JPH01226149A - Vapor growth apparatus - Google Patents

Vapor growth apparatus

Info

Publication number
JPH01226149A
JPH01226149A JP5288488A JP5288488A JPH01226149A JP H01226149 A JPH01226149 A JP H01226149A JP 5288488 A JP5288488 A JP 5288488A JP 5288488 A JP5288488 A JP 5288488A JP H01226149 A JPH01226149 A JP H01226149A
Authority
JP
Japan
Prior art keywords
gas
reaction tube
reaction
wafer
downstream side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5288488A
Other languages
Japanese (ja)
Other versions
JPH0834185B2 (en
Inventor
Masato Mitani
真人 三谷
Yoshishige Matsushita
圭成 松下
Akira Mitsui
光井 章
Takeshi Mitsushima
光嶋 猛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63052884A priority Critical patent/JPH0834185B2/en
Publication of JPH01226149A publication Critical patent/JPH01226149A/en
Publication of JPH0834185B2 publication Critical patent/JPH0834185B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a vapor growth film with a uniform thickness by a method wherein the spacings of wafer arrangement are tight on the upstream side of a reactive gas flow in a reaction tube and rough on the downstream side of the reactive gas flow. CONSTITUTION:A vapor growth apparatus is composed of a reaction tube 1 which can be depressurized and has the supply inlet of reactive gas at its one end and the exhaust outlet of the gas at its other end, a heating means 2 provided around the reaction tube 1 and a wafer carrying means 7 which contains wafers 8 and is inserted into the reaction tube 1. At that time, the spacings for arranging the wafers 8 in the means 7 are tight on the upstream side of a reactive gas flow in the reaction tube 1 and rough on the downstream side of the reactive gas flow. With this construction, the quantity of the reactive gas is small on the upstream side and large on the downstream side. Even if the reactive gas concentration is lowered on the downstream side by consumption, a vapor growth film with a uniform thickness can be formed while the temperature is maintained uniform.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体!!!遣工程においてウェハ上に薄膜
を成長させる場合等に好適に利用される気相成長装置に
関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention is directed to semiconductors! ! ! The present invention relates to a vapor phase growth apparatus that is suitably used when growing a thin film on a wafer in a deposition process.

従来の技術 半導体製造工程においては、多結晶シリコン膜、シリコ
ン窒化膜、シリコン酸化膜等が導電膜や絶縁膜として重
要な役割を果たしており、これらの薄膜を製造するため
に、横型又は縦型のバッチ式気相成長装置が利用されて
いる。
Conventional technology In semiconductor manufacturing processes, polycrystalline silicon films, silicon nitride films, silicon oxide films, etc. play important roles as conductive films and insulating films. A batch type vapor phase growth apparatus is used.

第5図を参照しながら、従来の気相I&艮装置の一例を
説明すると、11は石英から成る反応管であり、周囲に
抵抗加熱ヒータ等の加熱手段12が配設されている。反
応管11の一端は開口され扉装置13にて密閉可能に構
成されている。また、この一端近例からN、lfス開閉
弁14や反応ガス開閉弁15を介してN2ガスや反応ガ
スを反応管11内に供給するように構成されている。反
応管11の他端には真空遮断弁16が設けられている。
Referring to FIG. 5, an example of a conventional gas phase I& One end of the reaction tube 11 is open and can be sealed with a door device 13. Moreover, from this recent example, the structure is such that N2 gas and reaction gas are supplied into the reaction tube 11 via the N, lf gas on-off valve 14 and the reaction gas on-off valve 15. A vacuum cutoff valve 16 is provided at the other end of the reaction tube 11 .

18は半導体のウェハで、キャリアボート17上に装填
された状態で、前記一端開口から反応管11内に挿入さ
れる。
A semiconductor wafer 18 is loaded on the carrier boat 17 and inserted into the reaction tube 11 from the opening at one end.

次に、以上の結成の気相成長装置の勤乍を説明する。Next, the operation of the vapor phase growth apparatus constructed as above will be explained.

まず、キャリアボート17上にウェハ18を装填し、予
め加熱手段12にて予熱された反応管11内に扉装置1
3を開いて挿入する。このとき、反応管11内はN2ガ
ス開閉弁14を介してN2ガスが供給され、大気圧とな
っている。挿入完了後、N2ガス開閉弁14を閉じ、扉
装置13で反応管11内を密閉した状態で真空遮断弁1
6を開き、図示しない真空源によって反応管11内を減
圧排気する。
First, the wafer 18 is loaded onto the carrier boat 17, and the door device 1 is placed inside the reaction tube 11 which has been preheated by the heating means 12.
Open 3 and insert. At this time, N2 gas is supplied to the inside of the reaction tube 11 via the N2 gas on-off valve 14, and the pressure becomes atmospheric. After the insertion is completed, close the N2 gas on-off valve 14, close the reaction tube 11 with the door device 13, and open the vacuum cutoff valve 1.
6 is opened, and the inside of the reaction tube 11 is evacuated under reduced pressure using a vacuum source (not shown).

