JPH04213033A - Color measuring apparatus for metal-based applied color - Google Patents

Color measuring apparatus for metal-based applied color

Info

Publication number
JPH04213033A
JPH04213033A JP40108890A JP40108890A JPH04213033A JP H04213033 A JPH04213033 A JP H04213033A JP 40108890 A JP40108890 A JP 40108890A JP 40108890 A JP40108890 A JP 40108890A JP H04213033 A JPH04213033 A JP H04213033A
Authority
JP
Japan
Prior art keywords
light
light receiving
light source
color
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP40108890A
Other languages
Japanese (ja)
Inventor
Hiroshi Hattori
寛 服部
Takehiko Nakajima
毅彦 中島
Nobuhiro Ito
伊藤 信広
Jiro Arima
二朗 有馬
Nobuyuki Kita
信之 北
Teruo Morimoto
森本 晃夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Toyota Motor Corp
Original Assignee
Minolta Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd, Toyota Motor Corp filed Critical Minolta Co Ltd
Priority to JP40108890A priority Critical patent/JPH04213033A/en
Publication of JPH04213033A publication Critical patent/JPH04213033A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To utilize the light from a light source part effectively and to reduce the error between the measurement and visual evaluation by optimally forming the incident light of the light source part and the angle of the regular reflected light from each light receiving part. CONSTITUTION:A color measuring apparatus comprises the parts having the following functions. A light source part 4 emits light at the incident angle of 20-30 degrees. A first light receiving part 5 has the optical axis which is inclined to the side of the light source part at 20-30 degrees with respect to the optical axis of the regular reflected light of the light source part 4. A second light receiving part 6 receives the reflected light which is inclined to the side of the light source part 4 by 85-100 degrees with respect to the optical axis of the regular reflected light. A photoelectric converter part 2 converts the received reflected lights into the electric signals, respectively. A data processing part 3 computes the color values corresponding to the applied colors by operating the electric signals and displays the values, respectively. The incident angle of the light source part 4 and the angles from the regular reflected lights of the light receiving parts 5 and 6 are optimally set. Therefore, the light from the light source 4 can be effectively utilized. Since the first light receiving part 5 is set at 20-30 degrees with respect to the regular reflected light, the reflected light is hard to enter into the light receiving part 5 even if the surface whose color is to be measured is the curved surface, and the error between the measurement and the visual evaluation can be made small.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はメタリック系塗色を測色
するための測色装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a color measuring device for color measuring metallic paint colors.

【0002】0002

【従来の技術】塗色の基準色との差を評価するには、近
年まで熟練者の目視による評価に頼っていた。しかしこ
のように感覚による評価では、個人差や観察環境の影響
が大きく、評価結果のばらつきが問題となっていた。そ
こで塗色を数値化して絶対評価することが望まれ、積分
球式測色装置など近年種々の測色装置が開発され実用に
供されている。
BACKGROUND OF THE INVENTION Until recently, evaluation of the difference between a paint color and a reference color has relied on visual evaluation by an expert. However, this type of sensory evaluation is highly influenced by individual differences and the observation environment, resulting in a problem of variation in evaluation results. Therefore, it is desired to quantify the paint color and make an absolute evaluation, and various color measuring devices such as an integrating sphere color measuring device have been developed and put into practical use in recent years.

