JPS61145826A - Vapor phase epitaxial growth apparatus - Google Patents

Vapor phase epitaxial growth apparatus

Info

Publication number
JPS61145826A
JPS61145826A JP26981184A JP26981184A JPS61145826A JP S61145826 A JPS61145826 A JP S61145826A JP 26981184 A JP26981184 A JP 26981184A JP 26981184 A JP26981184 A JP 26981184A JP S61145826 A JPS61145826 A JP S61145826A
Authority
JP
Japan
Prior art keywords
gas
hole
growth
epitaxial growth
inflow hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26981184A
Other languages
Japanese (ja)
Other versions
JPH081894B2 (en
Inventor
Shotaro Umebachi
梅鉢 昭太郎
Takeshi Umegaki
梅垣 武士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP59269811A priority Critical patent/JPH081894B2/en
Publication of JPS61145826A publication Critical patent/JPS61145826A/en
Publication of JPH081894B2 publication Critical patent/JPH081894B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To minimize non-controlable epitaxial growth within a time difference between stop of inflow of growth gas when the epitaxial growth terminates and perfect exhaustion of residual gas by providing at least on a gas inflow hole for purging and exhaustion hole at the area between epitaxial growth gas inflow hole and epitaxial growth region. CONSTITUTION:At lease one gas inflow hole 17 for purging, in addition to a gas inflow hole 11 and at least one second exhaustion hole 18, in addition to a first exhaustion hole 15, are respectively provided between the reaction and growth zones having an inflow hole 11 and susceptor 13. At the specified epitaxial growth end point, a gas for purging is supplied from the inflow hole 17 together with the inflow hole 11, and the growth gas remaining in the reaction tube 12 is exhausted at a time from the second exhaustion hole 18 in addition to the first exhaustion hole 15. Namely, the gas for purging supplied from the inflow hole 17 works as a gas curtain which dividingly exhausts the gas for residual growth in the vicinity of susceptor 13, minimizing epitaxial growth on a substrate 16.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、薄いエピタキシャル層を成長するシリコン気
相エピタキシャル成長装置に係る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a silicon vapor phase epitaxial growth apparatus for growing thin epitaxial layers.

従来の技術 シリコン(Si )エピタキシャル成長は、周知のよう
に、シラン(SiH4)、ジクロルシラン(810g2
H2)、トリクロルシラン(stag3H)などの成長
用気体の分解でもって生じたStをSl単結晶基板上に
育成して行なう。その際に使用される従来のエピタキシ
ャル成長装置の概略を第2図の模式図によって示す。こ
の図に示すように、従来の気相成長装置では反応管22
0両端部に夫々気体流入孔21と排気孔26を設けてい
た。ところで、エピタキシャル成長終了時には、成長用
気体(例えば3 iHa )を流入停止させると同時に
、しめる。従って、エピタキシャル育成の完了は前述の
成長用気体流入停止時ではなく、反応管22内の残留成
長用気体の完全排出時となる。
Conventional technology Silicon (Si) epitaxial growth is performed using silane (SiH4), dichlorosilane (810 g2
St produced by the decomposition of a growth gas such as H2) or trichlorosilane (stag3H) is grown on an Sl single crystal substrate. An outline of a conventional epitaxial growth apparatus used in this case is shown in the schematic diagram of FIG. As shown in this figure, in the conventional vapor phase growth apparatus, the reaction tube 22
A gas inlet hole 21 and an exhaust hole 26 were provided at both ends. By the way, at the end of epitaxial growth, the growth gas (for example, 3 iHa) is stopped flowing and at the same time is turned off. Therefore, epitaxial growth is completed not when the above-mentioned growth gas inflow is stopped, but when the remaining growth gas in the reaction tube 22 is completely discharged.

発明が解決しようとする問題点 エピタキシャル成長終了時のS I H4等の成長用気
体の流入停止と、SiH4等の残溜気体の完全排出との
時間差内にも、基板上にはエピタキシャル成長を行ない
続ける。
Problems to be Solved by the Invention Epitaxial growth continues on the substrate even within the time difference between the stoppage of the inflow of the growth gas such as S I H 4 at the end of epitaxial growth and the complete discharge of the residual gas such as SiH 4 .

