JPS6228569B2 - - Google Patents

Info

Publication number
JPS6228569B2
JPS6228569B2 JP1498277A JP1498277A JPS6228569B2 JP S6228569 B2 JPS6228569 B2 JP S6228569B2 JP 1498277 A JP1498277 A JP 1498277A JP 1498277 A JP1498277 A JP 1498277A JP S6228569 B2 JPS6228569 B2 JP S6228569B2
Authority
JP
Japan
Prior art keywords
reaction
cvd
reduced pressure
reaction tube
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1498277A
Other languages
Japanese (ja)
Other versions
JPS53101276A (en
Inventor
Katsuo Sugawara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1498277A priority Critical patent/JPS53101276A/en
Publication of JPS53101276A publication Critical patent/JPS53101276A/en
Publication of JPS6228569B2 publication Critical patent/JPS6228569B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/507Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using external electrodes, e.g. in tunnel type reactors

Description

【発明の詳細な説明】 本発明は、減圧気相反応装置に関する。[Detailed description of the invention] The present invention relates to a reduced pressure gas phase reactor.

従来のCVDプロセスは、常圧で反応生成がな
されているCVD装置が使用されているが、最
近、装置の構造が簡単であり、膜の均一性がよ
く、ウエーハ処理量の増大が図られ、また使用ガ
スの消費量が少ない減圧CVD装置が特に大直径
ウエーハの大量処理可能な製造装置として実用化
されている。
Conventional CVD processes use CVD equipment that generates reaction products at normal pressure, but recently, equipment has become simpler in structure, has better film uniformity, and can increase wafer throughput. In addition, low-pressure CVD equipment that consumes less gas has been put into practical use, especially as a manufacturing equipment that can process large-diameter wafers in large quantities.

しかしながら、従来の減圧CVD装置は、縦形
と横形とにかかわらず、減圧下のCVD膜生成で
の生成速度が小さい欠点がある。そのため、反応
ガスの高濃度のものを使用したり、ホツトウオー
ル(Hot―Wall)になつている石英反応管内の温
度を高めることが行なわれている。しかしなが
ら、たとえば多結晶シリコン膜のCVDプロセス
においては、減圧下という低真空状態に反応管内
を維持できるように反応ガスを注入するため生成
速度が生成時圧力で一義的に決められ、生成速度
の速い膜生成が望めず、また反応管がホツトウオ
ールになつているため600℃以上では石英反応管
に多結晶シリコンが付着し始め、生成温度が高く
なるにしたがいウエーハに寄与するシリコン分子
の量が減少して生成速度を必要以上に大きくする
ことができない。
However, conventional reduced pressure CVD apparatuses, regardless of whether they are vertical or horizontal, have a drawback in that the production rate of CVD films under reduced pressure is slow. For this reason, methods are being used such as using a highly concentrated reaction gas or increasing the temperature inside the quartz reaction tube, which is a hot wall. However, in the CVD process of polycrystalline silicon films, for example, the reaction gas is injected to maintain the inside of the reaction tube in a low vacuum state under reduced pressure, so the production rate is primarily determined by the pressure at the time of production, and the production rate is fast. Film formation cannot be expected, and since the reaction tube is a hot wall, polycrystalline silicon begins to adhere to the quartz reaction tube at temperatures above 600℃, and as the formation temperature increases, the amount of silicon molecules contributing to the wafer decreases. Therefore, the generation rate cannot be increased more than necessary.

そのため、生成膜厚の大なるものが必要とされ
るデバイスや高速度成長を要求されるSOSエピタ
キシヤル成長等には適用できず、減圧式のメリツ
トが十分発揮できず、デバイスとして高集積度
化、信頼性、歩留まりの向上が達成できない欠点
がある。
Therefore, it cannot be applied to devices that require a large film thickness or SOS epitaxial growth that requires high-speed growth, and the advantages of the reduced pressure method cannot be fully demonstrated, making it difficult to achieve high integration as a device. However, there is a drawback that improvements in reliability and yield cannot be achieved.

それゆえ、本発明の目的は、常圧CVDに匹敵
するような高い生成速度を得ることができる新規
な減圧CVD装置を提供することにある。
Therefore, an object of the present invention is to provide a novel reduced pressure CVD apparatus that can obtain a high production rate comparable to atmospheric CVD.