【0003】ところで自動車などの塗色には、アルミニ
ウム粉末やマイカ粉末などの鱗片状粉末を含むメタリッ
ク系塗色が多用されている。このメタリック系塗色では
、鱗片状粉末の配向により見る角度で発色が異なるとい
う特徴がある。ところが意匠的には長所となるこの特徴
も測色による数値化には不利な条件となり、積分球を利
用した測色装置などでは被測色表面への光の照射角度を
変化させて複数回測定して数値化する必要がある。しか
しメタリック系塗色の場合には、測色による評価と目視
による評価とが一致する場合が少なく、これらの測色装
置は主としてソリッド系塗色の測色に用いられていた。 そして実際にメタリック系塗色を評価するには、評価塗
色と基準塗色のパネルを並べて持ち、太陽を背にしてパ
ネルを水平から約60°に傾けた場合のハイライトと、
その位置からパネルを水平になるまで傾け水平な位置で
のシェードと、の2つの角度による見方で熟練者が目視
で評価しているのが現状である。しかし前述したように
個人差などが生じ、評価の決定までの工数も多大となっ
ている。したがって一層精度の高い測色装置または測色
方法の開発が望まれていた。
By the way, metallic paint colors containing scaly powders such as aluminum powder and mica powder are often used as paint colors for automobiles and the like. This metallic coating color is characterized in that the color development differs depending on the viewing angle depending on the orientation of the scaly powder. However, this feature, which is an advantage in terms of design, is a disadvantage when it comes to quantifying by colorimetry, and with colorimeter devices that use an integrating sphere, it is necessary to measure the surface multiple times by changing the angle of light irradiation onto the surface to be measured. It is necessary to quantify it. However, in the case of metallic paint colors, colorimetric evaluations and visual evaluations rarely match, and these colorimetric devices have been mainly used to measure solid paint colors. To actually evaluate a metallic paint color, hold the panels of the evaluation paint color and the standard paint color side by side, and tilt the panel approximately 60 degrees from the horizontal with your back to the sun.
Currently, an expert visually evaluates the panel from two angles: tilting the panel from that position until it becomes horizontal and looking at the shade in a horizontal position. However, as mentioned above, there are individual differences, and it takes a lot of man-hours to decide on the evaluation. Therefore, it has been desired to develop a color measuring device or method with higher accuracy.

【0004】そこで例えばUSP4479718号には
、入射角45°で被測色表面に光を照射し、正反射光の
光軸から15°、45°及び110°傾斜した位置の反
射光を受光し演算する測色方法が開示されている。
For example, in US Pat. No. 4,479,718, light is irradiated onto the surface to be measured at an incident angle of 45°, and the reflected light at positions tilted by 15°, 45°, and 110° from the optical axis of the specularly reflected light is received and calculated. A color measurement method is disclosed.

【0005】[0005]

【発明が解決しようとする課題】上記したように複数の
受光角で受光して演算する装置によれば、ハイライトと
シェードに相当する測色を同時に行うことができ、メタ
リック系塗色の測色による評価が人間の目視による評価
と一致する場合が多く、実用域に到達したといえる。し
かし入射角が45°では入射光の光量が少なくなり、シ
ェード相当の受光部への反射光の光量が不足する場合が
多いため、分解能が低下し測色精度の低下を招く。した
がって光源部の出力を大きくしたり、受光部のレンズを
大きくしたりする必要があるため装置が大型化、複雑化
し、コンパクトな装置とすることが困難となっていた。
[Problems to be Solved by the Invention] As described above, with the device that receives light at a plurality of light receiving angles and performs calculations, it is possible to simultaneously perform color measurements corresponding to highlights and shades, and to measure metallic paint colors. In many cases, the color evaluation matches the human visual evaluation, and it can be said that the method has reached a practical level. However, when the incident angle is 45°, the amount of incident light decreases, and the amount of reflected light to the light receiving section equivalent to the shade is often insufficient, resulting in a decrease in resolution and a decrease in colorimetric accuracy. Therefore, it is necessary to increase the output of the light source section and the lens of the light receiving section, making the device larger and more complicated, making it difficult to make it compact.

【0006】本発明はこのような事情に鑑みてなされた
ものであり、小型で人間の目視の評価と一致性の高い測
色が可能な測色装置とすることを目的とする。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a compact color measuring device capable of measuring color that is highly consistent with human visual evaluation.

【0007】[0007]

【課題を解決するための手段及び作用】上記課題を解決
する本発明のメタリック系塗色用測色装置は、20〜3
0°の入射角で被測色表面に光を照射する光源部と、光
源部から照射された光が被測色表面で正反射した正反射
光の光軸に対して20〜30°光源部側へ傾斜した光軸
をもつ反射光を受光する第1受光部と、正反射光の光軸
に対して85〜100°光源部側へ傾斜した光軸をもつ
反射光を受光する第2受光部と、第1受光部及び第2受
光部で受光された反射光をそれぞれ電気信号に変換する
光電変換部と、電気信号から演算により第1受光部及び
第2受光部で受光された反射光に対応する色彩値をそれ
ぞれ算出し表示するデータ処理部と、からなることを特
徴とする。
[Means and effects for solving the problems] The color measuring device for metallic color coating of the present invention which solves the above problems has a color measuring device of 20 to 3
A light source unit that irradiates light onto the surface to be measured at an incident angle of 0°, and a light source unit that is 20 to 30 degrees with respect to the optical axis of the specularly reflected light from which the light emitted from the light source unit is specularly reflected on the surface to be measured. A first light receiving section that receives reflected light with an optical axis tilted to the side, and a second light receiving section that receives reflected light that has an optical axis tilted toward the light source by 85 to 100 degrees with respect to the optical axis of specularly reflected light. a photoelectric conversion section that converts the reflected light received by the first light receiving section and the second light receiving section into electrical signals, and a reflected light received by the first light receiving section and the second light receiving section by calculating from the electrical signals. and a data processing unit that calculates and displays color values corresponding to the respective color values.

