JP2000315656A - Manufacture of epitaxial silicon substrate - Google Patents

Manufacture of epitaxial silicon substrate

Info

Publication number
JP2000315656A
JP2000315656A JP11122891A JP12289199A JP2000315656A JP 2000315656 A JP2000315656 A JP 2000315656A JP 11122891 A JP11122891 A JP 11122891A JP 12289199 A JP12289199 A JP 12289199A JP 2000315656 A JP2000315656 A JP 2000315656A
Authority
JP
Japan
Prior art keywords
susceptor
silicon
silicon substrate
curvature
epitaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11122891A
Other languages
Japanese (ja)
Other versions
JP3424069B2 (en
Inventor
Chikara Toshima
主税 戸島
Katsuyuki Takamura
勝之 高村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP12289199A priority Critical patent/JP3424069B2/en
Publication of JP2000315656A publication Critical patent/JP2000315656A/en
Application granted granted Critical
Publication of JP3424069B2 publication Critical patent/JP3424069B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing an epitaxial silicon substrate, where stable epilayer electrical resistivity distribution is obtained in an epilayer surface, at low cost. SOLUTION: In this method for manufacturing a substrate, polycrystalline silicon Ps is volatilized to form a silicon film on a rear surface 1r of a heavy- dopant silicon substrate 1. The substrate 1 and a susceptor 4, which have the relation where a curvature radius r of the substrate 1 is always larger than a curvature radius R of a spot facing 5 of the susceptor 4, at formation of the silicon film, are used. The curvature radius of curvature of the spot facing of the susceptor is 15-25 m.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はエピタキシャルシリ
コン基板の製造方法に係わり、特に安価でエピタキシャ
ル層面内に安定したエピタキシャル層電気抵抗率分布が
得られるエピタキシャルシリコン基板の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an epitaxial silicon substrate, and more particularly to a method for manufacturing an epitaxial silicon substrate which is inexpensive and can provide a stable epitaxial layer electrical resistivity distribution in the plane of the epitaxial layer.

【0002】[0002]

【従来の技術】半導体製造技術において、個別回路素
子、集積回路素子等の各種の回路素子を形成する場合、
高濃度のドーピングがなされたP型またはN型ヘビード
ープウェーハ(電気抵抗率ρ≦0.02Ωcm)上にP
またはNのエピタキシャル(以下エピという。)層
を形成し、このエピ層に各種の回路素子を形成する。こ
のエピ層を形成する際、主としてウェーハの裏面から、
また一部周縁部から不純物(ドーパント)がエピ層表面
に拡散し、ρepi(エピ層電気抵抗率)分布にバラツ
キが生じ、所望の不純物濃度のエピ層が得られなくなる
いわゆるオートドープ現象が問題になる。
2. Description of the Related Art In semiconductor manufacturing technology, when various circuit elements such as individual circuit elements and integrated circuit elements are formed,
P-type or N-type heavily doped wafers (electrical resistivity ρ ≦ 0.02Ωcm)
A- or N + epitaxial (hereinafter referred to as "epi") layer is formed, and various circuit elements are formed on the epi layer. When forming this epi layer, mainly from the back side of the wafer,
In addition, the impurity (dopant) diffuses from a part of the periphery to the surface of the epi-layer, and the distribution of ρ epi (epi-layer electrical resistivity) varies, so that the so-called auto-doping phenomenon in which an epi-layer having a desired impurity concentration cannot be obtained is problematic. become.

【0003】この問題を回避するため、エピ層を形成す
る前にウェーハの裏面、周縁部にSiOの保護膜を常
圧化学気相成長により形成するSiO膜シール方式
と、エピ熱処理中にSiでシール処理を行うSiシール
方式とがある。
In order to avoid this problem, an SiO 2 film sealing method in which a protective film of SiO 2 is formed on the back surface and peripheral portion of the wafer by atmospheric pressure chemical vapor deposition before forming an epi layer, There is a Si sealing method in which a sealing process is performed with Si.