この時間差内にある成長用気体、ならびにドープする不
純動物気体などの気体組成比が、パージ用気体の時間と
共に減少することでもって、基板上に育成するエピタキ
シャル層の不純物濃度が徐々に変化するのはいうまでも
ないが、時間差内に成長する膜厚もまた、パージ用気体
の混合速度、あるいは排出の不均一さによって、誤差を
生じ、最終成長厚さも変動しやすいという問題を生じた
As the gas composition ratio of the growth gas and the impurity animal gas to be doped within this time lag decreases with the time of the purge gas, the impurity concentration of the epitaxial layer grown on the substrate gradually changes. Needless to say, the thickness of the film grown within the time difference also causes errors due to the mixing speed of the purge gas or the non-uniformity of the discharge, resulting in the problem that the final grown thickness is also likely to fluctuate.

本発明は、このような成長用気体停止後に成長する不均
一な濃度分布で、かつ、成長膜厚も不均一な気相エピタ
キシャル成長の問題点を解決するもので、前述の時間差
内の非制御性のエピタキシャル成長を極力小さくするこ
とを目的とするものである。
The present invention solves the problems of vapor phase epitaxial growth, which has a non-uniform concentration distribution and a non-uniform growth film thickness after the growth gas is stopped. The purpose of this is to minimize the epitaxial growth of .

問題点を解決するための手段 この問題点を解決するために、本発明は、第1図に示す
ように、従来の気体流入孔11にっけ加えて、新たにパ
ージ用気体流入孔17を、また、従来の第1排気孔16
につけ加えて、新たに第2排気孔18を、流入孔11と
サセプター13のある反応、成長ゾーンとの間に少なく
ともひとつづつ設ける。
Means for Solving the Problem In order to solve this problem, the present invention provides a new purge gas inflow hole 17 in addition to the conventional gas inflow hole 11, as shown in FIG. , and the conventional first exhaust hole 16
In addition, at least one second exhaust hole 18 is newly provided between the inlet hole 11 and the reaction and growth zone where the susceptor 13 is located.

作  用 本発明の第1図に示す装置では、所定のエピタキシャル
成長終了時点でもって、従来の流入孔11と共に折流入
孔17よりパージ用気体を導入し、かつ、第1排気孔1
6に加えて、第2排気孔18より一斉に反応管12に残
留する成長用気体を排出する。即ち、折流入孔17より
導入したノ;−ジ用気体はサセプター13近くの残溜成
長用気体を図では、上と下に、第2.第1排気孔側に分
割排出せしめるガスカーテンの役割を演じて、基板16
上へのエピタキシャル成長を極めて少すくする作用を持
っている。
Operation In the apparatus shown in FIG. 1 of the present invention, at the end of a predetermined epitaxial growth, purge gas is introduced through the folded inflow hole 17 together with the conventional inflow hole 11, and the first exhaust hole 1
6, the growth gas remaining in the reaction tube 12 is exhausted all at once from the second exhaust hole 18. That is, the gas for growth introduced through the folding inflow hole 17 flows into the residual growth gas near the susceptor 13 in the upper and lower portions in the figure. The substrate 16 plays the role of a gas curtain to be separately discharged to the first exhaust hole side.
It has the effect of minimizing upward epitaxial growth.

実施例 本発明による、Si気相エピタキシャル成長を第1図の
模式図を用いて、詳細に述べる。
EXAMPLE The vapor phase epitaxial growth of Si according to the present invention will be described in detail with reference to the schematic diagram of FIG.

先ず成長装置の概略は、60crIl径の石英製反応管
12.3インチ径のSi基板3枚を取付けうる炭素製サ
セプター13、反応管内部の圧力調成をしうる排気孔1
5 、18、またサセプタ一温度を1050℃にしうる
ヒーター14からなっている。
First, the outline of the growth apparatus is as follows: A quartz reaction tube with a diameter of 60 crIl, a carbon susceptor 13 to which three Si substrates with a diameter of 12.3 inches can be attached, and an exhaust hole 1 that can adjust the pressure inside the reaction tube.
5, 18, and a heater 14 capable of raising the temperature of the susceptor to 1050°C.