【0008】光源部としては、キセノンランプ、ハロゲ
ンランプなど、従来と同様のものを用いることができる
。本発明では光源部は入射角20〜30°で被測色表面
に照射される。入射角が20°より小さいと第2受光部
で受光される反射光の光量が少なくなり、装置の大型化
を招く。また30°を超えると入射光の光量が低下する
ため同様に装置の大型化を招く。この範囲とすることに
より入射光の光量を維持しつつ第2受光部で受光される
反射光の光量を大きくすることができる。
[0008] As the light source section, a conventional one such as a xenon lamp or a halogen lamp can be used. In the present invention, the light source unit irradiates the surface to be measured with an incident angle of 20 to 30 degrees. If the incident angle is smaller than 20°, the amount of reflected light received by the second light receiving section will decrease, leading to an increase in the size of the device. Furthermore, if the angle exceeds 30°, the amount of incident light decreases, which also results in an increase in the size of the device. By setting it within this range, the amount of reflected light received by the second light receiving section can be increased while maintaining the amount of incident light.

【0009】第1受光部及び第2受光部は、従来と同様
にレンズ、光ファイバーなどから構成することができる
。第1受光部はハイライト相当の反射光を受光し、光源
部からの光が被測色表面で正反射した正反射光の光軸に
対して20〜30°光源部側へ傾斜した光軸をもつ反射
光を受光するように配置されている。受光部の受光軸が
正反射光の光軸となす角度と反射率との間には、図5に
示すような関係があり、その角度が30°以上になると
反射率が極めて小さくなる。したがって30°より大き
くなると反射率の低下により、ハイライト相当の測色結
果と目視による結果とのずれが大きくなる。また、この
第1受光部の受光軸の傾斜が20°より小さくなると、
被照射表面が曲面の場合などに正反射光が第1受光部に
入り易くなり、測色の精度が低下する。
[0009] The first light receiving section and the second light receiving section can be constructed from lenses, optical fibers, etc., as in the prior art. The first light receiving section receives reflected light equivalent to a highlight, and its optical axis is tilted 20 to 30 degrees toward the light source with respect to the optical axis of the specularly reflected light when the light from the light source is specularly reflected on the surface to be measured. It is arranged so as to receive reflected light having . There is a relationship as shown in FIG. 5 between the angle between the light-receiving axis of the light-receiving section and the optical axis of specularly reflected light and the reflectance, and when the angle becomes 30 degrees or more, the reflectance becomes extremely small. Therefore, when the angle is greater than 30°, the reflectance decreases, and the discrepancy between the colorimetric results corresponding to highlights and the visual results increases. Moreover, if the inclination of the light receiving axis of this first light receiving part is less than 20°,
When the surface to be irradiated is a curved surface, specularly reflected light tends to enter the first light receiving section, and the accuracy of colorimetry decreases.

【0010】また第2受光部はシェード相当の反射光を
受光し、正反射光の光軸に対して85〜100°光源部
側へ傾斜した光軸をもつ反射光を受光するように配置さ
れている。受光軸の傾斜が85°より小さいとシェード
相当の測色結果と目視による結果とのずれが大きくなり
、100°より大きくなると反射光の光量が少なくなる
ため装置の大型化を招く。
Further, the second light receiving section is arranged to receive reflected light equivalent to a shade, and to receive reflected light having an optical axis inclined toward the light source section by 85 to 100 degrees with respect to the optical axis of the specularly reflected light. ing. If the inclination of the light-receiving axis is less than 85°, there will be a large discrepancy between the colorimetric results equivalent to the shade and the visual results, and if it is more than 100°, the amount of reflected light will decrease, leading to an increase in the size of the device.

