JPH08115878A - Two-step epitaxially growing method - Google Patents
Two-step epitaxially growing methodInfo
- Publication number
- JPH08115878A JPH08115878A JP27843294A JP27843294A JPH08115878A JP H08115878 A JPH08115878 A JP H08115878A JP 27843294 A JP27843294 A JP 27843294A JP 27843294 A JP27843294 A JP 27843294A JP H08115878 A JPH08115878 A JP H08115878A
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- epitaxial growth
- layer
- wafer
- crystal layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、高濃度の不純物を含有
する基体上に単結晶層を2段階に分けてエピタキシャル
成長させる方法に関し、更に詳細には単結晶層に対する
基体からの不純物の拡散を抑制した2段階エピタキシャ
ル成長方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for epitaxially growing a single crystal layer on a substrate containing a high concentration of impurities in two steps. More specifically, the diffusion of impurities from the substrate to the single crystal layer is performed. The present invention relates to a suppressed two-step epitaxial growth method.
【0002】[0002]
【従来の技術】不純物、例えばAs を高濃度でドーピン
グしたSi ウェハ上に単結晶層をエピタキシャル成長さ
せる場合には、As が単結晶層にオートドーピングする
のを抑制することが一つの課題である。オートドーピン
グとは、基板に含まれている不純物が、基板の加熱によ
り蒸発して、成長中のエピタキシャル層内に取り込まれ
る現象である。オートドーピングを抑制するための手段
の一つとして、2段階エピタキシャル成長方法が実施さ
れている。2段階エピタキシャル成長方法とは、不純物
を高濃度で含む基板上に単結晶層をエピタキシャル成長
させるに当たり、エピタキシャル成長反応の初期段階で
基板表面をエピタキシャル単結晶層で薄く覆った後、一
旦単結晶のエピタキシャル成長反応を中断して、適当な
置換ガスでプロセスチャンバ内の不純物を含むガスを置
換、排出し、気相中の不純物濃度が十分に低くなった時
に再び単結晶のエピタキシャル成長を行う方法である。2. Description of the Related Art When epitaxially growing a single crystal layer on a Si wafer which is heavily doped with impurities such as As, one problem is to suppress the automatic doping of As into the single crystal layer. Autodoping is a phenomenon in which impurities contained in a substrate are evaporated by heating the substrate and taken into the growing epitaxial layer. A two-step epitaxial growth method has been implemented as one of means for suppressing autodoping. The two-step epitaxial growth method is a method of epitaxially growing a single crystal layer on a substrate containing a high concentration of impurities. After the substrate surface is thinly covered with the epitaxial single crystal layer at the initial stage of the epitaxial growth reaction, the single crystal epitaxial growth reaction is performed once. This is a method in which the gas containing impurities in the process chamber is replaced with an appropriate replacement gas and discharged, and the single crystal is epitaxially grown again when the impurity concentration in the gas phase becomes sufficiently low.
【0003】例えば、As を高濃度で添加したSi ウェ
ハ上にPドープトSi 単結晶をエピタキシャル成長させ
る場合、従来の2段階エピタキシャル成長方法は、図4
に示すような経過時間に対する温度プロファイルに基づ
いて実施されている。尚、縦軸の反応温度は正確にはS
i ウェハを載置するサセプタの温度であるが、近似的に
Si ウェハの温度と見なせる。図4中、、及びは
それぞれ以下に説明する第1層のSi 単結晶の成膜工程
の期間、第2層のPドープトSi 単結晶の成膜工程の期
間及びエピタキシャル成長中断工程の期間を示す。For example, when a P-doped Si single crystal is epitaxially grown on a Si wafer to which As is added at a high concentration, the conventional two-step epitaxial growth method is shown in FIG.