成長用気体には、シラン(5tH4)、ドーピング気体
にはフォスフイン(PH3)、もしくはジボラン(B2
H6)、これら気体の稀釈に水素(H2)、パージ用気
体にアルゴン(Ar )を用い、成長時の給気体流入量
10Q/lI+、反応管内圧力を0.1ないし0.13
 a+m/d(とじ、かつ、成長終了後の管17より流
入せしめるパージ用Arを60シ分、管18よりの流出
量を約30Q/分とした。
Silane (5tH4) is used as the growth gas, and phosphine (PH3) or diborane (B2) is used as the doping gas.
H6), hydrogen (H2) is used to dilute these gases, argon (Ar) is used as a purge gas, the supply gas inflow rate during growth is 10Q/lI+, and the pressure inside the reaction tube is 0.1 to 0.13.
a+m/d (and after the completion of the growth, the purge Ar flowed in through the tube 17 was 60 minutes, and the flow rate from the tube 18 was about 30Q/minute.

基板16にひ素(As)  ドープの0.01033イ
ンチ径(111)Si  を用いて、成長時度0.2ミ
クロン/分で、不純物濃度1016cm−3のエピタキ
シャル層を1ミクロン成長した。
Using 0.01033 inch diameter (111) Si doped with arsenic (As) as the substrate 16, an epitaxial layer of 1 micron with an impurity concentration of 1016 cm-3 was grown at a growth rate of 0.2 micron/min.

とのN/N+型エピタキシャル・ウェハを用いて金属障
壁径20ミクロンのチタン(Ti )ショットキバリア
型ダイオード作製したところ、UHF帯テレビ用ミキサ
ダイオードとして、極めて有益な半導体装置を作りえた
When we fabricated a titanium (Ti) Schottky barrier diode with a metal barrier diameter of 20 microns using an N/N+ type epitaxial wafer, we were able to fabricate an extremely useful semiconductor device as a mixer diode for UHF band televisions.

発明の効果 前述の本発明装置の実施例で得たエピタキシャル層では
、基板からの、いわゆるバックディフェージョンによる
不純物分布のテールが0.1ミクロン以下で基板とエピ
タキシャル層間の不純物分布状態が極めて急俊であり、
しかも、バッチ内のエピタキシャル膜厚の分布も1ミク
ロン厚さにおいて±3チと小さく、薄いエピタキシャル
成長が制御性よく成長でき、工業的に有益であった。
Effects of the Invention In the epitaxial layer obtained in the above embodiment of the apparatus of the present invention, the tail of the impurity distribution due to so-called back diffusion from the substrate is 0.1 micrometer or less, and the impurity distribution state between the substrate and the epitaxial layer is extremely steep. Shun,
Moreover, the distribution of epitaxial film thickness within the batch was as small as ±3 inches for a thickness of 1 micron, and thin epitaxial growth could be achieved with good control, which was industrially useful.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例により気相エピタキシャル成
長装置を示す模式図、第2図は従来の気相エピタキシャ
ル成長装置の代表例のひとつを示す模式図である。 11・・・・・・成長用気体流入孔、12・・・・・・
反応管、13・・・・・・サセプター、14・・・・・
・ヒーター、16・・・・・・第1排気孔、16・・・
・・・基板、17・・・・・・パージ用気体流入孔、1
8・・・・・・第2排気孔、21・・・・・・成長用気
体流入孔、22・・・・・・反応管、23・・・・・・
サセプター、24・・・・・・ヒーター、25・・・・
・・排気孔、26・・・・・・基板。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名If
−−−スジN陶参使λ孔 f2−紙暑 tS−rfRF気孔 1G−J、ス イ7−−−ハー9用フ(がトb瓦入11f8−  ヤ2
荷艮孔 21−一式9CM気外5えλ礼 24−−− c−グー ts−sP>L
FIG. 1 is a schematic diagram showing a vapor phase epitaxial growth apparatus according to an embodiment of the present invention, and FIG. 2 is a schematic diagram showing one representative example of a conventional vapor phase epitaxial growth apparatus. 11...Growth gas inflow hole, 12...
Reaction tube, 13... Susceptor, 14...
・Heater, 16...First exhaust hole, 16...
... Substrate, 17 ... Purge gas inflow hole, 1
8...Second exhaust hole, 21...Growth gas inflow hole, 22...Reaction tube, 23...
Susceptor, 24... Heater, 25...
...Exhaust hole, 26... Board. Name of agent: Patent attorney Toshio Nakao and one other person If
--- Stripe N Ceramics λ hole f2 - paper heat tS - rfRF hole 1G-J, Sui 7 --- F for Ha9 (gato b tile 11f8- Ya2
Loading hole 21-complete set 9CM outside 5e λ 24--- c-goo ts-sP>L