【0011】光電変換部は、第1受光部及び第2受光部
で受光された反射光をそれぞれ電気信号に変換する機能
をもち、フォトダイオードなど公知の光電変換素子を利
用することができる。データ処理部は、光電変換部で出
力された電気信号から、演算により第1受光部及び第2
受光部で受光された反射光に対応する色彩値をそれぞれ
算出する。この色彩値としては、各波長の光の反射率、
三刺激値(X,Y,Z)、L* a* b* 値などが
挙げられる。そして各受光部で受光された反射光に対応
する色彩値を表示する。データ処理部としては、A/D
変換器、マイクロコンピュータを利用したデジタル回路
、CRT、プリンタ、液晶表示装置などを利用できる。
The photoelectric conversion section has a function of converting the reflected light received by the first light receiving section and the second light receiving section into electrical signals, and can utilize a known photoelectric conversion element such as a photodiode. The data processing section calculates the first light receiving section and the second light receiving section from the electrical signal output from the photoelectric conversion section.
Each color value corresponding to the reflected light received by the light receiving section is calculated. This color value includes the reflectance of light at each wavelength,
Examples include tristimulus values (X, Y, Z), L* a* b* values, and the like. Then, the color value corresponding to the reflected light received by each light receiving section is displayed. As a data processing section, A/D
Converters, digital circuits using microcomputers, CRTs, printers, liquid crystal display devices, etc. can be used.

【0012】0012

【実施例】以下、実施例により具体的に説明する。図1
に本発明の一実施例の測色装置のブロック図を示す。こ
の測色装置は、測色部1と、光電変換部2と、データ処
理部3とから構成されている。測色部1は、開口10a
をもつ取付台板10と、取付台板10に固定された支持
フレーム11と、支持フレーム11に固定された光源部
4、第1受光部5及び第2受光部6とから構成されてい
る。
[Examples] Hereinafter, the present invention will be explained in detail using examples. Figure 1
2 shows a block diagram of a colorimetric device according to an embodiment of the present invention. This color measurement device includes a color measurement section 1, a photoelectric conversion section 2, and a data processing section 3. The color measurement section 1 has an opening 10a.
It is composed of a mounting base plate 10 having a mounting base plate 10, a support frame 11 fixed to the mounting base plate 10, a light source section 4, a first light receiving section 5, and a second light receiving section 6 fixed to the support frame 11.

【0013】光源部4は、発光回路40により発光する
キセノンランプ41と、キセノンランプ41からの光を
運ぶ光ファイバー42と、光ファイバー42の他端に結
合された投光用鏡胴43と、投光用鏡胴43の他端に設
けられた投光用レンズ44とからなり、投光用鏡胴43
が支持フレーム11に固定されている。ここで投光用レ
ンズ44から照射される光は平行光線であり、その光軸
は開口10aからの法線に対して−30°傾斜している
。すなわち投光用レンズ44から照射される光は、入射
角30°で開口10aに照射されるように構成されてい
る。
The light source section 4 includes a xenon lamp 41 that emits light by a light emitting circuit 40, an optical fiber 42 that carries light from the xenon lamp 41, a light projecting lens barrel 43 connected to the other end of the optical fiber 42, and a light projecting lens barrel 43 that is connected to the other end of the optical fiber 42. It consists of a light projecting lens 44 provided at the other end of the light projecting lens barrel 43.
is fixed to the support frame 11. Here, the light emitted from the projection lens 44 is a parallel light beam, and its optical axis is inclined by −30° with respect to the normal line from the aperture 10a. That is, the light emitted from the projection lens 44 is configured to be emitted onto the aperture 10a at an incident angle of 30°.

