflected light is reflected in an array formed by one-dimensionally arranging a large number of on/off type light receiving elements. 1. A pressure measuring device characterized in that it receives light.
JP615984A 1984-01-17 1984-01-17 Pressure measuring apparatus Pending JPS60149937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP615984A JPS60149937A (en) 1984-01-17 1984-01-17 Pressure measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP615984A JPS60149937A (en) 1984-01-17 1984-01-17 Pressure measuring apparatus

Publications (1)

Publication Number Publication Date
JPS60149937A true JPS60149937A (en) 1985-08-07

Family

ID=11630742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP615984A Pending JPS60149937A (en) 1984-01-17 1984-01-17 Pressure measuring apparatus

Country Status (1)

Country Link
JP (1) JPS60149937A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2621121A1 (en) * 1987-09-29 1989-03-31 Mutec Ingenierie Sarl METHOD AND DEVICE FOR MONITORING PRESSURE IN A SPEAKER OR CAPACITY
FR2720827A1 (en) * 1994-06-06 1995-12-08 Theobald A Optoelectronic differential pressure sensor for measuring very low pressure values
EP1612532A1 (en) * 2004-06-29 2006-01-04 Alcon, Inc. Optical noninvasive pressure sensor
JP2010197066A (en) * 2009-02-23 2010-09-09 Casio Computer Co Ltd Pressure sensor and method of pressure measurement of pressure sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2621121A1 (en) * 1987-09-29 1989-03-31 Mutec Ingenierie Sarl METHOD AND DEVICE FOR MONITORING PRESSURE IN A SPEAKER OR CAPACITY
FR2720827A1 (en) * 1994-06-06 1995-12-08 Theobald A Optoelectronic differential pressure sensor for measuring very low pressure values
NL1000502C2 (en) * 1994-06-06 1996-01-19 Theobald S A A Differential pressure gauge.
EP1612532A1 (en) * 2004-06-29 2006-01-04 Alcon, Inc. Optical noninvasive pressure sensor
JP2010197066A (en) * 2009-02-23 2010-09-09 Casio Computer Co Ltd Pressure sensor and method of pressure measurement of pressure sensor

Similar Documents

Publication Publication Date Title
EP0081860A2 (en) Perimeter security system
EP0279347A2 (en) Optical axis displacement sensor
EP0179081A1 (en) Optical pressure sensing apparatus.
CN1963384A (en) Method for measuring minute angle based on self-commix interference of laser and apparatus thereof
US5127733A (en) Integrated optical precision measuring device
JPH0311644B2 (en)
JPS6166936A (en) Optical, electrical and mechanical device for measuring physical parameter
JPS60149937A (en) Pressure measuring apparatus
US4679029A (en) Optoelectronic rotational position sensor
US3664739A (en) Method and device for measuring strain and other changes in dimension
US6542244B1 (en) Variable sensitivity acoustic transducer
US4698616A (en) Optoelectronic rotational position sensor
JP4546047B2 (en) Optical distance measuring device
CN108444397B (en) Displacement sensor and measuring method thereof
US4607162A (en) Sensing apparatus for measuring a physical quantity
JPS60209128A (en) Pressure sensor
US5061064A (en) Detector of the arrival angle of laser pulses, especially for tanks
JP3319666B2 (en) Edge detection device
JPS59176637A (en) Temperature sensor
SU932226A1 (en) Device for measuring small angular displacements of coherent radiation source
EP0851210A2 (en) Non-contact type of strain meter
GB2248498A (en) Variable gain optical sensing system
GB2176284A (en) Device for detecting displacement
SU1698644A1 (en) Optoelectronic device to measure diameters of heated large-size parts
SU1067353A1 (en) Device for measuring object displacement