【0004】SiO膜シール方式は基板の状態でウェ
ーハの裏面にシール処理を行うため、エピ時のρepi
制御が容易に行えて優れているが、膜付工程を別個に必
要とするため、製造コストが上昇する。
[0004] SiO 2 film sealing method for performing sealing treatment to the back surface of the wafer in the state of the substrate, when the epi [rho epi
Although it is excellent in that it can be easily controlled, it requires a separate film-coating step, which increases the manufacturing cost.

【0005】これに対して、図6に示すように、従来の
Siシール方式は、予めサセプタ11に積もらせた多結
晶シリコンPsをエピ中にウェーハ12の裏面12rに
蒸着させるものであるが、単に蒸着させるだけであるの
で、ほとんど製造コストの上昇がなく、また一旦形成さ
れたSi膜のシール性は、SiO膜より優れている。
On the other hand, as shown in FIG. 6, in the conventional Si sealing method, polycrystalline silicon Ps previously deposited on the susceptor 11 is deposited on the back surface 12r of the wafer 12 during epitaxy. Since the deposition is merely performed, there is almost no increase in the manufacturing cost, and the sealing property of the once formed Si film is superior to that of the SiO 2 film.

【0006】このSiシール方式は、縦型エピ装置(パ
ンケーキ型)を用い、エピ熱処理中に多結晶シリコンP
sをサセプタ11の上面11sからウェーハ12の裏面
12rに蒸着させるため、サセプタ11のザグリ13の
形状やウェーハ12の形状の影響を受け易く、ウェーハ
12のエピ膜面内のρepi分布が非常に良好な場合と
極端に悪い場合があり、安定したρepi分布が得られて
いない。
[0006] This Si sealing method uses a vertical epi apparatus (pancake type) and uses polycrystalline silicon P during epi heat treatment.
Since s is vapor-deposited from the upper surface 11s of the susceptor 11 to the rear surface 12r of the wafer 12, it is easily affected by the shape of the counterbore 13 of the susceptor 11 and the shape of the wafer 12, and the ρ epi distribution in the epitaxial film surface of the wafer 12 is very large. There are cases where it is good and cases where it is extremely bad, and a stable ρepi distribution is not obtained.

【0007】[0007]

【発明が解決しようとする課題】このため、安価でエピ
タキシャル層面内に安定したエピタキシャル層電気抵抗
率分布が得られるエピタキシャルシリコン基板の製造方
法が要望されていた。
For this reason, there has been a demand for a method of manufacturing an epitaxial silicon substrate which is inexpensive and provides a stable epitaxial layer electric resistivity distribution in the plane of the epitaxial layer.

【0008】本発明は上述した事情を考慮してなされた
もので、安価でエピタキシャル層面内に安定したエピタ
キシャル層電気抵抗率分布が得られるエピタキシャルシ
リコン基板の製造方法を提供することを目的とする。
The present invention has been made in consideration of the above circumstances, and has as its object to provide a method of manufacturing an epitaxial silicon substrate which is inexpensive and provides a stable epitaxial layer electric resistivity distribution in the plane of the epitaxial layer.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
になされた本願請求項1の発明は、高濃度不純物を含有
するシリコン単結晶基板を用意し、このシリコン単結晶
基板を予め多結晶シリコンが堆積されたサセプタのザグ
リに収納してサセプタに載置し、このサセプタを加熱し
て多結晶シリコンを蒸発させてサセプタに面するシリコ
ン単結晶基板の裏面にシリコン膜を形成する工程と、こ
のシリコン膜形成工程と同時またはこの工程終了後にエ
ピタキシャル成長により、前記シリコン単結晶基板より
も低濃度の不純物を含有するシリコン単結のエピタキシ
ャル層を前記シリコン単結晶基板の表面に形成する工程
を有し、前記シリコン膜形成工程において、シリコン単
結晶基板の曲率半径が常にサセプタのザグリの曲率半径
よりも大きくなるような関係を有するシリコン単結晶基
板とサセプタを用いることを特徴とするエピタキシャル
シリコン基板の製造方法であることを要旨としている。
According to the first aspect of the present invention, there is provided a silicon single crystal substrate containing high-concentration impurities, and the silicon single crystal substrate is preliminarily polycrystalline silicon. A step of forming a silicon film on the back surface of the silicon single crystal substrate facing the susceptor by heating the susceptor to evaporate the polycrystalline silicon and placing the silicon film on the susceptor, Simultaneously with or after the completion of the silicon film forming step, by epitaxial growth, a step of forming a silicon single crystal epitaxial layer containing a lower concentration of impurities than the silicon single crystal substrate on the surface of the silicon single crystal substrate, In the silicon film forming step, the radius of curvature of the silicon single crystal substrate is always larger than the radius of curvature of the counterbore of the susceptor. Is summarized in that an epitaxial silicon substrate manufacturing method which comprises using the silicon single crystal substrate and the susceptor having an cormorants Do relationship.