It is implemented based on the temperature profile with respect to the elapsed time as shown in. The reaction temperature on the vertical axis is exactly S
The temperature of the susceptor on which the i wafer is placed can be approximately regarded as the temperature of the Si wafer. In FIG. 4, and, respectively, the period of the film forming process of the first layer Si single crystal, the period of the film forming process of the second layer P-doped Si single crystal, and the period of the epitaxial growth interruption process, which will be described below, are shown.
【0004】従来の2段階エピタキシャル成長方法で
は、常圧CVD装置を使用して、先ず、水素ガス
(H2 )をプロセスチャンバに導入して、ウェハを11
00°C 位に加熱してウェハに前処理を施す。次いで、
1065°C 位に降温し、水素ガスにシランガス(Si
H4)を混合した反応ガスをプロセスチャンバに導入し
て、30秒程度の短い反応時間で膜厚0.1μm の第1
層のSi 単結晶をSi ウェハ上に形成する。次に、第1
層のSi 単結晶層のエピタキシャル成長時とほぼ同じ温
度にウェハを維持しつつエピタキシャル反応を中断して
水素ガスのみを導入し、約10分〜20分プロセスチャ
ンバ内を置換、排気し、ウェハから拡散した不純物を排
出する。続いて、所定膜厚の第2層のPドープトSi 単
結晶層を第1層のSi 単結晶層上に形成する。In the conventional two-step epitaxial growth method, a hydrogen gas (H 2 ) is first introduced into a process chamber by using an atmospheric pressure CVD apparatus, and a wafer 11
The wafer is pretreated by heating it to about 00 ° C. Then
The temperature was lowered to about 1065 ° C, and silane gas (Si
The reaction gas mixed with H 4 ) was introduced into the process chamber, and the reaction time of about 30 seconds was short, and the first film with a film thickness of 0.1 μm
A layer of Si single crystal is formed on a Si wafer. Then the first
The Si reaction is interrupted while the wafer is maintained at about the same temperature as during the epitaxial growth of the Si single crystal layer, and only hydrogen gas is introduced, and the process chamber is purged and evacuated, and then diffused from the wafer. The impurities that have been removed are discharged. Subsequently, a second P-doped Si single crystal layer having a predetermined thickness is formed on the first Si single crystal layer.
【0005】[0005]
【発明が解決しようとする課題】しかし、従来の2段階
エピタキシャル成長方法では、オートドーピングを満足
できる程度に抑制することが難しく、そのため、半導体
装置の耐圧が低下し、半導体装置の特性が不良となっ
て、製品歩留りの低下を招いていた。However, in the conventional two-step epitaxial growth method, it is difficult to suppress the autodoping to a satisfactory degree, and therefore the breakdown voltage of the semiconductor device is lowered and the characteristics of the semiconductor device are deteriorated. Therefore, the product yield is lowered.
【0006】よって、本発明の目的は、従来の方法を改
良してオートドーピングを更に抑制できるようにした2
段階エピタキシャル成長方法を提供することである。Therefore, an object of the present invention is to improve the conventional method so that autodoping can be further suppressed.
A stepwise epitaxial growth method is provided.
【0007】[0007]
【課題を解決するための手段及び作用】本発明者は、従
来の2段階エピタキシャル成長方法におけるオートドー
ピング機構を研究した結果、エピタキシャル反応の中断
期間において基板の温度が第1層の単結晶層のエピタキ
シャル成長時の温度と同じ温度に維持されているため
に、オートドーピングが進行することを見い出した。即
ち、第1には、この期間中においても基板温度が高いた
め、基板の裏面、側面等から基板中の不純物が蒸発して
プロセスチャンバ内に熱拡散する。そのため、エピタキ
シャル成長装置のプロセスチャンバからの不純物の排出
が不完全となり、第2層の単結晶層のエピタキシャル成
長時に不純物が第2層の単結晶層に侵入することによ
り、オートドーピングが進行する。また、第2には、中
断期間中、基板温度が高いため、基板と第1層の単結晶
層との界面付近で、不純物が基板から第1層の単結晶層
に熱拡散する。その結果、単結晶層に基板の不純物が存
在することになる。As a result of researching the autodoping mechanism in the conventional two-step epitaxial growth method, the present inventor has found that the temperature of the substrate during the interruption of the epitaxial reaction is the epitaxial growth of the single crystal layer of the first layer. It was found that autodoping proceeded because it was maintained at the same temperature as the time. That is, first, since the substrate temperature is high even during this period, the impurities in the substrate are evaporated from the back surface, the side surface, etc. of the substrate and thermally diffused into the process chamber. Therefore, the impurities are not completely discharged from the process chamber of the epitaxial growth apparatus, and the impurities enter the second single crystal layer during the epitaxial growth of the second single crystal layer, whereby the autodoping proceeds. Second, since the substrate temperature is high during the interruption period, impurities are thermally diffused from the substrate to the first single crystal layer near the interface between the substrate and the first single crystal layer. As a result, impurities of the substrate are present in the single crystal layer.