このような目的を達成するための本発明の要旨
は、反応管内に反応ガスを導入し減圧下でCAD
膜の形成を行う減圧CVD装置であつて、上記反
応管内の一部に存在し上記反応ガスの流れる方向
に沿つて複数の被処理体を載置する被処理体載置
領域と、上記反応管内の他部に上記被処理体載置
領域と分離して存在するプラズマ発生領域と、上
記反応管外に存在し上記被処理体を加熱する加熱
部とを有し、上記プラズマ発生領域で活用化され
た反応ガスの反応により上記被処理体上にCVD
膜を形成することを特徴とする減圧CVD装置に
ある。
The gist of the present invention to achieve such objects is to introduce a reaction gas into a reaction tube and perform CAD under reduced pressure.
A low-pressure CVD apparatus for forming a film, which includes a processing object mounting area that is present in a part of the reaction tube and in which a plurality of processing objects are placed along the flow direction of the reaction gas, and The other part includes a plasma generation area that is separate from the object to be processed area and a heating part that is located outside the reaction tube and heats the object to be processed, and is utilized in the plasma generation area. CVD is performed on the object to be processed by the reaction of the reactant gas.
A reduced pressure CVD device characterized by forming a film.

このような本発明は、反応ガスをあらかじめプ
ラズマ励起して活性化し、低圧反応で問題となる
生成速度減少を解決し、常圧CVD装置に匹敵す
る生成速度を得るものである。
According to the present invention, the reaction gas is activated by plasma excitation in advance to solve the problem of reduction in the production rate which is a problem in low pressure reactions, and to obtain a production rate comparable to that of an atmospheric pressure CVD apparatus.

以下、本発明にかかる減圧CVD装置を図面を
参照しながら具体的に詳述する。
Hereinafter, the reduced pressure CVD apparatus according to the present invention will be specifically described in detail with reference to the drawings.

第1図は、本発明の一実施例である横形減圧
CVD装置である。同図において、1は減圧CVD
炉における石英反応管、2はプラズマ励起による
化学反応促進作用装置3におけるRFコイルであ
る。4は減圧CVD炉における加熱部、5は真空
ポンプ、6は圧力計、7は反応ガスの導入口、8
はキヤリアガスの導入口、9〜10は流量計、1
1〜12はバルブである。また、13は被処理体
であるシリコンウエーハ、14はウエーハ13を
チヤージしている石英ボードである。
FIG. 1 shows a horizontal depressurization system which is an embodiment of the present invention.
It is a CVD device. In the same figure, 1 is reduced pressure CVD
A quartz reaction tube 2 in the furnace is an RF coil in a device 3 for promoting chemical reaction by plasma excitation. 4 is a heating part in the reduced pressure CVD furnace, 5 is a vacuum pump, 6 is a pressure gauge, 7 is a reaction gas inlet, 8
is the carrier gas inlet, 9 to 10 are the flow meters, 1
1 to 12 are valves. Further, 13 is a silicon wafer which is an object to be processed, and 14 is a quartz board on which the wafer 13 is charged.

同図に示すように、本発明にかかる減圧CVD
装置は、減圧CVD炉部、反応ガスシステム、真
空ポンプを伴つた排気部とプラズマ励起による化
学反応促進作用装置の4主要部分で構成されてい
る。反応管1は、均熱長1500〜2000mm、RFコイ
ル部500mm程度のものを使用しており、シラン等
の反応ガス7と窒素やアルゴン等の不活性キヤリ
アガス8がRFコイルによつてプラズマ化され、
そのプラズマ化されたアクテイブな反応ガス7に
よりウエーハ13表面に多結晶シリコン等の減圧
CVD膜が形成されるようになつている。
As shown in the figure, reduced pressure CVD according to the present invention
The equipment consists of four main parts: a low-pressure CVD furnace section, a reaction gas system, an exhaust section with a vacuum pump, and a chemical reaction promotion device using plasma excitation. The reaction tube 1 has a soaking length of 1500 to 2000 mm and an RF coil portion of about 500 mm, in which a reactant gas 7 such as silane and an inert carrier gas 8 such as nitrogen or argon are turned into plasma by the RF coil. ,
The plasma active reaction gas 7 reduces the pressure of polycrystalline silicon etc. on the surface of the wafer 13.
CVD films are beginning to form.