+ ノf&、ウェハ18が所定温度に到達するまで待磯
し、その間真空遮断弁16を閉じ、反応管11内のり−
クチェンクを行う。所定温度に到達したことを確認した
後、真空遮断弁16及び反応ガス開閉弁15を開き、反
応ガスを反応管11内に供給し、ウェハ18上に気相成
長を行う。
Wait until the wafer 18 reaches a predetermined temperature, during which time the vacuum shutoff valve 16 is closed, and the reaction tube 11 is closed.
Perform Kuchenk. After confirming that the predetermined temperature has been reached, the vacuum cut-off valve 16 and the reaction gas on-off valve 15 are opened, a reaction gas is supplied into the reaction tube 11, and vapor phase growth is performed on the wafer 18.

気相成長にて所定の厚さの薄膜が形成されると、反応ガ
ス開閉弁15を閉じ、反応管11内を減圧排気する。次
に、真空遮断弁16を閉じ、N2.fス開閉弁14を介
してN2ガスを反応管11内に供給して大気圧とする。
When a thin film of a predetermined thickness is formed by vapor phase growth, the reaction gas on-off valve 15 is closed and the inside of the reaction tube 11 is evacuated under reduced pressure. Next, close the vacuum cut-off valve 16 and use N2. N2 gas is supplied into the reaction tube 11 through the f gas on-off valve 14 to bring it to atmospheric pressure.

その後、N2ガス開閉弁14を閉じ、扉装置13を開い
てキャリアボート17上のウェハ18を反応管11内か
ら取り出して気相成長処理は完了する。
Thereafter, the N2 gas on-off valve 14 is closed, the door device 13 is opened, and the wafer 18 on the carrier boat 17 is taken out from the reaction tube 11, thereby completing the vapor phase growth process.

ところで、気相成長時の生成膜の膜成長速度は、反応ガ
ス濃度と反応温度に大きく影響されることが知られてい
る。
Incidentally, it is known that the growth rate of a film produced during vapor phase growth is greatly influenced by the reaction gas concentration and reaction temperature.

即ち、膜成長速度Wは、次式で与えられる。That is, the film growth rate W is given by the following equation.

W=A exp(E/RT)Xに こで、C:反応ガス濃度、T:反応温度、E:活性化エ
ネルギー、R:ガス定数、A:定数である。
W=A exp(E/RT)X where C: reaction gas concentration, T: reaction temperature, E: activation energy, R: gas constant, A: constant.

しかるに、上記のような構成の気相成長装置においては
、供給された反応ガスは上流側から消費され、下流側に
至るほど反応ガス濃度が低下することになり、ウェハ1
8上に形成されるrJ膜の膜厚が反応管11内の配置位
置によって不均一となる。
However, in the vapor phase growth apparatus configured as described above, the supplied reactive gas is consumed from the upstream side, and the concentration of the reactive gas decreases as it reaches the downstream side.
The thickness of the rJ film formed on the reaction tube 8 becomes non-uniform depending on its position within the reaction tube 11.

そこで、下流側で反応ガス濃度が低下しても、ウェハ1
8上に均一な膜厚の薄膜を形成するためには、加熱手段
12に温度勾配を設けて、反応管11内の温度分布を、
反応管11の一端側、即ち反応ガス流れの上流側を低く
、!端側、即ち下流側を高く設定すれば良く、従来がら
そのような手段が講じられていた。
Therefore, even if the reaction gas concentration decreases downstream, the wafer 1
In order to form a thin film with a uniform thickness on the surface of the reaction tube 11, a temperature gradient is provided in the heating means 12 to control the temperature distribution within the reaction tube 11.
Lower one end of the reaction tube 11, that is, the upstream side of the reaction gas flow! It is sufficient to set the end side, that is, the downstream side, high, and such a measure has been taken in the past.

発明が解決しようとする課題 しかしながら、例えば多結晶シリコン膜においては、生
成される気相成長膜の結晶粒は、反応温度によってその
大きさが異なってしまい、結晶粒の大きさが異なると、
後工程のエツチング工程において、エツチング速度が異
なる。そのため、同一のエツチングを行うためには、エ
ツチングを複数回に分けて、それぞれ最適なエツチング
条件を定めて行う必要があり、着しく能率を低下させる
という問題がある。又、シリコン窒化膜においては、上
流側と下流側の温度差ガストレスの不均一性をもたらし
、この不均一性のため後工程のエツチング工程を複数回
に分けなくてはならないという問題がある。
Problems to be Solved by the Invention However, in the case of polycrystalline silicon films, for example, the size of the crystal grains in the vapor-grown film that is produced varies depending on the reaction temperature, and if the crystal grain sizes differ,
In the subsequent etching process, the etching speed is different. Therefore, in order to perform the same etching, it is necessary to divide the etching into a plurality of times and perform the etching by determining the optimum etching conditions for each time, which leads to a problem that the efficiency is seriously reduced. Further, in the silicon nitride film, there is a problem in that the temperature difference between the upstream side and the downstream side causes non-uniform gas stress, and because of this non-uniformity, the subsequent etching process has to be divided into multiple steps.