【0008】以上の知見に基づき、上記目的を達成する
ために、本発明に係る2段階エピタキシャル成長方法
は、エピタキシャル成長装置のプロセスチャンバに反応
ガスを導入して、高濃度の不純物を含有する基体上に第
1層の単結晶層をエピタキシャル成長させる工程と、第
1層の単結晶層を形成した後、エピタキシャル成長を中
断してプロセスチャンバに置換ガスを流すエピタキシャ
ル成長中断工程と、次いで、第2層の単結晶層をエピタ
キシャル成長させる工程とを備えた2段階エピタキシャ
ル成長方法において、エピタキシャル成長中断工程中、
第1層の単結晶層のエピタキシャル反応温度より50°
C から100°C 低い温度に基体の温度を維持すること
を特徴としている。Based on the above findings, in order to achieve the above object, the two-step epitaxial growth method according to the present invention introduces a reaction gas into the process chamber of an epitaxial growth apparatus and deposits it on a substrate containing a high concentration of impurities. A step of epitaxially growing the first-layer single crystal layer, a step of forming the first-layer single crystal layer, and then interrupting the epitaxial growth and flowing a replacement gas into the process chamber, and then a second-layer single crystal layer. A two-stage epitaxial growth method comprising the step of epitaxially growing a layer,
50 ° from the epitaxial reaction temperature of the single crystal layer of the first layer
It is characterized by maintaining the temperature of the substrate at a temperature lower than C by 100 ° C.
【0009】本発明では、単結晶層をエピタキシャル成
長させるときに、反応ガスに不純物ガスを混合すること
により、単結晶層に不純物をドーピングさせることもで
きる。In the present invention, when the single crystal layer is epitaxially grown, it is possible to dope the single crystal layer with impurities by mixing the reaction gas with the impurity gas.
【0010】本発明で使用する置換ガスは、基体及び第
1層の単結晶層の特性に影響を与えないガスであれば特
に制約はなく、例えば不活性ガス、水素ガス等を使用で
きる。本発明では、エピタキシャル成長中断工程中の基
体温度を第1層の単結晶層のエピタキシャル反応温度よ
り低下させることにより、基体中の不純物がプロセスチ
ャンバに拡散する速度及び第1層の単結晶層に拡散する
速度を大幅に低減することができる。これにより、従来
の2段階エピタキシャル成長方法に比べてオートドーピ
ングを著しく抑制することができる。本発明において、
エピタキシャル成長中断工程中の温度を第1層の単結晶
層のエピタキシャル反応温度より50°C から100°
C 低い温度に規定したのは、50°C より小さい温度差
であれば、本発明の効果が小さく、また逆に100°C
より大きい温度差であれば、基体又は単結晶層に歪み等
の変形が生じるおそれがあるからである。The substitution gas used in the present invention is not particularly limited as long as it does not affect the characteristics of the substrate and the single crystal layer of the first layer. For example, an inert gas, hydrogen gas or the like can be used. In the present invention, by lowering the substrate temperature during the epitaxial growth interruption step below the epitaxial reaction temperature of the first-layer single crystal layer, the diffusion rate of impurities in the substrate into the process chamber and the diffusion into the first-layer single crystal layer. The operating speed can be significantly reduced. Thereby, autodoping can be significantly suppressed as compared with the conventional two-step epitaxial growth method. In the present invention,
The temperature during the step of interrupting the epitaxial growth is 50 ° C to 100 ° C from the epitaxial reaction temperature of the single crystal layer of the first layer.