【0010】本願請求項2の発明では、上記サセプタの
ザグリの曲率半径が15〜25mであることを特徴とす
る請求項1に記載のエピタキシャルシリコン単結晶基板
の製造方法であることを要旨としている。
According to the invention of claim 2 of the present application, the gist of the invention is the method of manufacturing an epitaxial silicon single crystal substrate according to claim 1, wherein the countersink of the susceptor has a radius of curvature of 15 to 25 m. .

【0011】本願請求項3の発明では、上記シリコン単
結晶基板は常温における反りの曲率半径が130m以上
であることを特徴とする請求項1または2に記載のエピ
タキシャルシリコン単結晶基板の製造方法であることを
要旨としている。
According to a third aspect of the present invention, in the method for manufacturing an epitaxial silicon single crystal substrate according to claim 1 or 2, the curvature radius of curvature of the silicon single crystal substrate at room temperature is 130 m or more. The gist is that there is.

【0012】[0012]

【発明の実施の形態】以下、本発明に係わるエピタキシ
ャルシリコン基板の製造方法の一実施態様を図面に基づ
き説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of a method for manufacturing an epitaxial silicon substrate according to the present invention will be described below with reference to the drawings.

【0013】本発明に係わるエピタキシャルシリコン基
板の製造方法は、図1および図2に示すような製造装置
を用いて、図3に示すような工程で行われる。
The method of manufacturing an epitaxial silicon substrate according to the present invention is performed in a process as shown in FIG. 3 using a manufacturing apparatus as shown in FIGS.

【0014】本発明の製造方法によれば、高濃度不純物
を含有するシリコン単結晶基板1を用意し(図3
(a))、このシリコン基板1をエピ装置2の石英製ベ
ルジャ3内に回転自在に設けられサセプタ4に外部から
供給された原料ガスGにより予め多結晶シリコンPsを
堆積させる(図3(b))。多結晶シリコンPsが堆積
されたサセプタ4のザグリ5にシリコン基板1の周縁部
1eが支持された状態で収納して、シリコン基板1をサ
セプタ4に載置する(図3(c))。
According to the manufacturing method of the present invention, a silicon single crystal substrate 1 containing a high concentration impurity is prepared (FIG. 3).
(A)) The silicon substrate 1 is rotatably provided in a quartz bell jar 3 of the epi apparatus 2, and polycrystalline silicon Ps is previously deposited on the susceptor 4 by a raw material gas G supplied from the outside (FIG. 3 (b) )). The silicon substrate 1 is housed in the counterbore 5 of the susceptor 4 on which the polycrystalline silicon Ps is deposited while the peripheral portion 1e of the silicon substrate 1 is supported, and the silicon substrate 1 is placed on the susceptor 4 (FIG. 3C).

【0015】このサセプタ4を誘導加熱装置6により加
熱して多結晶シリコンPsを蒸発させてサセプタ4に面
するシリコン基板1の裏面1rにシリコン膜Sを形成し
(図3(d))、このシリコン膜形成後に外部から原料
ガスGを導入してシリコン基板1よりも低濃度の不純物
を含有したシリコン単結晶膜Sをシリコン基板1の表面
1sに形成する(図3(e))。
The susceptor 4 is heated by the induction heating device 6 to evaporate the polycrystalline silicon Ps to form a silicon film S on the back surface 1r of the silicon substrate 1 facing the susceptor 4 (FIG. 3 (d)). After the formation of the silicon film, a source gas G is introduced from the outside to form a silicon single crystal film S containing impurities at a lower concentration than the silicon substrate 1 on the surface 1s of the silicon substrate 1 (FIG. 3E).