また、温度を均一にしなから膜厚を一定にする方法とし
て、反応ガスが消費されてもその濃度に大きな影響が生
じない程度に、反応ガスの供給量を大幅に増加する方法
がある。しかし、大量の反応ガスを未利用のまま廃棄し
なければならず、さらに大量の反応ガスを排気するため
に大型の排気ポンプが必要になるという問題がある。
Further, as a method of keeping the film thickness constant without making the temperature uniform, there is a method of significantly increasing the supply amount of the reactant gas to such an extent that even if the reactant gas is consumed, the concentration thereof is not significantly affected. However, there are problems in that a large amount of reaction gas must be disposed of unused and a large exhaust pump is required to exhaust the large amount of reaction gas.

本発明は上記従来の問題点に鑑み、反応管内の温度を均
一にできて後工程に悪影響を与えないで済み、かつ比較
的少ない反応ガスの供給量でもって均一な膜厚の薄膜を
形成することができる気相成長装置を提供することを目
的とする。
In view of the above-mentioned conventional problems, the present invention makes it possible to make the temperature inside the reaction tube uniform without adversely affecting the subsequent process, and to form a thin film of uniform thickness with a relatively small amount of reactant gas supplied. The purpose of the present invention is to provide a vapor phase growth apparatus that can perform the following steps.

課題を解決するための手段 本発明は上記目的を達成するため、減圧可能でかつ反応
ガスの供給口を一端部に排出口を他端韻に各々形成され
た反応管と、反応管の周囲に配設された加熱手段と、ウ
ェハを装填して反応管内に挿入されるウェハ担持手段と
を備えた気相成長装置において、前記ウェハ担持手段に
おけるウェハの配置ピッチを、反応管内の反応ガスの流
れ方向の上流側を密に、下流側を粗にしている。
Means for Solving the Problems In order to achieve the above object, the present invention provides a reaction tube which can be depressurized and is formed with a reaction gas supply port at one end and a discharge port at the other end, and a reaction tube which is arranged around the reaction tube. In a vapor phase growth apparatus equipped with a heating means provided and a wafer holding means loaded with a wafer and inserted into a reaction tube, the arrangement pitch of the wafers in the wafer holding means is controlled by the flow of reaction gas in the reaction tube. The upstream side of the direction is dense and the downstream side is coarse.

また、前記ウェハ担持手段におけるウェハの姿勢を、反
応管内の反応ガスの流れ方向の上流側では反応ガスの流
れ方向に討して略垂直な姿勢に、下流側では反応ガスの
流れ方向に対して傾斜した姿勢にしてもよい。
Further, the posture of the wafer in the wafer holding means is set to be approximately perpendicular to the flow direction of the reaction gas on the upstream side of the flow direction of the reaction gas in the reaction tube, and to a posture substantially perpendicular to the flow direction of the reaction gas on the downstream side. It may also be placed in a tilted position.

作用 本発明によれば、ウェハの配置ピッチを反応管内の反応
ガスの流れ方向の上流側で密に、下流側で粗にすること
によって、ウェハとフェノ)の間に流入する反応ガス量
が上流側では少な(、下流側では多くなり、上流側で反
応ガス;農度が高く、下流側で低(なっても、均一な膜
厚の気−相成艮膜を形成できる。
According to the present invention, by making the arrangement pitch of the wafers denser on the upstream side and coarser on the downstream side in the flow direction of the reaction gas in the reaction tube, the amount of reaction gas flowing between the wafer and the phenol is reduced upstream. Even if the amount of reaction gas is high on the downstream side and high on the upstream side, and low on the downstream side, a gas-phase formed film with a uniform thickness can be formed.

詳細に説明すると、ガス流れ方向に討して垂直に短いピ
ッチで並べられたウェハとウェハのvJlに挟まれた狭
い空間に流入する反応ガス量Qは、ガス流動が生じず、
分子拡散の形でのみ流入するのて゛、フィックの法則に
より、次式で与えられる。
To explain in detail, the reaction gas amount Q flowing into the narrow space between the wafers arranged vertically at short pitches in the gas flow direction and the vJl of the wafers is such that no gas flow occurs;
Since it flows only in the form of molecular diffusion, it is given by the following equation according to Fick's law.