C lower temperature means that the effect of the present invention is small if the temperature difference is less than 50 ° C, and conversely 100 ° C.
This is because a larger temperature difference may cause deformation such as strain in the substrate or the single crystal layer.
【0011】[0011]
【実施例】以下、添付図面を参照し、実施例に基づいて
本発明をより詳細に説明する。図1は本発明に係る2段
階エピタキシャル成長方法を実施するエピタキシャル成
長装置(以下、簡単に装置と略称する)10の構成を示
す概略図である。装置10は、基本的には図1に示すよ
うに、ベルジャ12で囲われたチャンバ14と、チャン
バ14の中央にほぼ直立するガスノズル16と、上面に
ウェハWを載せてガスノズル16を中心に回転するサセ
プタ18と、高周波コイル20とから構成されている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in more detail with reference to the accompanying drawings. FIG. 1 is a schematic diagram showing the structure of an epitaxial growth apparatus (hereinafter simply referred to as an apparatus) 10 for carrying out a two-step epitaxial growth method according to the present invention. As shown in FIG. 1, the apparatus 10 basically has a chamber 14 surrounded by a bell jar 12, a gas nozzle 16 which stands substantially upright in the center of the chamber 14, a wafer W placed on the upper surface thereof, and rotates around the gas nozzle 16. It includes a susceptor 18 and a high frequency coil 20.
【0012】ガスノズル16は、エピタキシャル成長さ
せる単結晶層の組成に応じて、窒素ガス、水素ガス、シ
リコンソースガス及び不純物ガスをチャンバ14に供給
する。チャンバ14は、排気孔22より外部のガス吸引
装置(図示せず)により吸引されて所定の圧力に維持さ
れている。高周波コイル20は、高周波誘導加熱方式に
よりサセプタ18を介してウェハWを加熱する。加熱条
件は、高周波発振機に予め入力されたプログラム上で高
周波出力を設定することにより定められる。高周波出力
の設定は、1回の作業(1バッチ)毎に少なくとも3段
階の設定ができる。例えば、最初の第1段目の出力設定
ではウェハを予熱するような条件を設定し、第2段目の
出力設定では第1層及び第2層の単結晶層のエピタキシ
ャル成長の反応温度になるような条件を設定し、第3段
目の出力設定ではエピタキシャル成長中断工程の温度に
なるような条件を設定する。The gas nozzle 16 supplies nitrogen gas, hydrogen gas, silicon source gas and impurity gas to the chamber 14 according to the composition of the single crystal layer to be epitaxially grown. The chamber 14 is suctioned by an external gas suction device (not shown) through the exhaust hole 22 and maintained at a predetermined pressure. The high frequency coil 20 heats the wafer W via the susceptor 18 by a high frequency induction heating method. The heating condition is determined by setting the high frequency output on a program previously input to the high frequency oscillator. The high frequency output can be set in at least three stages for each work (one batch). For example, in the first output setting of the first stage, conditions for preheating the wafer are set, and in the second output setting, the reaction temperature for epitaxial growth of the first and second single-crystal layers is set. Conditions are set, and in the output setting of the third stage, conditions are set such that the temperature of the epitaxial growth interruption process is reached.