【0016】上記高濃度不純物のシリコン基板1は、単
結晶インゴット引上げ時、例えば砒素などのドーパント
を通常よりも多量に添加して引上げられた単結晶インゴ
ットを切断、研磨して例えば厚さ525μm、ρ≦0.
02Ωのものとして製造される。シリコン基板1は反り
の曲率半径rが130m以上のものが用いられる。
At the time of pulling a single crystal ingot, the silicon substrate 1 having a high concentration of impurities is cut and polished to a thickness of, for example, 525 μm by adding a dopant such as arsenic in a larger amount than usual and cutting and polishing the single crystal ingot. ρ ≦ 0.
Manufactured as 02Ω. The silicon substrate 1 has a curvature radius r of 130 m or more.

【0017】反りの曲率半径rを130m以上になるよ
うにするのは、シリコン基板1の反りの曲率半径rが加
熱時常にサセプタ4のザグリ5の曲率半径Rよりも大き
くするためである。
The curvature radius r of the warp is set to be 130 m or more so that the curvature radius r of the warp of the silicon substrate 1 is always larger than the curvature radius R of the counterbore 5 of the susceptor 4 during heating.

【0018】反りの曲率半径rが130mより小さい
と、加熱によるシリコン基板1の反りによりシリコン基
板1の周縁部1eがサセプタ4のザグリ5から浮き(離
間)、均一なシリコン膜Sを形成できない。
If the curvature radius r of the warp is smaller than 130 m, the peripheral edge 1e of the silicon substrate 1 floats (separates) from the counterbore 5 of the susceptor 4 due to the warp of the silicon substrate 1 due to heating, and a uniform silicon film S cannot be formed.

【0019】シリコン基板1が載置されるサセプタ4
は、Si含浸SiC基材にCVD膜を被覆した高純度の
もので、サセプタ4には複数個のザグリ5が設けられて
いる。このザグリ5は曲率半径Rが15〜25mであ
る。図5に示すように、例えば5インチ(図中■印)の
シリコン基板1を用いた場合に、ザグリ5の深さ(図中
X軸)を0.1mmにするとザグリ5の曲率半径R(図
中Y軸)は約20mになる。
Susceptor 4 on which silicon substrate 1 is mounted
Is a high-purity Si-impregnated SiC base material coated with a CVD film. This counterbore 5 has a radius of curvature R of 15 to 25 m. As shown in FIG. 5, for example, when a silicon substrate 1 of 5 inches (indicated by a mark in the figure) is used and the depth (X-axis in the figure) of the counterbore 5 is set to 0.1 mm, the radius of curvature R ( (Y axis in the figure) is about 20 m.

【0020】曲率半径Rを15〜25mmにするのは、
シリコン基板1の反りの曲率半径rが常にサセプタ4の
ザグリ5の曲率半径Rよりも大きくなるようにするため
である。
The reason for setting the radius of curvature R to 15 to 25 mm is as follows.
This is because the curvature radius r of the warpage of the silicon substrate 1 is always larger than the curvature radius R of the counterbore 5 of the susceptor 4.

【0021】曲率半径Rが15mmより小さいか、25
mmを超えると加熱によるシリコン基板1の反りにより
シリコン基板1の周縁部1eがサセプタ4のザグリ5か
ら浮き、均一なシリコン膜Sを形成できない。
When the radius of curvature R is smaller than 15 mm or 25
If it exceeds mm, the peripheral edge 1e of the silicon substrate 1 floats from the counterbore 5 of the susceptor 4 due to the warpage of the silicon substrate 1 due to heating, and a uniform silicon film S cannot be formed.