ここで、C:反応ガス濃度、D:拡散定数、d:ウェハ
直径、11:ウェハピンチ、r:ウェハ半径方向にとっ
た座標系である(第2図参照)。
Here, C: reaction gas concentration, D: diffusion constant, d: wafer diameter, 11: wafer pinch, r: coordinate system taken in the wafer radial direction (see FIG. 2).

従って、反応ガスの流れ方向の上流側でウェハピッチh
を小さくすると、ウェハ間に分子拡散で移動する反応ガ
ス量を抑えることができ、結果として気相成長膜の膜厚
を小さく抑えることができる。逆に、下流側でフェハビ
ッチhを大きくすると、ウェハ間に移動する反応ガス量
を増加させて膜厚を増すことができる。この結果、反応
温度を均一にしたままで、大量の反応ガスを流すことな
く均一な膜厚の気相成長膜を形成することができ、後工
程を簡略化できる。
Therefore, on the upstream side in the flow direction of the reaction gas, the wafer pitch h
By making small, the amount of reactive gas that moves between wafers due to molecular diffusion can be suppressed, and as a result, the thickness of the vapor-phase grown film can be kept small. On the other hand, if the Fehave h is increased on the downstream side, the amount of reactive gas that moves between the wafers can be increased and the film thickness can be increased. As a result, it is possible to form a vapor phase grown film with a uniform thickness without flowing a large amount of reaction gas while keeping the reaction temperature uniform, and post-processes can be simplified.

また、ウェハの姿勢を上流側では反応ガスの流れ方向に
対して略垂直姿勢に、下流側では傾斜姿勢にすると、上
流側ではウェハ間には分子拡散によってのみ反応ガスが
流入するが、下流側ではガス流動によっても流入するの
で、流入ガス量が増加し、その結果上記と同様に反応温
度を均一にしたまま均一な膜厚の気相成長膜を形成でき
る。
Furthermore, if the wafers are placed in an almost perpendicular position to the flow direction of the reaction gas on the upstream side and tilted on the downstream side, the reaction gas will flow between the wafers only by molecular diffusion on the upstream side, but on the downstream side Since the inflow also occurs due to gas flow, the amount of inflowing gas increases, and as a result, a vapor phase growth film with a uniform thickness can be formed while keeping the reaction temperature uniform as described above.

詳細に説明すると、ウェハを傾斜させたときに、ガス主
流部からウェハ間に流れる流速Vのガス流れによって流
入する反応ガス量及び分子拡散で流入する反応ガス量の
総和Qは、近似的に次式で表される。
To explain in detail, when the wafer is tilted, the sum total Q of the amount of reactive gas that flows in due to the gas flow at the flow rate V flowing from the main gas part between the wafers and the amount of reactive gas that flows in due to molecular diffusion is approximately as follows. Expressed by the formula.

十v◆dII11cosθ ここで、V:ウェハ間の流速、θ:ガス流れ方向に垂直
な姿勢に対するウェハの傾斜角であり、その池は上記と
同じである。
10v◆dII11cosθ Here, V: the flow velocity between the wafers, θ: the inclination angle of the wafer with respect to the attitude perpendicular to the gas flow direction, and the pond is the same as above.

なお、傾斜角θが小さいときは流速Vは小さい。Note that when the inclination angle θ is small, the flow velocity V is small.

一方、θガスきくなりすぎると、b cosθ が小さ
くなってウェハピッチが小さくなったのと同じになり芳
しくない。
On the other hand, if the θ gas becomes too strong, b cos θ becomes small, which is the same as reducing the wafer pitch, which is not good.

従って、下流側でウェハを適当に傾斜させることによっ
て、ウェハ間を流れるガスによって運び込まれる反応ガ
ス量を増加させることができ、気相成長膜の膜厚を均一
にすることができる。
Therefore, by appropriately tilting the wafers on the downstream side, the amount of reaction gas carried by the gas flowing between the wafers can be increased, and the thickness of the vapor-phase grown film can be made uniform.