【0014】第1受光部5は、受光用鏡胴50と、受光
用鏡胴50の一端に保持された受光用レンズ51と、受
光用鏡胴50の他端に結合された光ファイバー52とか
らなり、受光用鏡胴50が支持フレーム11に固定され
ている。ここで受光用レンズ51から受光用鏡胴50に
入る光の光軸は、投光用レンズ44から照射される光の
光軸と同一平面にあり、開口10aに向かうとともに開
口10aからの法線に対して投光用レンズ44から照射
される光と反対側へ+5°傾斜している。すなわち図2
に示すように、光源部4からの光の正反射光の光軸に対
して25°光源部4側へ傾斜した光軸をもつ反射光を受
光するように構成されている。
The first light receiving section 5 includes a light receiving lens barrel 50, a light receiving lens 51 held at one end of the light receiving lens barrel 50, and an optical fiber 52 coupled to the other end of the light receiving lens barrel 50. The light receiving lens barrel 50 is fixed to the support frame 11. Here, the optical axis of the light entering the light-receiving lens barrel 50 from the light-receiving lens 51 is on the same plane as the optical axis of the light emitted from the light-emitting lens 44, and is directed toward the aperture 10a and the normal line from the aperture 10a. It is tilted +5° to the opposite side to the light emitted from the light projecting lens 44. In other words, Figure 2
As shown in FIG. 2, the light source 4 is configured to receive reflected light having an optical axis inclined toward the light source 4 by 25 degrees with respect to the optical axis of the specularly reflected light from the light source 4.

【0015】第2受光部5は、受光用鏡胴60と、受光
用鏡胴60の一端に保持された受光用レンズ61と、受
光用鏡胴60の他端に結合された光ファイバー62とか
らなり、受光用鏡胴60が支持フレーム11に固定され
ている。ここで受光用レンズ61から受光用鏡胴60に
入る光の光軸は、投光用レンズ44から照射される光の
光軸と同一平面にあり、開口10aに向かうとともに開
口10aからの法線に対して投光用レンズ44側へ−6
5°傾斜している。すなわち図2に示すように、光源部
4からの光の正反射光の光軸に対して95°光源部4側
へ傾斜した光軸をもつ反射光を受光するように構成され
ている。
The second light receiving section 5 includes a light receiving lens barrel 60, a light receiving lens 61 held at one end of the light receiving lens barrel 60, and an optical fiber 62 coupled to the other end of the light receiving lens barrel 60. The light receiving lens barrel 60 is fixed to the support frame 11. Here, the optical axis of the light entering the light-receiving lens barrel 60 from the light-receiving lens 61 is on the same plane as the optical axis of the light emitted from the light-emitting lens 44, and is directed toward the aperture 10a and the normal line from the aperture 10a. Toward the projection lens 44 side -6
It is tilted at 5°. That is, as shown in FIG. 2, it is configured to receive reflected light having an optical axis inclined toward the light source section 4 at 95 degrees with respect to the optical axis of specularly reflected light from the light source section 4.

【0016】上記のように構成された測色部1は、取付
台板10が被測色物100に当接され、開口10aに表
出する被測色物100の表面に光源部4からの光が照射
される。なお、取付台板10の被測色物100に向かう
表面には、ゴムなどの軟質部材が接着され、被測色物1
00の傷付きが防止されている。光電変換部2は光学フ
ィルタF1〜F9と、その後方に配置されたフォトダイ
オードP1〜P9とから構成される。そしてフォトダイ
オードP4〜P6が第1受光部5から延びる光ファイバ
ー52からの光を受け、フォトダイオードP1〜P3が
第2受光部6から延びる光ファイバー62からの光を受
け、さらにフォトダイオードP7〜P9が光源部4のキ
セノンランプ41の光を受ける。これらの光学フィルタ
F1〜F9とフォトダイオードP1〜P9とで、それぞ
れCIEの等色関数X(λ)、Y(λ)、Z(λ)に近
似した分光感度をもつように構成されている。フォトダ
イオードP1〜P9の出力電流は、それぞれの光電変換
部E1〜E9により電気信号に変換され、データ処理部
3に入力される。
In the colorimeter 1 configured as described above, the mounting plate 10 is brought into contact with the object 100 to be measured, and the light source 4 illuminates the surface of the object 100 exposed through the opening 10a. Light is irradiated. Note that a soft member such as rubber is adhered to the surface of the mounting base plate 10 facing the object 100 to be color measured.
00 is prevented from being scratched. The photoelectric conversion unit 2 includes optical filters F1 to F9 and photodiodes P1 to P9 arranged behind them. The photodiodes P4 to P6 receive light from the optical fiber 52 extending from the first light receiving section 5, the photodiodes P1 to P3 receive light from the optical fiber 62 extending from the second light receiving section 6, and the photodiodes P7 to P9 receive light from the optical fiber 62 extending from the second light receiving section 6. It receives light from the xenon lamp 41 of the light source section 4. These optical filters F1 to F9 and photodiodes P1 to P9 are configured to have spectral sensitivities that approximate CIE color matching functions X(λ), Y(λ), and Z(λ), respectively. The output currents of the photodiodes P1 to P9 are converted into electrical signals by the respective photoelectric conversion units E1 to E9, and are input to the data processing unit 3.