【0022】上記サセプタ4には、ベルジャ3内に原料
ガスG例えばSiガスを導入して多結晶シリコンPsを
堆積される。しかる後、シリコン基板1をサセプタ4の
ザグリ5に収納して、サセプタ4に載置し、誘導加熱装
置6によりサセプタ4を加熱して、多結晶シリコンPs
を蒸発させてサセプタ4に面するシリコン基板1の裏面
1rに多結晶シリコン膜Pを形成する。
A polycrystalline silicon Ps is deposited on the susceptor 4 by introducing a source gas G, for example, a Si gas into the bell jar 3. Thereafter, the silicon substrate 1 is housed in the counterbore 5 of the susceptor 4 and placed on the susceptor 4, and the susceptor 4 is heated by the induction heating device 6 so that the polycrystalline silicon Ps
Is evaporated to form a polycrystalline silicon film P on the back surface 1r of the silicon substrate 1 facing the susceptor 4.

【0023】このシリコン膜形成工程において、シリコ
ン基板1の曲率半径rが常にサセプタ4のザグリ5の曲
率半径Rよりも大きくなるような関係を有するシリコン
基板1とサセプタ4を用いること、例えばサセプタ4の
ザグリ5の曲率半径Rが20m、シリコン基板1の反り
の曲率半径rが130m以上であるシリコン基板1とサ
セプタ4を用いたので、シリコン基板1の周縁部1eの
浮上がりが抑制されて、シリコン基板1の裏面1r、周
縁部1eにシリコン膜Sが均一に形成できる。
In this silicon film forming step, the susceptor 4 and the silicon substrate 1 having a relationship such that the radius of curvature r of the silicon substrate 1 is always larger than the radius of curvature R of the counterbore 5 of the susceptor 4 are used. Since the silicon substrate 1 and the susceptor 4 having a radius of curvature R of the counterbore 5 of 20 m and a radius of curvature r of the warpage of the silicon substrate 1 of 130 m or more are used, floating of the peripheral edge 1 e of the silicon substrate 1 is suppressed, The silicon film S can be formed uniformly on the back surface 1r and the peripheral portion 1e of the silicon substrate 1.

【0024】次に原料ガス例えばSiClをベルジャ
3に供給して、シリコン基板1よりも低濃度の不純物を
含有したシリコン単結のエピ層Epをシリコン基板1の
表面1sに形成する。
Next, a source gas, for example, SiCl 4 is supplied to the bell jar 3 to form a single silicon-bonded epi layer Ep containing impurities at a lower concentration than the silicon substrate 1 on the surface 1 s of the silicon substrate 1.

【0025】このエピ工程において、シリコン基板1に
は、裏面1r、周縁部1eにシリコン膜Sが確実かつ均
一に形成されたているので、シリコン基板1に添加され
た不純物がエピ層Epに拡散してエピ層Epの電気抵抗
率を低下させることがないので、エピ層Ep面内の電気
抵抗率の分布が3%以下と均一に制御することができ
る。
In this epi process, since the silicon film S is securely and uniformly formed on the back surface 1r and the peripheral portion 1e of the silicon substrate 1, the impurity added to the silicon substrate 1 diffuses into the epi layer Ep. As a result, the electric resistivity of the epi layer Ep does not decrease, so that the distribution of the electric resistivity in the plane of the epi layer Ep can be uniformly controlled to 3% or less.

【0026】なお、上述した実施形態では、シリコン膜
形成工程をエピ工程に先行して行う例で説明したが、シ
リコン膜形成工程とエピ工程を同時に行うようにして
も、同様の効果を期待できる。
In the above-described embodiment, the example in which the silicon film forming step is performed prior to the epi step is described. However, similar effects can be expected even if the silicon film forming step and the epi step are performed simultaneously. .

【0027】[0027]

【実施例】反り量の異なる10枚のシリコン基板を用
い、次に記載するようなエピ条件で、エピ層面内の電気
抵抗率のバラツキ率を調査した。
EXAMPLE Using 10 silicon substrates having different amounts of warpage, the variation of the electrical resistivity in the epi layer plane was investigated under the following epi conditions.