実施例 以下、本発明の実施例を図面を参照しながら説明する。Example Embodiments of the present invention will be described below with reference to the drawings.

tjS1図及び第2図は、本発明の第1実施例を示す、
f:tS1図において、1は石英から成る反応管であり
、周囲に抵抗加熱ヒータ等の加熱手段2が配設されてい
る。反応管1の一端は開口されるとともに扉装置3にて
密閉可能に構成されている。また、この一端近傍からN
:!〃ガス開閉弁や反応ガス開閉弁5を介してN2!f
スや反応ガスを反応管1内に供給するように構成されて
いる。反応管1の他端には真空遮断弁6が設けられてい
る。8は半導体のウェハで、キャリアボート7上に装填
された状態で、前記一端開口から反応管1内に挿入され
る。前記ウェハ8は、反応ガスの流れ方向上流側の領域
Aでは密に、下流側の領域Bでは粗にキャリアボート7
上に装填されている。
tjS1 and FIG. 2 show the first embodiment of the present invention,
f:tS1 In the figure, 1 is a reaction tube made of quartz, around which a heating means 2 such as a resistance heater is arranged. One end of the reaction tube 1 is open and can be sealed with a door device 3. Also, from near this one end, N
:! 〃N2 via the gas on-off valve and reaction gas on-off valve 5! f
It is configured to supply gas and reaction gas into the reaction tube 1. A vacuum cutoff valve 6 is provided at the other end of the reaction tube 1 . A semiconductor wafer 8 is loaded onto the carrier boat 7 and inserted into the reaction tube 1 through the opening at one end. The wafers 8 are arranged densely in the region A on the upstream side in the flow direction of the reaction gas, and loosely in the region B on the downstream side.
loaded on top.

次に、以上の構成の気相成長装置の動作を説明する。Next, the operation of the vapor phase growth apparatus having the above configuration will be explained.

まず、キャリアボート7上にウェハ8を上記の如く装填
し、予め加熱手段2にて約615℃前後に予熱された反
応管1内に扉装置3を開いて挿入する。このとき、反応
管1内はN2ガス開閉弁4を介してN2ffスが供給さ
れ、大気圧となっている。挿入完了後N2ガス開閉弁4
を閉じ、扉装置3で反応管1内を密閉した状態で真空遮
断弁6を開き、図示しない排気ポンプによって反応管1
内を減圧排気する。
First, the wafers 8 are loaded onto the carrier boat 7 as described above, and the door device 3 is opened and inserted into the reaction tube 1 which has been preheated to about 615° C. by the heating means 2. At this time, N2ff gas is supplied to the inside of the reaction tube 1 via the N2 gas on-off valve 4, and the pressure becomes atmospheric. After completion of insertion, N2 gas on/off valve 4
is closed, the vacuum shutoff valve 6 is opened with the inside of the reaction tube 1 sealed by the door device 3, and the reaction tube 1 is closed by an exhaust pump (not shown).
Evacuate the inside.

その後、ウェハ8が所定温度に到達するまで、約10〜
15分待機し、その間真空遮断弁6を閉じ、反応管1内
のり−クチニックを行う。所定温度に到達したことを確
認した後、真空遮断fP6及び反応ガス開閉弁5を開き
、反応ガス(多結晶シリコン膜を形成する場合には、モ
ノシランガス(Sill=))を反応管1内に供給し、
約0.2〜0゜3Torrの圧力でウェハ8上に気相成
長膜を形成する。
Thereafter, until the wafer 8 reaches a predetermined temperature,
Wait for 15 minutes, during which time the vacuum cutoff valve 6 is closed, and the reaction tube 1 is cleaned. After confirming that the predetermined temperature has been reached, the vacuum cutoff fP6 and the reaction gas on-off valve 5 are opened, and the reaction gas (in the case of forming a polycrystalline silicon film, monosilane gas (Sill=)) is supplied into the reaction tube 1. death,
A vapor phase growth film is formed on the wafer 8 at a pressure of about 0.2 to 0.3 Torr.

このとき加熱手段2の設定温度は反応管1の軸心方向に
均一であり、キャリアボート7上のウェハ8はほぼ均一
な温度である。しかし、ウェハ8の配置ピッチを反応ガ
スの流れ方向の上流側で密に、下流側で粗にしているの
で、上記の如く分子拡散によりウェハ8.8間に流入す
る反応ガス量は、上流側では少なく、下流側では多くな
り、したがって反応ガスが上流側で消費されて下流側で
反応ガス濃度が低くなっても、気相成長膜が均一に形成
される。
At this time, the set temperature of the heating means 2 is uniform in the axial direction of the reaction tube 1, and the wafers 8 on the carrier boat 7 are at a substantially uniform temperature. However, since the arrangement pitch of the wafers 8 is dense on the upstream side and coarse on the downstream side in the flow direction of the reaction gas, the amount of reaction gas flowing between the wafers 8 and 8 due to molecular diffusion as described above is smaller on the upstream side. Therefore, even if the reactive gas is consumed on the upstream side and the reactive gas concentration becomes low on the downstream side, a vapor-phase grown film can be uniformly formed.