したがつて、本発明にかかる減圧CVD装置
は、反応ガスがあらかじめ活性化され、その活性
化された反応ガスにより低圧反応をもつてCVD
膜を形成できるため、希釈な反応ガスでかつまた
低温状態のホツトウオールの反応管1内において
生成速度が常圧CVD装置に匹敵するものが得る
ことができる。たとえば、シランを反応ガスと
し、窒素をキヤリアガスとした多結晶シリコン膜
の生産速度は、生成温度600℃、生成圧力0.7トル
に対して、250〜600Å/分という高いものを得る
ことができる。この値は、従来の減圧CVD装置
における生成速度40〜100Å/分に比して極めて
大きく、減圧CVD装置における生成速度500Å/
分に匹敵するものである。それゆえ、本発明にか
かる減圧CVD装置は、減圧下という低真空状態
に反応管内を維持するに十分な低濃度の反応ガス
を使用し、反応管にCVD生成物が付着しないよ
うな低温の生成温度をもつてしても、常圧CVD
装置における生成速度に匹敵する大きな生成速度
をもつて行なうことができる。
Therefore, in the reduced pressure CVD apparatus according to the present invention, the reaction gas is activated in advance, and the activated reaction gas performs CVD with a low pressure reaction.
Since a film can be formed, it is possible to obtain a reaction gas that is dilute and has a production rate comparable to that of an atmospheric pressure CVD apparatus in the hot wall reaction tube 1 at a low temperature. For example, the production rate of a polycrystalline silicon film using silane as a reaction gas and nitrogen as a carrier gas can be as high as 250 to 600 Å/min at a production temperature of 600° C. and a production pressure of 0.7 Torr. This value is extremely large compared to the production rate of 40 to 100 Å/min in conventional low-pressure CVD equipment, and the production rate of 500 Å/min in low-pressure CVD equipment.
It is equivalent to a minute. Therefore, the reduced-pressure CVD apparatus according to the present invention uses a reaction gas at a low concentration sufficient to maintain the inside of the reaction tube in a low vacuum state under reduced pressure, and generates gas at a low temperature that prevents CVD products from adhering to the reaction tube. Normal pressure CVD even at high temperatures
It can be carried out with high production rates comparable to those in the apparatus.

第2図は、本発明の他の実施例である縦形の減
圧CVD装置を示す図である。同図に示すもの
は、ウエーハ13を放射状に配列するウエーハ支
持治具14′を使用し、縦形の反応管1′を使用し
ているものであり、プラズマ励起された反応ガス
を有効に利用し、大量処理可能としたものに特長
がある。
FIG. 2 is a diagram showing a vertical reduced pressure CVD apparatus which is another embodiment of the present invention. The one shown in the figure uses a wafer support jig 14' for radially arranging wafers 13 and a vertical reaction tube 1', which makes effective use of plasma-excited reaction gas. The feature is that it can be processed in large quantities.

また、プラズマ発生領域をウエーハ載置領域と
異なる領域に設けることにより、プラズマ励起の
されかたに依存する処理の不均一を除去すること
ができる。
Further, by providing the plasma generation region in a region different from the wafer mounting region, it is possible to eliminate non-uniformity in processing depending on the method of plasma excitation.

また、同様の構成とすることにより、励起部分
とウエーハ載置領域が同じ場合におこるウエーハ
の受けるダメージをも低減することができる。
Further, by adopting a similar configuration, it is possible to reduce damage to the wafer that occurs when the excitation portion and the wafer mounting area are the same.

なお、本発明は、減圧CVD生成膜である酸化
シリコン(SiO2)膜、ナイトライド(Si3N4)膜、
リンシリケートガラス(PSG)膜、ボロシリケー
トガラス膜等の種々の減圧CVDプロセスに適用
できる。また、減圧CVD炉部とプラズマ励起に
よる化学反応促進作用装置におけるRFコイル部
とを同一の反応管に具設したものでも分けて設け
たものでも本発明の目的は達成できる。
Note that the present invention uses low-pressure CVD produced films such as silicon oxide (SiO 2 ) film, nitride (Si 3 N 4 ) film,
It can be applied to various low pressure CVD processes such as phosphosilicate glass (PSG) films and borosilicate glass films. Further, the object of the present invention can be achieved even if the reduced pressure CVD furnace section and the RF coil section of the chemical reaction promotion device using plasma excitation are provided in the same reaction tube or separately.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第2図は、本発明の実施例である減圧
CVD装置を示す図で、第1図は横形のもの、第
2図は縦形のものを図示している。 1…反応管、2…RFコイル、3…プラズマ励
起による化学反応促進作用装置、4…加熱部、5
…真空ポンプ、7…反応ガス、8…キヤリヤガ
ス、13…シリコンウエーハ。
Figures 1 and 2 show reduced pressure, which is an embodiment of the present invention.
FIG. 1 shows a horizontal type CVD device, and FIG. 2 shows a vertical type CVD device. DESCRIPTION OF SYMBOLS 1... Reaction tube, 2... RF coil, 3... Chemical reaction promotion device by plasma excitation, 4... Heating section, 5
...Vacuum pump, 7.Reaction gas, 8.Carrier gas, 13.Silicon wafer.