【0028】(1)エピ条件 1)エピ装置:縦型、サセプタのザグリ深さ0.1mm 2)シリコン基板:5インチ、ρ≦0.015Ωcm、
厚さ525μm 3)エピ層電気抵抗率:エピ層厚さ20μm、20Ωc
m (2)試験結果 シリコン基板の反り量(常温)と電気抵抗率のバラツキ
率の関係は図4の通りである。
(1) Epi condition 1) Epi apparatus: vertical type, counterbore depth of susceptor 0.1 mm 2) Silicon substrate: 5 inches, ρ ≦ 0.015Ωcm,
3) Epi-layer electrical resistivity: epi-layer thickness 20 μm, 20Ωc
m (2) Test Results FIG. 4 shows the relationship between the amount of warpage (normal temperature) of the silicon substrate and the variation rate of the electrical resistivity.

【0029】反り量が−10μm(凸面)〜30μm
(凹面)間では、電気抵抗率(ρ)のバラツキ率(△
ρ)は2〜7%以下と小さく、電気抵抗率は安定してい
る。
The warpage amount is -10 μm (convex surface) to 30 μm
(Concave surface), the variation rate (△) of the electrical resistivity (ρ)
ρ) is as small as 2 to 7% or less, and the electric resistivity is stable.

【0030】[0030]

【発明の効果】本発明によれば、エピ層面内に安定した
エピ層電気抵抗率分布が得られるエピタキシャルシリコ
ン基板を提供することができる。
According to the present invention, it is possible to provide an epitaxial silicon substrate capable of obtaining a stable epi-layer electric resistivity distribution in the epi-layer plane.

【0031】また、安価でシール性のよいエピタキシャ
ル用シリコン基板を用いたエピタキシャルシリコン基板
が得られて、安価で安定したエピ層電気抵抗率分布が得
られるエピタキシャルシリコン基板が得られる。
Further, an epitaxial silicon substrate using an inexpensive epitaxial silicon substrate having good sealing properties can be obtained, and an inexpensive epitaxial silicon substrate having a stable epitaxial layer electric resistivity distribution can be obtained.

【0032】さらに、サセプタのザグリの曲率半径が1
5〜25mにすること、およびシリコン単結晶基板は常
温における反りの曲率半径が130m以上にすることに
より、シール性のよいエピタキシャル用シリコン基板を
得ることができる。
Further, the radius of curvature of the counterbore of the susceptor is 1
By setting the thickness to 5 to 25 m and the curvature radius of curvature of the silicon single crystal substrate at room temperature to 130 m or more, an epitaxial silicon substrate with good sealing properties can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わるエピタキシャルシリコン基板の
製造方法に用いられる製造装置の要部を示す説明図。
FIG. 1 is an explanatory view showing a main part of a manufacturing apparatus used in a method for manufacturing an epitaxial silicon substrate according to the present invention.

【図2】本発明に係わるエピタキシャルシリコン基板の
製造方法に用いられる製造装置の概念図。
FIG. 2 is a conceptual diagram of a manufacturing apparatus used in a method for manufacturing an epitaxial silicon substrate according to the present invention.

【図3】本発明に係わるエピタキシャルシリコン基板の
製造方法の製造プロセスの説明図。
FIG. 3 is an explanatory diagram of a manufacturing process of a method for manufacturing an epitaxial silicon substrate according to the present invention.

【図4】本発明に係わるエピタキシャルシリコン基板の
製造方法の実施例試験結果の説明図。
FIG. 4 is an explanatory diagram of test results of an example of the method for manufacturing an epitaxial silicon substrate according to the present invention.

【図5】本発明に係わるエピタキシャルシリコン基板の
製造方法に用いられるサセプタのザグリと曲率半径の関
係図。
FIG. 5 is a diagram showing a relationship between a counterbore and a radius of curvature of a susceptor used in the method for manufacturing an epitaxial silicon substrate according to the present invention.