気相成長を所定時間継続して所定の厚さの薄膜が形成さ
れると、反応ガス開閉弁5を閉じ、反応管1内を減圧排
気する。次に、真′g!遮断弁6を閉じ、N2ガス開閉
弁4を介してN2ガスを反応管1内に供給して大気圧と
する。その後、N2ガス開閉弁4を閉じ、扉装置3を開
いてキャリアボート7上のウェハ8を反応管1内から取
り出すことによってすべての気相成長処理が完了する。
When a thin film of a predetermined thickness is formed by continuing the vapor phase growth for a predetermined time, the reaction gas on-off valve 5 is closed and the inside of the reaction tube 1 is evacuated under reduced pressure. Next, Shin’g! The shutoff valve 6 is closed, and N2 gas is supplied into the reaction tube 1 via the N2 gas on-off valve 4 to bring it to atmospheric pressure. Thereafter, the N2 gas on-off valve 4 is closed, the door device 3 is opened, and the wafers 8 on the carrier boat 7 are taken out from the reaction tube 1, thereby completing all the vapor phase growth processing.

次に、本実施例に基づく実験例を従来例と比較して説明
する。
Next, an experimental example based on this embodiment will be explained in comparison with a conventional example.

まず、反応ガス(He ffスがベースでSiH,を2
0%含む)を毎分500cc供給し、圧力0.37or
r、温度625℃一定の条件で、直径6インチのウェハ
をピッチ4.8■で150枚装填して15分間多結晶シ
リコン膜を気相成長させると、ガス導入側から26枚目
〜125枚目までの100枚について、平均膜厚52o
1、誤差±36%であった。
First, the reaction gas (Heffs is the base and SiH, 2
0%) is supplied at a rate of 500 cc per minute, and the pressure is 0.37 or
r, at a constant temperature of 625℃, when 150 wafers with a diameter of 6 inches are loaded at a pitch of 4.8cm and a polycrystalline silicon film is grown in a vapor phase for 15 minutes, the 26th to 125th wafers from the gas introduction side are loaded. Average film thickness 52o for 100 sheets up to the eyes
1. The error was ±36%.

一方、ガス導入側を600°C1排気側を650℃とし
て略直線的に温度勾配を付け、他の条件は同一で気相成
長させると、平均膜厚1150人、誤差±2%となった
。しかし、この場合結晶粒の大きさが異なり、エツチン
グ速度が異なってしまう。
On the other hand, when the gas inlet side was set at 600° C. and the exhaust side was set at 650° C. to create a substantially linear temperature gradient and vapor phase growth was performed with other conditions being the same, the average film thickness was 1150, with an error of ±2%. However, in this case, the sizes of the crystal grains are different, and the etching speed is different.

そこで、反応ガスを毎分4300ccとして、池の条件
を同一にして気相成長させると、平均I15!厚129
0人、誤差±5%となった。この場合、大量の反応ガス
を必要とする。
Therefore, when vapor phase growth is performed with the reactant gas flowing at 4300 cc/min and the pond conditions being the same, the average I15! Thickness 129
There were 0 people, with an error of ±5%. In this case, a large amount of reaction gas is required.

これに対して、ウェハピッチを1枚目〜90枚目までは
1111鶴、91枚目〜150枚目は7WI11とし、
反応ガスを毎分2700cc供給し、他の条件は同一に
して気相成長させると、平均膜厚1230λ、誤差±5
′!6となった。即ち、温度を均一にしたままで、上記
反応ガス量を単に増加する場合に比して63%のガス量
で同一の膜厚のばらつきに抑えることができた。
On the other hand, the wafer pitch is 1111 cranes for the 1st to 90th wafers, 7WI11 for the 91st to 150th wafers,
When the reaction gas is supplied at 2,700 cc/min and other conditions are kept the same, the average film thickness is 1,230 λ, and the error is ±5.
′! It became 6. That is, the variation in film thickness could be suppressed to the same level with 63% of the amount of gas compared to simply increasing the amount of reaction gas while keeping the temperature uniform.

次に、第3図により本発明の第2実施例について説明す
る。
Next, a second embodiment of the present invention will be described with reference to FIG.

この第2実施例と上記第1実施例と異なる点は、上流側
の領域Cではウェハ8の配置ピッチを相対的に小さくす
るとともにその姿勢を反応ガスの流れ方向に対して略垂
直姿勢にし、下流側の領域りでは配置ピンチを相対的に
大きくするとともに姿勢をθ°傾斜させたことにある。
The difference between this second embodiment and the first embodiment is that in the upstream region C, the arrangement pitch of the wafers 8 is relatively small, and the posture thereof is approximately perpendicular to the flow direction of the reaction gas. In the downstream region, the placement pinch was relatively large and the posture was tilted by θ°.