【0017】データ処理部3は、A/D変換部30、C
PU31、入出力ポート32、キーボード33、ブザー
34、液晶表示部35、プリンタ36などから構成され
ている。A/D変換部30で光の信号に応じた電気量が
ディジタル信号に変換され、CPU31に入力される。 ここでA/D変換部30からの出力値をそれぞれX2S
1,YS1,ZS1,X2S2,YS2,ZS2,X2
R,YR,ZR とすると、CPU31ではX2m1=
X2S1/X2R,Ym1=YS1/YR,Zm1=Z
S1/ZR,X2m2=X2S2/X2R,Ym2=Y
S2/YR,Zm2=ZS2/ZR を計算することに
より、光源部4の光量のゆらぎをキャンセルして色彩値
を演算している。そしてこれらの値から三刺激値(X,
Y,Z)を求め、さらにL* a* b* 表色系への
変換を行って、それぞれの値を液晶表示部35とプリン
タ36に表示する。
The data processing section 3 includes an A/D conversion section 30, a C
It is composed of a PU 31, an input/output port 32, a keyboard 33, a buzzer 34, a liquid crystal display section 35, a printer 36, and the like. The A/D converter 30 converts the amount of electricity corresponding to the optical signal into a digital signal, which is input to the CPU 31 . Here, the output value from the A/D converter 30 is
1, YS1, ZS1, X2 S2, YS2, ZS2, X2
If R, YR, ZR, then in CPU31, X2m1=
X2S1/X2R, Ym1=YS1/YR, Zm1=Z
S1/ZR, X2m2=X2S2/X2R, Ym2=Y
By calculating S2/YR, Zm2=ZS2/ZR, fluctuations in the amount of light from the light source section 4 are canceled and color values are calculated. From these values, the tristimulus values (X,
Y, Z) are determined, further converted to the L* a* b* color system, and the respective values are displayed on the liquid crystal display section 35 and printer 36.

【0018】図3及び図4のフローチャートに従ってそ
の操作を説明する。まずキーボード33の校正キーを押
し、校正モードに入る。そしてステップS11で校正基
準試料の三刺激値(X0i,Y0i,Z0i(i=1,
2) )を入力する。次に測色部1の取付台板10を校
正基準試料に当接させ、測定キーをオンとしてキセノン
ランプ41を発光させる。これによりCPU31にはA
/D変換部30からのディジタル出力値が入力され、ス
テップS14でXmi,Ymi,Zmi が算出される
。そしてステップS15で校正定数αi ,βi ,γ
i を求める。
The operation will be explained according to the flowcharts shown in FIGS. 3 and 4. First, press the calibration key on the keyboard 33 to enter the calibration mode. Then, in step S11, the tristimulus values (X0i, Y0i, Z0i (i=1,
2) Enter ). Next, the mounting plate 10 of the colorimeter 1 is brought into contact with the calibration reference sample, and the measurement key is turned on to cause the xenon lamp 41 to emit light. As a result, the CPU 31 has A
The digital output values from the /D converter 30 are input, and Xmi, Ymi, and Zmi are calculated in step S14. Then, in step S15, the calibration constants αi, βi, γ
Find i.

【0019】次に校正基準試料を測定試料と交換し、測
定キーを押す。するとステップS23でXmi,Ymi
,Zmi が算出され、ステップS24で先に求められ
た校正定数が乗じられて三刺激値(Xi,Yi,Zi)
が求められる。そしてステップS25で、明度指数L*
 、クロマチックネス指数a* ,b* (CIE−1
976(L* a* b* ))に変換され、ステップ
S26でそれぞれの値を液晶表示部35とプリンタ36
に表示する。
Next, replace the calibration reference sample with the measurement sample and press the measurement key. Then, in step S23, Xmi, Ymi
, Zmi are calculated and multiplied by the calibration constant obtained earlier in step S24 to obtain tristimulus values (Xi, Yi, Zi).
is required. Then, in step S25, the lightness index L*
, chromaticness index a*, b* (CIE-1
976 (L*a*b*)), and in step S26, the respective values are displayed on the liquid crystal display section 35 and the printer 36.
to be displayed.