【図6】従来のSiシール方式の説明図。FIG. 6 is an explanatory view of a conventional Si sealing method.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 エピタキシャル装置 3 石英製ベルジャ 4 サセプタ 5 ザグリ 6 誘導加熱装置 Reference Signs List 1 silicon substrate 2 epitaxial device 3 quartz bell jar 4 susceptor 5 counterbore 6 induction heating device

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高濃度不純物を含有するシリコン単結晶
基板を用意し、このシリコン単結晶基板を予め多結晶シ
リコンが堆積されたサセプタのザグリに収納してサセプ
タに載置し、このサセプタを加熱して多結晶シリコンを
蒸発させてサセプタに面するシリコン単結晶基板の裏面
にシリコン膜を形成する工程と、このシリコン膜形成工
程と同時またはこの工程終了後にエピタキシャル成長に
より、前記シリコン単結晶基板よりも低濃度の不純物を
含有するシリコン単結のエピタキシャル層を前記シリコ
ン単結晶基板の表面に形成する工程を有し、前記シリコ
ン膜形成工程において、シリコン単結晶基板の曲率半径
が常にサセプタのザグリの曲率半径よりも大きくなるよ
うな関係を有するシリコン単結晶基板とサセプタを用い
ることを特徴とするエピタキシャルシリコン基板の製造
方法。
1. A silicon single crystal substrate containing a high-concentration impurity is prepared, the silicon single crystal substrate is housed in a counterbore of a susceptor on which polycrystalline silicon is deposited in advance, and is placed on the susceptor, and the susceptor is heated. Forming a silicon film on the back surface of the silicon single crystal substrate facing the susceptor by evaporating the polycrystalline silicon, and epitaxially growing at the same time as or after this silicon film forming step. Forming a silicon single-crystal epitaxial layer containing low-concentration impurities on the surface of the silicon single-crystal substrate. In the silicon film forming step, the radius of curvature of the silicon single-crystal substrate is always the curvature of the counterbore of the susceptor. It is characterized by using a silicon single crystal substrate and a susceptor that have a relationship of being larger than the radius. A method for manufacturing an epitaxial silicon substrate.
【請求項2】 上記サセプタのザグリの曲率半径が15
〜25mであることを特徴とする請求項1に記載のエピ
タキシャルシリコン単結晶基板の製造方法。
2. The countersink of the susceptor has a radius of curvature of 15
2. The method for manufacturing an epitaxial silicon single crystal substrate according to claim 1, wherein the length is 25 m.
【請求項3】 上記シリコン単結晶基板は常温における
反りの曲率半径が130m以上であることを特徴とする
請求項1または2に記載のエピタキシャルシリコン単結
晶基板の製造方法。
3. The method for producing an epitaxial silicon single crystal substrate according to claim 1, wherein the silicon single crystal substrate has a curvature radius of curvature at room temperature of 130 m or more.
JP12289199A 1999-04-28 1999-04-28 Manufacturing method of epitaxial silicon substrate Expired - Lifetime JP3424069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12289199A JP3424069B2 (en) 1999-04-28 1999-04-28 Manufacturing method of epitaxial silicon substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12289199A JP3424069B2 (en) 1999-04-28 1999-04-28 Manufacturing method of epitaxial silicon substrate

Publications (2)

Publication Number Publication Date
JP2000315656A true JP2000315656A (en) 2000-11-14
JP3424069B2 JP3424069B2 (en) 2003-07-07

Family

ID=14847200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12289199A Expired - Lifetime JP3424069B2 (en) 1999-04-28 1999-04-28 Manufacturing method of epitaxial silicon substrate

Country Status (1)