Claims (1)

【特許請求の範囲】[Claims] エピタキシャル成長用気体流入孔とエピタキシャル成長
領域との中間にパージ用気体流入孔と排気孔を、各々少
なくとも1つ設けたことを特徴とする気相エピタキシャ
ル成長装置。
A vapor phase epitaxial growth apparatus characterized in that at least one purge gas inflow hole and at least one exhaust hole are provided between the epitaxial growth gas inflow hole and the epitaxial growth region.
JP59269811A 1984-12-20 1984-12-20 Vapor phase epitaxial growth method Expired - Lifetime JPH081894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59269811A JPH081894B2 (en) 1984-12-20 1984-12-20 Vapor phase epitaxial growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59269811A JPH081894B2 (en) 1984-12-20 1984-12-20 Vapor phase epitaxial growth method

Publications (2)

Publication Number Publication Date
JPS61145826A true JPS61145826A (en) 1986-07-03
JPH081894B2 JPH081894B2 (en) 1996-01-10

Family

ID=17477497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59269811A Expired - Lifetime JPH081894B2 (en) 1984-12-20 1984-12-20 Vapor phase epitaxial growth method

Country Status (1)

Country Link
JP (1) JPH081894B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5571696A (en) * 1978-11-22 1980-05-29 Mitsubishi Electric Corp Vapor phase epitaxial growing device
JPS58115097A (en) * 1981-12-25 1983-07-08 Toshiba Corp Process for vapor-phase epitaxial crystal growth

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5571696A (en) * 1978-11-22 1980-05-29 Mitsubishi Electric Corp Vapor phase epitaxial growing device
JPS58115097A (en) * 1981-12-25 1983-07-08 Toshiba Corp Process for vapor-phase epitaxial crystal growth

Also Published As

Publication number Publication date
JPH081894B2 (en) 1996-01-10

Similar Documents

Publication Publication Date Title
JPH01162326A (en) Manufacture of beta-silicon carbide layer
JPH07302760A (en) Selective semiconductor region formation
US4137108A (en) Process for producing a semiconductor device by vapor growth of single crystal Al2 O3
JPS61145826A (en) Vapor phase epitaxial growth apparatus
JPH1116903A (en) Forming method of thin oxide film using wet oxidation
JPH01134912A (en) Manufacture of semiconductor thin film
JPS5493357A (en) Growing method of polycrystal silicon
JPS62159421A (en) Manufacture of semiconductor device
JP3112796B2 (en) Chemical vapor deposition method
JPH0793278B2 (en) Diffusion method of phosphorus into polycrystalline silicon film
JPS63127530A (en) Vapor growth of gallium arsenide epitaxial crystal
JPH071753B2 (en) Method for manufacturing semiconductor device
JPS61131434A (en) Manufacture of semiconductor device
JP2000351694A (en) Method of vapor-phase growth of mixed crystal layer and apparatus therefor
JPH03112127A (en) Method of forming silicon carbide
JPS61198628A (en) Selective growth method for tungsten film
JPS60158672A (en) Manufacture of semiconductor device
JPS6347921A (en) Selective vapor-phase growth method of silicon
JPH01226791A (en) Molecular beam growth of silicon
JPH01226149A (en) Vapor growth apparatus
JPH0974055A (en) Composite semiconductor substrate
JPS63129612A (en) Vapor-phase growth process
JPH08115878A (en) Two-step epitaxially growing method
JPS63129611A (en) Vapor-phase growth process
JPS63129614A (en) Vapor-phase growth process