【0020】[0020]

【発明の効果】本発明の測色装置によれば、光源部の入
射角及び各受光部の正反射光からの角度が最適に構成さ
れているので、光源部の光を有効に利用できる。したが
って従来の装置に比べて光源部の出力を低減しても、従
来と同等の精度で測色することができ、エネルギーの低
減を図ることができる。また反射光の光量も多くなるの
で、受光部のレンズを小さくしても従来と同等の精度が
得られる。したがってこれらの効果により、測色装置を
従来に比べてコンパクトとすることが可能となり、測色
の自由度が格段に向上する。
According to the color measuring device of the present invention, the incident angle of the light source section and the angle from the specularly reflected light of each light receiving section are configured optimally, so that the light of the light source section can be used effectively. Therefore, even if the output of the light source section is reduced compared to conventional devices, color measurement can be performed with the same accuracy as conventional devices, and energy consumption can be reduced. Furthermore, since the amount of reflected light increases, even if the lens of the light receiving section is made smaller, the same accuracy as before can be obtained. Therefore, these effects make it possible to make the colorimetric device more compact than in the past, and the degree of freedom in colorimetry is greatly improved.

【0021】また、被測色表面の形状が曲面である場合
には、反射光の角度の変動による誤差が考えられる。す
なわち、従来のように正反射光の光軸に対して15°と
小さい角度で傾斜した位置に受光部をもつ装置では、正
反射光が受光部に入射する可能性が大きく、目視による
評価との誤差が生じやすい。しかし本発明ではこの角度
を20〜30°に設定しているため、被測色表面の形状
が曲面であっても従来に比べて正反射光が第1受光部に
入射しにくく、目視による評価との誤差を小さくするこ
とができる。
Furthermore, when the shape of the surface to be measured is a curved surface, errors may occur due to variations in the angle of reflected light. In other words, in conventional devices that have a light receiving section tilted at a small angle of 15 degrees with respect to the optical axis of the specularly reflected light, there is a high possibility that the specularly reflected light will enter the light receiving section, making visual evaluation difficult. errors are likely to occur. However, in the present invention, this angle is set to 20 to 30 degrees, so even if the shape of the surface to be measured is a curved surface, it is difficult for the specularly reflected light to enter the first light receiving section compared to the conventional method, and evaluation can be done visually. The error can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例の測色装置のブロック図である
FIG. 1 is a block diagram of a colorimetric device according to an embodiment of the present invention.

【図2】本発明の実施例の測色装置の光学系の構成を示
す説明図である。
FIG. 2 is an explanatory diagram showing the configuration of an optical system of a colorimetric device according to an embodiment of the present invention.

【図3】本発明の実施例の測色装置の処理を示すフロー
チャートである。
FIG. 3 is a flowchart showing the processing of the colorimetric device according to the embodiment of the present invention.

【図4】本発明の実施例の測色装置の処理を示すフロー
チャートである。
FIG. 4 is a flowchart showing the processing of the colorimetric device according to the embodiment of the present invention.

【図5】正反射光と受光軸とのなす角度と反射率との関
係を示すグラフである。
FIG. 5 is a graph showing the relationship between reflectance and the angle between specularly reflected light and the light receiving axis.

【符号の説明】[Explanation of symbols]

1  測色部 2  光電変換部 3  データ処理部 4  光源部 5  第1受光部 6  第2受光部 1 Color measurement section 2 Photoelectric conversion section 3 Data processing section 4 Light source section 5 First light receiving section 6 Second light receiving section