この場合も、既に詳細に説明した如く、上流側のウェハ
8.8間には分子拡散によらてのみ反応ガスが流入する
が、下流側のウェハ8.8間には、その傾斜のためにガ
ス流動によっても反応ガスが流入するので、流入が入量
が増加し、その結果上記と同様に反応温度を均一にした
ままで均一な膜17の気相成長膜を形成できるのである
In this case as well, as already explained in detail, the reactive gas flows between the wafers 8.8 on the upstream side only by molecular diffusion, but the reaction gas flows between the wafers 8.8 on the downstream side due to the inclination. Since the reaction gas also flows in due to the gas flow, the amount of inflow increases, and as a result, a uniform vapor phase growth film of the film 17 can be formed while keeping the reaction temperature uniform as described above.

発明の効果 本発明の気相成長装置によれば、以上のようにウェハの
配置ピッチを反応管内の反応ガスの流れ方向の上流側で
密に、下流側で岨にしているので、ウェハとウェハの間
に流入する反応ガス量が上流側では少なく、下流側では
多くなり、反応ガスの消費によって反応ガス濃度が下流
側で低くなっても、温度を均一にしたままで均一な膜厚
の気相成長膜を形成でさ、また例えば多結晶シリコン膜
においては結晶粒の大きさが均一となる等、後工程のエ
ツチング工程を簡略化できる。
Effects of the Invention According to the vapor phase growth apparatus of the present invention, as described above, the wafers are arranged densely on the upstream side in the flow direction of the reaction gas in the reaction tube, and narrowly on the downstream side, so that the wafers are Even if the amount of reactant gas flowing in during the process is small on the upstream side and large on the downstream side, and the concentration of the reactant gas becomes low on the downstream side due to consumption of the reactant gas, it is possible to maintain a uniform film thickness while keeping the temperature uniform. By forming a phase-grown film, for example, in the case of a polycrystalline silicon film, the size of the crystal grains becomes uniform, and the subsequent etching process can be simplified.

また、ウェハの姿勢を上流側では反応ガスの流れ方向に
対して略垂直姿勢に、下流側では傾斜姿勢にしても、上
流側ではtエバ間には分子拡散によってのみ反応ガスが
流入し、下流側ではガス流動によっても流入するので、
流入ガス量が増加し、上記と同様の効果が得られる。
Furthermore, even if the wafer is placed in an approximately perpendicular position to the flow direction of the reactant gas on the upstream side and tilted on the downstream side, the reactant gas will flow only by molecular diffusion between the T-evaporators on the upstream side, and the downstream On the side, it also flows in due to gas flow, so
The amount of inflowing gas increases, and the same effect as above can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

tjS1図は本発明の一実施例の、概略構成図、第2図
は同作用説明図、fjS3図は本発明の第2実施例の概
略構成図、第4図は同作用説明図、第5図は従来例の概
略構成図て゛ある。 1・・・・・・・・・反応管 2・・・・・・・・・加熱手段 5・・・・・・・・・反応ガス開閉性 6・・・・・・・・・真空遮断弁 7・・・・・・・・・キャリアボート 8・・・・・・・・・ウェハ。 代理M嶋弁理士 中尾敏男 ほか1名 人 第2図    1 、/ し−一一一一一= 第 31 し===二=≦
tjS1 is a schematic configuration diagram of an embodiment of the present invention, FIG. 2 is an explanatory diagram of the same action, fjS3 is a schematic diagram of the second embodiment of the invention, The figure is a schematic diagram of a conventional example. 1...Reaction tube 2...Heating means 5...Reaction gas opening/closing property 6...Vacuum cutoff Valve 7...Carrier boat 8...Wafer. Acting M Shima Patent Attorney Toshio Nakao and 1 other expert Figure 2 1, / shi-1111= No. 31 shi===2=≦

Claims (2)

【特許請求の範囲】[Claims] (1)減圧可能でかつ反応ガスの供給口を一端部に排出
口を他端部に各々形成された反応管と、反応管の周囲に
配設された加熱手段と、ウェハを装填して反応管内に挿
入されるウェハ担持手段とを備えた気相成長装置におい
て、前記ウェハ担持手段におけるウェハの配置ピッチを
、反応管内の反応ガスの流れ方向の上流側を密に、下流
側を粗にしたことを特徴とする気相成長装置。
(1) A reaction tube that can be depressurized and has a reaction gas supply port at one end and a discharge port at the other end, a heating means arranged around the reaction tube, and a wafer loaded and reacted. In a vapor phase growth apparatus equipped with a wafer holding means inserted into a tube, the arrangement pitch of the wafers in the wafer holding means is set to be dense on the upstream side in the flow direction of the reaction gas in the reaction tube and coarse on the downstream side. A vapor phase growth apparatus characterized by:
(2)減圧可能でかつ反応ガスの供給口を一端部に排出
口を他端部に各々形成された反応管と、反応管の周囲に
配設された加熱手段と、ウェハを装填して反応管内に挿
入されるウェハ担持手段とを備えた気相成長装置におい
て、前記ウェハ担持手段におけるウェハの姿勢を、反応
管内の反応ガスの流れ方向の上流側では反応ガスの流れ
方向に対して略垂直な姿勢に、下流側では反応ガスの流
れ方向に対して傾斜した姿勢にしたことを特徴とする気
相成長装置。
(2) A reaction tube that can be depressurized and has a reaction gas supply port at one end and a discharge port at the other end, a heating means arranged around the reaction tube, and a wafer loaded and reacted. In a vapor phase growth apparatus equipped with a wafer holding means inserted into a tube, the posture of the wafer in the wafer holding means is approximately perpendicular to the flow direction of the reaction gas on the upstream side of the flow direction of the reaction gas in the reaction tube. A vapor phase growth apparatus characterized in that the downstream side is tilted with respect to the flow direction of the reactant gas.
JP63052884A 1988-03-07 1988-03-07 Vapor phase growth equipment Expired - Lifetime JPH0834185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63052884A JPH0834185B2 (en) 1988-03-07 1988-03-07 Vapor phase growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63052884A JPH0834185B2 (en) 1988-03-07 1988-03-07 Vapor phase growth equipment