【0013】実施例 上述の装置10を使用して、本発明に係る2段階エピタ
キシャル成長方法を実施した。図2(a)及び(b)は
それぞれ本エピタキシャル成長方法の工程毎のウェハの
断面図である。先ず、高濃度でAs が添加されているウ
ェハ30を装置10のサセプタ18上に載置し、外部の
吸引装置を起動してチャンバ14をH2 ガスで置換した
後、高周波コイル20によりウェハ30を約1100°
C に昇温して、ウェハ30に前処理に施した。前処理と
は、例えば表面の自然酸化膜を除去することである。次
いで、ウェハ30の温度を約1065°C に降温すると
共にH2 ガス、SiH4ガス、PH3 の混合ガスをチャンバ1
4に導入して約0.1μm の膜厚の第1層のSi 単結晶
32をウェハ30上に成膜した(図2(a)参照)。こ
の所要時間は約30秒であった。次に、混合ガスの導入
を中止して、ほぼ同じ流量のH2 ガスのみをチャンバ1
4の導入すると共にウェハ30の温度を約995°C に
降温し、その条件で約20分放置した。続いて、ウェハ
30の温度を約1065°C に昇温すると共にH2 ガ
ス、SiH4ガス、PH3 の混合ガスをチャンバ14に導入し
て所定膜厚の第2層のPドープトSi 単結晶34を第1
層のSi 単結晶32上に成膜した。 Example A two-step epitaxial growth method according to the present invention was carried out using the apparatus 10 described above. 2A and 2B are cross-sectional views of the wafer for each step of the present epitaxial growth method. First, a wafer 30 having a high concentration of As added thereto is placed on the susceptor 18 of the apparatus 10, an external suction device is activated to replace the chamber 14 with H 2 gas, and then the wafer 30 is moved by the high frequency coil 20. About 1100 °
The temperature was raised to C and the wafer 30 was subjected to pretreatment. The pretreatment is, for example, removing the natural oxide film on the surface. Next, the temperature of the wafer 30 is lowered to about 1065 ° C., and a mixed gas of H 2 gas, SiH 4 gas and PH 3 is added to the chamber 1.
Then, the first single-layer Si single crystal 32 having a film thickness of about 0.1 μm was formed on the wafer 30 (see FIG. 2A). This required time was about 30 seconds. Next, the introduction of the mixed gas is stopped, and only the H 2 gas having the same flow rate is supplied to the chamber 1.
4 was introduced, the temperature of the wafer 30 was lowered to about 995 ° C., and the wafer 30 was allowed to stand for about 20 minutes under these conditions. Then, the temperature of the wafer 30 is raised to about 1065 ° C. and a mixed gas of H 2 gas, SiH 4 gas and PH 3 is introduced into the chamber 14 to introduce a P-doped Si single crystal of a second layer having a predetermined film thickness. 34 first
A layer was deposited on the Si single crystal 32.
【0014】この実施例の経過時間に対する温度プロフ
ァイルは、図3に示すような曲線である。図3中、、
及びはそれぞれ第1層のSi 単結晶32の成膜工程
の期間、第2層のPドープトSi 単結晶34の成膜工程
の期間及びエピタキシャル成長中断工程の期間を示す。
尚、縦軸の反応温度は正確にはSi ウェハを載置するサ
セプタの温度であるが、近似的にSi ウェハの温度と見
なせる。本実施例でエピタキシャル成長したPドープト
Si 単結晶34は、As のオートドーピングが抑制さ
れ、Pが所定の濃度でドーピングされたSi 単結晶を得
ることができた。The temperature profile with respect to the elapsed time in this embodiment is a curve as shown in FIG. In Figure 3,
Further, and indicate the period of the film forming process of the first layer Si single crystal 32, the period of the film forming process of the second layer P-doped Si single crystal 34, and the period of the epitaxial growth interruption process, respectively.
The reaction temperature on the vertical axis is, to be exact, the temperature of the susceptor on which the Si wafer is placed, but can be approximately regarded as the temperature of the Si wafer. In the P-doped Si single crystal 34 epitaxially grown in this example, the As auto-doping was suppressed, and an Si single crystal in which P was doped at a predetermined concentration could be obtained.