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  20〜30度の入射角で被測色表面に
光を照射する光源部と、前記光源部から照射された光が
前記被測色表面で正反射した正反射光の光軸に対して2
0〜30度前記光源部側へ傾斜した光軸をもつ反射光を
受光する第1受光部と、前記正反射光の光軸に対して8
5〜100度前記光源部側へ傾斜した光軸をもつ反射光
を受光する第2受光部と、前記第1受光部及び前記第2
受光部で受光された反射光をそれぞれ電気信号に変換す
る光電変換部と、前記電気信号から演算により前記第1
受光部及び前記第2受光部で受光された反射光に対応す
る色彩値をそれぞれ算出し該色彩値を表示するデータ処
理部と、からなることを特徴とするメタリック系塗色用
測色装置。
1. A light source unit that irradiates light onto a surface to be measured at an incident angle of 20 to 30 degrees, and an optical axis of specularly reflected light when the light irradiated from the light source unit is specularly reflected by the surface to be measured. against 2
a first light receiving section that receives reflected light having an optical axis inclined toward the light source section by 0 to 30 degrees;
a second light receiving section that receives reflected light having an optical axis inclined toward the light source section by 5 to 100 degrees, the first light receiving section and the second light receiving section;
a photoelectric conversion section that converts each of the reflected lights received by the light receiving section into an electrical signal;
A color measurement device for metallic coating, comprising a light receiving section and a data processing section that calculates color values corresponding to the reflected light received by the second light receiving section and displays the color values.
JP40108890A 1990-12-10 1990-12-10 Color measuring apparatus for metal-based applied color Pending JPH04213033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40108890A JPH04213033A (en) 1990-12-10 1990-12-10 Color measuring apparatus for metal-based applied color

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40108890A JPH04213033A (en) 1990-12-10 1990-12-10 Color measuring apparatus for metal-based applied color

Publications (1)

Publication Number Publication Date
JPH04213033A true JPH04213033A (en) 1992-08-04

Family

ID=18510946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40108890A Pending JPH04213033A (en) 1990-12-10 1990-12-10 Color measuring apparatus for metal-based applied color

Country Status (1)

Country Link
JP (1) JPH04213033A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10257640A1 (en) * 2002-12-10 2004-07-08 Siemens Ag Device for recording the color impression of a surface
WO2012101922A1 (en) * 2011-01-27 2012-08-02 コニカミノルタセンシング株式会社 Alignment apparatus and reflection characteristic measurement system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10257640A1 (en) * 2002-12-10 2004-07-08 Siemens Ag Device for recording the color impression of a surface
WO2012101922A1 (en) * 2011-01-27 2012-08-02 コニカミノルタセンシング株式会社 Alignment apparatus and reflection characteristic measurement system
JP5534044B2 (en) * 2011-01-27 2014-06-25 コニカミノルタ株式会社 Alignment apparatus and reflection characteristic measurement system

Similar Documents

Publication Publication Date Title
US5432609A (en) Two-dimensional colorimeter
US5272518A (en) Colorimeter and calibration system
US10514335B2 (en) Systems and methods for optical spectrometer calibration
US8144322B2 (en) Spectral characteristic measuring apparatus, method for calibrating spectral characteristic measuring apparatus, and spectral characteristic measuring system
US7916301B2 (en) Filter design for colorimetric measurement
JP2006189445A (en) Color measurement of ambient light
JP2000505887A (en) Portable color measuring device
US7116417B2 (en) Spectrometer and method for correcting wavelength displacement of spectrometer
WO1998028919A1 (en) Color characteristic measuring apparatus and method, and storage medium of image pickup data
JP2010117343A (en) Optical characteristic measurement device and optical characteristic measurement method
US20120250022A1 (en) Hand-Held Color Measurement Device
WO2006055682A2 (en) Tristimulus colorimeter having integral dye filters
US20010024274A1 (en) Method and apparatus for measuring spectral irradiance distribution
JP2015178995A (en) Tone calibration device, imaging device and tone inspection device
US6597457B1 (en) Calibration of solar reflectance panel
US20110098957A1 (en) Measurement apparatus and method for rapid verification of critical optical parameters of a viewing display device screen and viewing environment
US4948256A (en) Optical fiber type colorimeter
JPH04213033A (en) Color measuring apparatus for metal-based applied color
JP2003114107A (en) Film thickness measuring device
JPS62185128A (en) Light and color measuring apparatus
JP2010203825A (en) Method for measuring spectral distribution of monitor
US10337921B2 (en) Direct-stimulus-valve-reading-type colorimetric photometer
JP2002206967A (en) Photometer and colorimeter
JPH0626930A (en) Spectrophotometer
JP6565174B2 (en) Stimulus value direct-reading colorimeter