Claims (1)

【特許請求の範囲】[Claims] 1 反応管内に反応ガスを導入し減圧下でCVD
膜の形成を行う減圧CVD装置であつて、上記反
応管内の一部に存在し上記反応ガスの流れる方向
に沿つて複数の被処理体を載置する被処理体載置
領域と、上記反応管内の他部に上記被処理体載置
領域と分離して存在するプラズマ発生領域と、上
記反応管外に存在し上記被処理体を加熱する加熱
部とを有し、上記プラズマ発生領域で活性化され
た反応ガスの反応により上記被処理体上にCVD
膜を形成することを特徴とする減圧CVD装置。
1 Introduce reaction gas into the reaction tube and perform CVD under reduced pressure
A low-pressure CVD apparatus for forming a film, which includes a processing object mounting area that is present in a part of the reaction tube and in which a plurality of processing objects are placed along the flow direction of the reaction gas, and A plasma generation region that exists in another part and is separate from the processing object placement region, and a heating section that exists outside the reaction tube and heats the processing object, and is activated in the plasma generation region. CVD is performed on the object to be processed by the reaction of the reactant gas.
A reduced pressure CVD device characterized by forming a film.
JP1498277A 1977-02-16 1977-02-16 Decompression cvd device Granted JPS53101276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1498277A JPS53101276A (en) 1977-02-16 1977-02-16 Decompression cvd device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1498277A JPS53101276A (en) 1977-02-16 1977-02-16 Decompression cvd device

Publications (2)

Publication Number Publication Date
JPS53101276A JPS53101276A (en) 1978-09-04
JPS6228569B2 true JPS6228569B2 (en) 1987-06-22

Family

ID=11876161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1498277A Granted JPS53101276A (en) 1977-02-16 1977-02-16 Decompression cvd device

Country Status (1)

Country Link
JP (1) JPS53101276A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5714287U (en) * 1980-06-24 1982-01-25
JPS5948535B2 (en) * 1980-11-18 1984-11-27 富士通株式会社 Plasma CVD equipment
JPS58101421A (en) * 1981-12-11 1983-06-16 Canon Inc Manufacturing device of deposited film
JPS6115976A (en) * 1984-07-03 1986-01-24 Matsushita Electric Ind Co Ltd Plasma reaction device and method for use thereof
JPS61283114A (en) * 1985-06-10 1986-12-13 Toshiba Mach Co Ltd Plasma cvd equipment
JPS62260065A (en) * 1986-04-04 1987-11-12 Canon Inc Formation of thin tin oxide film

Also Published As

Publication number Publication date
JPS53101276A (en) 1978-09-04

Similar Documents

Publication Publication Date Title
US5932286A (en) Deposition of silicon nitride thin films
JP3265042B2 (en) Film formation method
JP2839720B2 (en) Heat treatment equipment
US7922813B2 (en) Epitaxially coated silicon wafer and method for producing epitaxially coated silicon wafers
JPH0897159A (en) Method and system for epitaxial growth
JPH06293595A (en) Deposited polysilicon film improved in evenness and device therefor
JP2000150399A (en) Method and device for cvd reaction for manufacturing epitaxial-grown semiconductor wafer
CN112201568A (en) Method and equipment for epitaxial growth of silicon wafer
JPS6054919B2 (en) low pressure reactor
JPS6228569B2 (en)
JPS621565B2 (en)
JP3057744B2 (en) Low pressure CVD equipment
JP2550024B2 (en) Low pressure CVD equipment
JP3076268B2 (en) Low pressure vapor phase growth equipment
JPH11260734A (en) Manufacture of semiconductor device
JP2003183837A (en) Semiconductor device manufacturing process and substrate treating device
JPH01183113A (en) Vapor growth apparatus
JPH10270364A (en) Formation of semiconductor film
JPH01298724A (en) Semiconductor substrate supporting boat
JP3124302B2 (en) Film formation method
JPH05211123A (en) Growth method of silicon epitaxial film
JPH0834185B2 (en) Vapor phase growth equipment
JPH08274031A (en) Method and apparatus for manufacturing semiconductor device
JP2002289615A (en) Method and apparatus for forming thin film
JP2004095940A (en) Method of manufacturing semiconductor device