Publications (2)

Publication Number Publication Date
JPH01226149A true JPH01226149A (en) 1989-09-08
JPH0834185B2 JPH0834185B2 (en) 1996-03-29

Family

ID=12927304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63052884A Expired - Lifetime JPH0834185B2 (en) 1988-03-07 1988-03-07 Vapor phase growth equipment

Country Status (1)

Country Link
JP (1) JPH0834185B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01246836A (en) * 1988-03-29 1989-10-02 Tokyo Electron Ltd Heat treatment
JP2015145317A (en) * 2014-01-31 2015-08-13 ヤマハ株式会社 Device for producing carbon nanotube

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55165626A (en) * 1979-06-08 1980-12-24 Sumitomo Electric Ind Ltd Method for arranging substrate in chemical evaporating apparatus
JPS56155529A (en) * 1980-05-02 1981-12-01 Toshiba Corp Forming method of film for semiconductor wafer
JPS57149726A (en) * 1981-03-11 1982-09-16 Toshiba Corp Manufacture of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55165626A (en) * 1979-06-08 1980-12-24 Sumitomo Electric Ind Ltd Method for arranging substrate in chemical evaporating apparatus
JPS56155529A (en) * 1980-05-02 1981-12-01 Toshiba Corp Forming method of film for semiconductor wafer
JPS57149726A (en) * 1981-03-11 1982-09-16 Toshiba Corp Manufacture of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01246836A (en) * 1988-03-29 1989-10-02 Tokyo Electron Ltd Heat treatment
JP2015145317A (en) * 2014-01-31 2015-08-13 ヤマハ株式会社 Device for producing carbon nanotube

Also Published As

Publication number Publication date
JPH0834185B2 (en) 1996-03-29

Similar Documents

Publication Publication Date Title
JP3265042B2 (en) Film formation method
Murota et al. Low‐temperature silicon selective deposition and epitaxy on silicon using the thermal decomposition of silane under ultraclean environment
JP3845563B2 (en) Silicon carbide film CVD method, CVD apparatus, and susceptor for CVD apparatus
US20060121211A1 (en) Chemical vapor deposition apparatus and chemical vapor deposition method using the same
EP1386981B1 (en) A thin film-forming apparatus
KR102453245B1 (en) Substrate processing apparatus, method of manufacturing semiconductor device, computer program and process vessel
TWI741445B (en) Substrate processing device, semiconductor device manufacturing method and recording medium
US11664217B2 (en) Method of manufacturing semiconductor device, substrate processing method, substrate processing apparatus, and recording medium
JP2000150513A (en) Deposition of silicon nitride thin film
JPH08124859A (en) Vapor growth method and device
JPH01226149A (en) Vapor growth apparatus
WO2001061736A1 (en) Method of processing wafer
JP2004529497A (en) Heating system and method for heating a deposition or oxidation reactor
US6448180B2 (en) Deposition of in-situ doped semiconductor film and undoped semiconductor film in the same reaction chamber
JPS6228569B2 (en)
JPH1050615A (en) Single wafer processing gas-phase growth device
JP7376693B2 (en) Processing system and method of supplying reactant gases
JP2002289615A (en) Method and apparatus for forming thin film
JPH07193009A (en) Vapor growth device and vapor growth method using vapor growth device
JP3252644B2 (en) Vapor phase growth method and apparatus
JP2004095940A (en) Method of manufacturing semiconductor device
JPS62208637A (en) Vapor growth
JPH03195016A (en) Thermal cleaning method of si substrate; epitaxial growth and heat treatment apparatus
KR20070097943A (en) Equipment for chemical vapor deposition
JPH10156172A (en) Washing method for treating device