【0015】[0015]
【発明の効果】本発明によれば、2段階エピタキシャル
成長方法において、エピタキシャル成長中断工程中、第
1層の単結晶層のエピタキシャル反応温度より50°C
から100°C 低い温度に基体の温度を維持することに
より、基体中の不純物がプロセスチャンバに拡散する速
度及び第1層の単結晶層に拡散する速度を大幅に低減す
ることができる。よって、本発明方法は、従来の2段階
エピタキシャル成長方法に比べてオートドーピングを著
しく抑制することができる。本発明方法を適用すれば、
エピタキシャル成長により所定の単結晶層を形成するこ
とができるので、耐圧が高くなり、その結果、半導体装
置の特性及び製品歩留りが向上する。According to the present invention, in the two-step epitaxial growth method, during the step of interrupting the epitaxial growth, the epitaxial reaction temperature of the single crystal layer of the first layer is 50 ° C. higher than the epitaxial reaction temperature.
By maintaining the temperature of the substrate at a temperature lower by 1 to 100 ° C., the rate of diffusion of impurities in the substrate into the process chamber and the rate of diffusion into the first single crystal layer can be significantly reduced. Therefore, the method of the present invention can significantly suppress autodoping as compared with the conventional two-step epitaxial growth method. By applying the method of the present invention,
Since a predetermined single crystal layer can be formed by epitaxial growth, the breakdown voltage becomes high, and as a result, the characteristics of the semiconductor device and the product yield are improved.
【図1】本発明に係る2段階エピタキシャル成長方法を
実施するエピタキシャル成長装置の構成を示す概略図で
ある。FIG. 1 is a schematic diagram showing the configuration of an epitaxial growth apparatus for carrying out a two-step epitaxial growth method according to the present invention.
【図2】図2(a)及び(b)はそれぞれ本エピタキシ
ャル成長方法の工程毎のウェハの断面図である。2A and 2B are cross-sectional views of a wafer for each step of the present epitaxial growth method.
【図3】本発明方法に係る実施例での経過時間に対する
温度プロファイルである。FIG. 3 is a temperature profile with respect to elapsed time in an example according to the method of the present invention.
【図4】従来の2段階エピタキシャル成長方法における
経過時間に対する温度プロファイルである。FIG. 4 is a temperature profile with respect to elapsed time in a conventional two-step epitaxial growth method.
10 本発明方法を実施するエピタキシャル成長装置 12 ベルジャ 14 チャンバ 16 ガスノズル 18 サセプタ 20 高周波コイル 22 排気孔 30 ウェハ 32 第1層のSi 単結晶 34 第2層のPドープトSi 単結晶 10 Epitaxial growth apparatus for carrying out the method of the present invention 12 Bell jar 14 Chamber 16 Gas nozzle 18 Susceptor 20 High frequency coil 22 Exhaust hole 30 Wafer 32 First layer Si single crystal 34 Second layer P-doped Si single crystal
Claims (2)
ンバに反応ガスを導入して、高濃度の不純物を含有する
基体上に第1層の単結晶層をエピタキシャル成長させる
工程と、第1層の単結晶層を形成した後、エピタキシャ
ル成長を中断してプロセスチャンバに置換ガスを流すエ
ピタキシャル成長中断工程と、次いで、第2層の単結晶
層をエピタキシャル成長させる工程とを備えた2段階エ
ピタキシャル成長方法において、 エピタキシャル成長中断工程中、第1層の単結晶層のエ
ピタキシャル反応温度より50°C から100°C 低い
温度に基体の温度を維持することを特徴とするエピタキ
シャル成長方法。1. A step of introducing a reaction gas into a process chamber of an epitaxial growth apparatus to epitaxially grow a single crystal layer of a first layer on a substrate containing a high concentration of impurities, and forming a single crystal layer of the first layer. Then, in the two-step epitaxial growth method including the epitaxial growth interrupting step of interrupting the epitaxial growth and flowing a replacement gas into the process chamber, and the step of epitaxially growing the second single-crystal layer. An epitaxial growth method, characterized in that the temperature of the substrate is maintained at a temperature 50 ° C. to 100 ° C. lower than the epitaxial reaction temperature of the single crystal layer of the layer.