Country Link
JP (1) JP3424069B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005039121A (en) * 2003-07-17 2005-02-10 Naoetsu Electronics Co Ltd Normal pressure cvd device
JP2005056984A (en) * 2003-08-01 2005-03-03 Shin Etsu Handotai Co Ltd Apparatus and method for vapor phase growth
KR100972976B1 (en) * 2008-05-06 2010-07-29 삼성엘이디 주식회사 Susceptor and apparatus for chemical vapor depostion including the same
JP5158093B2 (en) * 2007-12-06 2013-03-06 信越半導体株式会社 Vapor growth susceptor and vapor growth apparatus
KR101312836B1 (en) 2010-10-20 2013-09-27 실트로닉 아게 Support ring for supporting a semiconductor wafer composed of monocrystalline silicon during a thermal treatment, method for the thermal treatment of such a semiconductor wafer, and thermally treated semiconductor wafer composed of monocrystalline silicon
JP2017022320A (en) * 2015-07-14 2017-01-26 昭和電工株式会社 Wafer support table, wafer support body, and chemical vapor deposition apparatus
JP2021170615A (en) * 2020-04-17 2021-10-28 三菱電機株式会社 Satellite and method for manufacturing silicon carbide semiconductor device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005039121A (en) * 2003-07-17 2005-02-10 Naoetsu Electronics Co Ltd Normal pressure cvd device
JP2005056984A (en) * 2003-08-01 2005-03-03 Shin Etsu Handotai Co Ltd Apparatus and method for vapor phase growth
JP4599816B2 (en) * 2003-08-01 2010-12-15 信越半導体株式会社 Manufacturing method of silicon epitaxial wafer
JP5158093B2 (en) * 2007-12-06 2013-03-06 信越半導体株式会社 Vapor growth susceptor and vapor growth apparatus
KR100972976B1 (en) * 2008-05-06 2010-07-29 삼성엘이디 주식회사 Susceptor and apparatus for chemical vapor depostion including the same
KR101312836B1 (en) 2010-10-20 2013-09-27 실트로닉 아게 Support ring for supporting a semiconductor wafer composed of monocrystalline silicon during a thermal treatment, method for the thermal treatment of such a semiconductor wafer, and thermally treated semiconductor wafer composed of monocrystalline silicon
JP2017022320A (en) * 2015-07-14 2017-01-26 昭和電工株式会社 Wafer support table, wafer support body, and chemical vapor deposition apparatus
JP2021170615A (en) * 2020-04-17 2021-10-28 三菱電機株式会社 Satellite and method for manufacturing silicon carbide semiconductor device
JP7296914B2 (en) 2020-04-17 2023-06-23 三菱電機株式会社 Method for manufacturing satellite and silicon carbide semiconductor device

Also Published As

Publication number Publication date
JP3424069B2 (en) 2003-07-07

Similar Documents

Publication Publication Date Title
KR101478331B1 (en) Method for producing epitaxial silicon carbide single crystal substrate
KR20030076677A (en) Deposition over mixed substrates using trisilane
JP5910430B2 (en) Method for manufacturing epitaxial silicon carbide wafer
JPH08213331A (en) Manufacture of semiconductor with small dislocation flaw
JP2007266125A (en) Silicon epitaxial wafer and manufacturing method therefor
JP2000315656A (en) Manufacture of epitaxial silicon substrate
JP2911694B2 (en) Semiconductor substrate and method of manufacturing the same
CN116259534A (en) Silicon carbide epitaxy method
JPH10189695A (en) Vapor growth susceptor and manufacture thereof
JP2004343133A (en) Manufacturing method of silicon carbide, silicon carbide, and semiconductor device
JP7255473B2 (en) Method for manufacturing polycrystalline silicon carbide substrate
JPH0925198A (en) Epitaxial coated semiconductor wafer and its preparation
JPH09266214A (en) Silicon wafer
US20100093156A1 (en) Method for production of silicon wafer for epitaxial substrate and method for production of epitaxial substrate
KR20110087440A (en) Susceptor for manufacturing semiconductor and apparatus comprising thereof
JP2002016004A (en) Method of manufacturing silicon epitaxial wafer
JP2004363510A (en) Manufacturing method of semiconductor substrate
JP2003188107A (en) Manufacturing method for semiconductor epitaxial wafer and the semiconductor epitaxial wafer
JP7392526B2 (en) Method for manufacturing silicon carbide single crystal substrate
JP7247819B2 (en) Method for manufacturing polycrystalline silicon carbide substrate
JP7322408B2 (en) Polycrystalline silicon carbide substrate, method for producing polycrystalline silicon carbide film, and method for producing polycrystalline silicon carbide substrate
JP7338193B2 (en) Method for manufacturing polycrystalline silicon carbide substrate
JPH0826891A (en) Semicnductor substrate and its production
JP2004186376A (en) Apparatus and method for manufacturing silicon wafer
CN117672815A (en) SiC epitaxial wafer and preparation method thereof

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080502

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080502

Year of fee payment: 5

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080502

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term