法において、反応ガスに不純物ガスを混合して、第2層
の単結晶を不純物によりドーピングするようにしたこと
を特徴とする2段階エピタキシャル成長方法。2. The epitaxial growth method according to claim 1, wherein the reaction gas is mixed with an impurity gas so that the single crystal of the second layer is doped with the impurity.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27843294A JP3277726B2 (en) | 1994-10-18 | 1994-10-18 | Two-step epitaxial growth method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27843294A JP3277726B2 (en) | 1994-10-18 | 1994-10-18 | Two-step epitaxial growth method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08115878A true JPH08115878A (en) | 1996-05-07 |
JP3277726B2 JP3277726B2 (en) | 2002-04-22 |
Family
ID=17597270
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27843294A Expired - Fee Related JP3277726B2 (en) | 1994-10-18 | 1994-10-18 | Two-step epitaxial growth method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3277726B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011126145A1 (en) | 2010-04-07 | 2011-10-13 | 新日本製鐵株式会社 | Process for producing epitaxial single-crystal silicon carbide substrate and epitaxial single-crystal silicon carbide substrate obtained by the process |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014125840A1 (en) * | 2013-02-18 | 2014-08-21 | Jfeスチール株式会社 | Nitriding method for oriented electromagnetic steel plates and nitriding device |
-
1994
- 1994-10-18 JP JP27843294A patent/JP3277726B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011126145A1 (en) | 2010-04-07 | 2011-10-13 | 新日本製鐵株式会社 | Process for producing epitaxial single-crystal silicon carbide substrate and epitaxial single-crystal silicon carbide substrate obtained by the process |
Also Published As
Publication number | Publication date |
---|---|
JP3277726B2 (en) | 2002-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6900115B2 (en) | Deposition over mixed substrates | |
KR920003291B1 (en) | Manufacturing method of semiconductor device | |
JP3312553B2 (en) | Method for producing silicon single crystal and silicon single crystal thin film | |
US5221412A (en) | Vapor-phase epitaxial growth process by a hydrogen pretreatment step followed by decomposition of disilane to form monocrystalline Si film | |
JP3277726B2 (en) | Two-step epitaxial growth method | |
JP3344205B2 (en) | Method for manufacturing silicon wafer and silicon wafer | |
JPH06151864A (en) | Semiconductor substrate and manufacture thereof | |
US8216921B2 (en) | Method for production of silicon wafer for epitaxial substrate and method for production of epitaxial substrate | |
JP2000315656A (en) | Manufacture of epitaxial silicon substrate | |
JP2004363510A (en) | Manufacturing method of semiconductor substrate | |
JP2004186376A (en) | Apparatus and method for manufacturing silicon wafer | |
JPH02102520A (en) | Vapor epitaxial deposition | |
JP2002075891A (en) | Manufacturing method of semiconducor device, substrate treatment method, and semiconducor device manufacturing apparatus | |
JPS6223451B2 (en) | ||
JPH09266175A (en) | Semiconductor wafer manufacturing method and semiconductor wafer | |
JPH01295412A (en) | Plasma vapor growth apparatus | |
JP2000351694A (en) | Method of vapor-phase growth of mixed crystal layer and apparatus therefor | |
JPS63222096A (en) | Production of single crystal thin film | |
JPS62202894A (en) | Vapor growth method for iii-v compound semiconductor | |
EP1887617A2 (en) | Deposition method over mixed substrates using trisilane | |
JPH08274031A (en) | Method and apparatus for manufacturing semiconductor device | |
JPS62159421A (en) | Manufacture of semiconductor device | |
JPS61189633A (en) | Vapor growth method | |
JPH03150294A (en) | Vapor phase growing of compound semiconductor | |
JPH04291918A (en) | Growing method for compound semiconductor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |