JP5910430B2 - Method for manufacturing epitaxial silicon carbide wafer - Google Patents
Method for manufacturing epitaxial silicon carbide wafer Download PDFInfo
- Publication number
- JP5910430B2 JP5910430B2 JP2012203079A JP2012203079A JP5910430B2 JP 5910430 B2 JP5910430 B2 JP 5910430B2 JP 2012203079 A JP2012203079 A JP 2012203079A JP 2012203079 A JP2012203079 A JP 2012203079A JP 5910430 B2 JP5910430 B2 JP 5910430B2
- Authority
- JP
- Japan
- Prior art keywords
- material gas
- silicon carbide
- based material
- epitaxial
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title claims description 144
- 229910010271 silicon carbide Inorganic materials 0.000 title claims description 143
- 238000000034 method Methods 0.000 title claims description 33
- 238000004519 manufacturing process Methods 0.000 title claims description 30
- 239000007789 gas Substances 0.000 claims description 198
- 239000000463 material Substances 0.000 claims description 105
- 239000000758 substrate Substances 0.000 claims description 103
- 239000013078 crystal Substances 0.000 claims description 43
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 35
- 239000004215 Carbon black (E152) Substances 0.000 claims description 32
- 229930195733 hydrocarbon Natural products 0.000 claims description 32
- 150000002430 hydrocarbons Chemical class 0.000 claims description 32
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 31
- 239000012159 carrier gas Substances 0.000 claims description 30
- FDNAPBUWERUEDA-UHFFFAOYSA-N silicon tetrachloride Chemical compound Cl[Si](Cl)(Cl)Cl FDNAPBUWERUEDA-UHFFFAOYSA-N 0.000 claims description 27
- 239000010409 thin film Substances 0.000 claims description 22
- 229910052786 argon Inorganic materials 0.000 claims description 15
- 239000001257 hydrogen Substances 0.000 claims description 11
- 229910052739 hydrogen Inorganic materials 0.000 claims description 11
- 238000005229 chemical vapour deposition Methods 0.000 claims description 5
- 239000002210 silicon-based material Substances 0.000 description 36
- 239000010408 film Substances 0.000 description 33
- 230000007547 defect Effects 0.000 description 28
- 235000012431 wafers Nutrition 0.000 description 24
- 238000005498 polishing Methods 0.000 description 19
- 229910003902 SiCl 4 Inorganic materials 0.000 description 13
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 9
- 238000005520 cutting process Methods 0.000 description 8
- 238000005530 etching Methods 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- 239000011261 inert gas Substances 0.000 description 6
- 238000007796 conventional method Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 229910000077 silane Inorganic materials 0.000 description 4
- 230000003746 surface roughness Effects 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 3
- SLLGVCUQYRMELA-UHFFFAOYSA-N chlorosilicon Chemical compound Cl[Si] SLLGVCUQYRMELA-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 244000000626 Daucus carota Species 0.000 description 2
- 235000002767 Daucus carota Nutrition 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 2
- ZDHXKXAHOVTTAH-UHFFFAOYSA-N trichlorosilane Chemical compound Cl[SiH](Cl)Cl ZDHXKXAHOVTTAH-UHFFFAOYSA-N 0.000 description 2
- 239000005052 trichlorosilane Substances 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 239000006061 abrasive grain Substances 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- MROCJMGDEKINLD-UHFFFAOYSA-N dichlorosilane Chemical compound Cl[SiH2]Cl MROCJMGDEKINLD-UHFFFAOYSA-N 0.000 description 1
- BUMGIEFFCMBQDG-UHFFFAOYSA-N dichlorosilicon Chemical compound Cl[Si]Cl BUMGIEFFCMBQDG-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000879 optical micrograph Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
Description
本発明は、エピタキシャル炭化珪素(SiC)ウエハの製造方法に関するものである。 The present invention relates to a method for manufacturing an epitaxial silicon carbide (SiC) wafer.
炭化珪素(以下、SiCと表記する)は、耐熱性及び機械的強度に優れ、物理的、化学的に安定なことから、耐環境性半導体材料として注目されている。また、近年、高周波高耐圧電子デバイス等の基板としてエピタキシャルSiCウエハの需要が高まっている。 Silicon carbide (hereinafter referred to as SiC) is attracting attention as an environmentally resistant semiconductor material because it has excellent heat resistance and mechanical strength and is physically and chemically stable. In recent years, there has been an increasing demand for epitaxial SiC wafers as substrates for high-frequency, high-voltage electronic devices and the like.
SiC単結晶基板(以下、単にSiC基板という場合がある)を用いて、電力デバイス、高周波デバイス等を作製する場合には、通常、SiC基板上に熱CVD法(熱化学蒸着法)と呼ばれる方法を用いてSiC単結晶薄膜をエピタキシャル成長させたり、イオン注入法により直接ドーパントを打ち込んだりしてデバイス用SiCウエハを製造するのが一般的であるが、後者の場合には、注入後に高温でのアニールが必要となるため、エピタキシャル成長による薄膜形成が多用されている。 When manufacturing a power device, a high-frequency device, etc. using a SiC single crystal substrate (hereinafter, sometimes simply referred to as a SiC substrate), a method generally called a thermal CVD method (thermochemical vapor deposition method) on the SiC substrate. It is common to produce SiC wafers for devices by epitaxially growing SiC single crystal thin films using ion implantation or implanting dopants directly by ion implantation, but in the latter case, annealing is performed at a high temperature after implantation. Therefore, thin film formation by epitaxial growth is frequently used.
近年、SiC基板及びエピタキシャル成長層の高品質化が進んでおり、それに伴いSiCデバイスの開発も加速され、一部のデバイスでは商品化も始まっている。デバイスコスト低減のためには、デバイス歩留まりを上げると共にエピタキシャル基板の製造コスト削減も重要であり、それには1回で多数枚のSiC基板上にエピタキシャル成長が可能であるような技術開発が必須である。現在、量産型のSiCエピタキシャル成長装置としては、横型の成長装置、すなわち材料ガスを予め反応炉(ホットウォール部)の前で混合しておき、それをホットウォール内で横方向に流して成長するものが一般的である(非特許文献1参照)。しかしながら横型成長装置の場合、扱えるSiC基板の枚数を増やすためには必然的に横方向(平面方向)に装置を拡張することになるが、装置の設置面積の増大、ホットウォール部拡大に伴うガス流や温度の均一性確保の困難さ、あるいはSiC基板を載せるサセプタの大型化に伴うハンドリングの困難さ等のため、その拡張性には制約が生じてくる。 In recent years, SiC substrates and epitaxial growth layers have been improved in quality, and accordingly, development of SiC devices has been accelerated, and commercialization has started for some devices. In order to reduce the device cost, it is important to increase the device yield and reduce the manufacturing cost of the epitaxial substrate. To this end, it is essential to develop a technology that enables epitaxial growth on a large number of SiC substrates at one time. Currently, as a mass production type SiC epitaxial growth apparatus, a lateral growth apparatus, that is, a material gas previously mixed in front of a reaction furnace (hot wall section) and then grown by flowing it laterally in the hot wall Is common (see Non-Patent Document 1). However, in the case of a horizontal growth apparatus, in order to increase the number of SiC substrates that can be handled, the apparatus is inevitably expanded in the horizontal direction (planar direction), but the gas accompanying the increase in the installation area of the apparatus and the expansion of the hot wall portion Due to the difficulty of ensuring the uniformity of flow and temperature, or the difficulty of handling associated with the increase in size of the susceptor on which the SiC substrate is placed, the expandability is limited.
一方、最近では、縦型のSiCエピタキシャル成長装置が開発されており(特許文献1参照)、この場合はSiC基板を上下方向に並べるため、基板の枚数増加に対する制約は比較的小さくなり、量産化に有利である。すなわち、成長室(成長炉)内でホルダーを縦方向に並べて、複数のSiC基板を互いに隙間を空けて積層する方向に配列させる縦型配列構造の基板処理装置(以下、単に縦型装置という場合がある)によれば、SiC基板の口径が大きくなっても然程装置上の制約は受けず、縦方向に配列するSiC基板の数を増やすことで生産性良くエピタキシャルSiCウエハを製造することが可能になる。 On the other hand, a vertical SiC epitaxial growth apparatus has recently been developed (see Patent Document 1). In this case, since the SiC substrates are arranged in the vertical direction, restrictions on the increase in the number of substrates are relatively small, and mass production is possible. It is advantageous. That is, a substrate processing apparatus having a vertical arrangement structure in which holders are arranged in a vertical direction in a growth chamber (growth furnace) and a plurality of SiC substrates are arranged in a stacking direction with a gap between each other (hereinafter simply referred to as a vertical apparatus) However, even if the diameter of the SiC substrate is increased, there is not much restriction on the apparatus, and an epitaxial SiC wafer can be manufactured with high productivity by increasing the number of SiC substrates arranged in the vertical direction. It becomes possible.
ところが、縦型装置の場合には、次のような材料ガスの導入に関する別の問題が発生する。成長室内を縦方向に配列された各SiC基板にそれぞれ均一に炭化珪素単結晶薄膜をエピタキシャル成長させるには、成長室内を縦方向に沿う配管を通じて珪素源と炭素源を含んだ材料ガスを導入し、SiC基板間の各隙間に対応する位置にガス吹出し口を設けてSiC基板の表面に材料ガスを供給する必要があるが、成長室内の配管自体がエピタキシャル成長温度(1500〜1600℃程度)に晒されるため、横型成長装置の場合のように珪素源のガスと炭素源のガスとを混合して供給すると配管内でこれらのガスが反応してしまい、SiCが吹き出し口を塞いでしまったり、配管内にSiCが堆積してしまうことがある。 However, in the case of the vertical apparatus, another problem relating to the introduction of the material gas as follows occurs. In order to epitaxially grow a silicon carbide single crystal thin film uniformly on each SiC substrate arranged in the vertical direction in the growth chamber, a material gas containing a silicon source and a carbon source is introduced through a pipe along the vertical direction in the growth chamber, Although it is necessary to provide a gas blowing port at a position corresponding to each gap between the SiC substrates and supply the material gas to the surface of the SiC substrate, the piping in the growth chamber itself is exposed to the epitaxial growth temperature (about 1500 to 1600 ° C.). Therefore, if the silicon source gas and the carbon source gas are mixed and supplied as in the case of the horizontal growth apparatus, these gases react in the piping, and SiC blocks the blowout port, SiC may be deposited on the surface.
そのため、縦型装置を使用する場合、材料ガスは珪素系と炭化水素系とでそれぞれ独立させて個別に導入する必要があるが、予め材料ガスを混合する場合と比べて、ガス組成の制御等が難しくなる。具体的には、珪素系と炭素系とを含んだ材料ガスを成長室内に導入するためには、一般にキャリアガス(主として水素が用いられる)が必要であるが、縦型装置を使用する場合のように珪素系と炭化水素系とをそれぞれ個別に導入する際に、水素のようなキャリアガスは珪素系の材料ガスと同伴させることはできない。これは、珪素系材料ガス(特に塩化珪素系材料ガス)とキャリアガスが配管(ノズル)内に共存すると、反応して珪素あるいはその化合物等が生成され、これらが吹出し口閉塞の原因やエピタキシャル欠陥をもたらすパーティクルの原因になるからである。従って、炭化水素系材料ガスはキャリアガスと共に供給され、他方の珪素系材料ガスは、単独あるいは少量のアルゴン等の不活性ガスと共にそれぞれ別の配管から供給しなければならない。 Therefore, when using a vertical apparatus, it is necessary to introduce the material gas independently for each of the silicon-based and hydrocarbon-based materials. However, compared with the case where the material gas is mixed in advance, the control of the gas composition, etc. Becomes difficult. Specifically, in order to introduce a material gas containing silicon and carbon into the growth chamber, generally a carrier gas (mainly hydrogen is used) is required. However, when a vertical apparatus is used. Thus, when silicon and hydrocarbon are introduced individually, a carrier gas such as hydrogen cannot be accompanied by a silicon-based material gas. This is because when silicon-based material gas (especially silicon chloride-based material gas) and carrier gas coexist in the pipe (nozzle), it reacts to produce silicon or a compound thereof, which causes the blockage of the blowout port and epitaxial defects. It is because it causes the particle which brings about. Therefore, the hydrocarbon-based material gas must be supplied together with the carrier gas, and the other silicon-based material gas must be supplied individually or together with a small amount of inert gas such as argon from different pipes.
しかしながら、珪素系材料ガスと炭化水素系材料ガスとを個別に供給する際、珪素系、炭化水素系の材料ガスバルブを同時に開けたとしても、一般に、大量のキャリアガスと混合される炭化水素系材料ガスの方が(材料ガスの流量が50〜100cc/分程度であるのに対し、キャリアガスの流量は100〜200L/分程度)、キャリアガスを含まないあるいは少量の不活性ガスのみで導入される珪素系材料ガスよりもSiC基板上に速く到達することになる。すなわち、炭化水素系材料ガスでは、分子が小さくて軽い水素をキャリアガスとして使用できるため、炭化水素系材料ガスの拡散速度は大きく、またキャリアガス自体の流量も大きいことから、SiC基板へ到達しやすい。これに対して、水素と反応するおそれがある珪素系材料ガスでは、アルゴン等の不活性ガス(希ガス)を使用せざるを得ないが、珪素系材料ガスの導入速度を上げるために不活性ガスの割合を増やすと、キャリアガス(水素)に占める不活性ガスの割合が高くなるため、材料ガスがSiC基板に到達しにくくなり、成長速度が下がってしまう。従って不活性ガスの流量を必要以上に増やすことはできず、炭化水素系材料ガスに比べ、SiC基板への到達は遅くなる。 However, when the silicon-based material gas and the hydrocarbon-based material gas are separately supplied, even if the silicon-based and hydrocarbon-based material gas valves are opened at the same time, the hydrocarbon-based material generally mixed with a large amount of carrier gas Gas (the flow rate of the material gas is about 50 to 100 cc / min, whereas the flow rate of the carrier gas is about 100 to 200 L / min) is introduced with no carrier gas or only a small amount of inert gas. It will reach the SiC substrate faster than the silicon-based material gas. That is, in hydrocarbon-based material gas, hydrogen with small molecules can be used as a carrier gas, so that the diffusion rate of hydrocarbon-based material gas is large and the flow rate of carrier gas itself is large, so that it reaches the SiC substrate. Cheap. On the other hand, in the case of a silicon-based material gas that may react with hydrogen, an inert gas (rare gas) such as argon must be used, but it is inactive to increase the introduction speed of the silicon-based material gas. When the ratio of the gas is increased, the ratio of the inert gas in the carrier gas (hydrogen) increases, so that the material gas does not easily reach the SiC substrate and the growth rate decreases. Therefore, the flow rate of the inert gas cannot be increased more than necessary, and the arrival at the SiC substrate is delayed as compared with the hydrocarbon-based material gas.
その結果、エピタキシャル成長開始時の基板上では、材料ガス中の珪素原子数に対する炭素原子数の比(C/Si比)が高くなり、ステップフロー成長が起こりにくくなって、ステップバンチングやエピタキシャル欠陥が増加しやすくなる。これは、材料ガスを予め混合でき、このような基板上への材料ガス到達に時間差が生じない横型タイプの装置に比べて大きな欠点となり得る。 As a result, on the substrate at the start of epitaxial growth, the ratio of the number of carbon atoms to the number of silicon atoms in the material gas (C / Si ratio) increases, making step flow growth less likely, increasing step bunching and epitaxial defects. It becomes easy to do. This can be a major drawback as compared with a horizontal type apparatus in which the material gas can be mixed in advance and the time difference in reaching the material gas on the substrate does not occur.
したがって、今後デバイスへの応用が期待されるエピタキシャルSiCウエハであるが、現状の縦型装置を用いた場合は、ステップバンチングやエピタキシャル欠陥等で表面状態が悪化するため、デバイスへの応用が困難となり、その結果装置の量産性が活かせず、製造コスト低減に繋がらないという問題があった。 Therefore, it is an epitaxial SiC wafer that is expected to be applied to devices in the future. However, when the current vertical apparatus is used, the surface state deteriorates due to step bunching or epitaxial defects, making it difficult to apply to devices. As a result, there has been a problem that the mass productivity of the apparatus cannot be utilized and the manufacturing cost cannot be reduced.
本発明は、縦型装置を用いる場合のように、塩化珪素系材料ガスと炭化水素系材料ガスとをそれぞれ個別に導入するエピタキシャル成長において、エピタキシャル欠陥を従来よりも低減して高品質なエピタキシャル膜を得ることができるエピタキシャルSiCウエハの製造方法を提供するものである。 In the epitaxial growth in which the silicon chloride material gas and the hydrocarbon material gas are individually introduced, as in the case of using a vertical apparatus, the present invention reduces the epitaxial defects compared to the conventional method and produces a high quality epitaxial film. An epitaxial SiC wafer manufacturing method that can be obtained is provided.
本発明者らは、塩化珪素系材料ガスを炭化水素系材料ガスよりも早いタイミングでSiC基板上に供給することによって、エピタキシャル成長開始時のC/Si比の上昇を抑え、上記課題を解決できることを見出し、本発明に至ったものである。 The present inventors can suppress the increase in the C / Si ratio at the start of epitaxial growth and solve the above problems by supplying the silicon chloride-based material gas onto the SiC substrate at a timing earlier than the hydrocarbon-based material gas. This is the headline and the present invention.
即ち、本発明は、
(1) 複数の炭化珪素単結晶基板を成長室内で互いに隙間を空けて積層する方向に配列させる縦型配列構造の基板処理装置を用いて、塩化珪素系材料ガスと炭化水素系材料ガスとをそれぞれ個別に供給しながら、炭化珪素単結晶基板上にCVD法で炭化珪素単結晶薄膜をエピタキシャル成長させて、エピタキシャル炭化珪素ウエハを製造する方法であり、
エピタキシャル成長の成長温度において塩化珪素系材料ガスを炭化珪素単結晶基板上に供給した後に、炭化水素系材料ガスの供給を開始して炭化珪素単結晶薄膜をエピタキシャル成長させることを特徴とするエピタキシャル炭化珪素ウエハの製造方法、
(2) 前記成長温度が1550〜1650℃である(1)に記載のエピタキシャル炭化珪素ウエハの製造方法、
(3) 前記炭化水素系材料ガスをキャリアガスと共に供給する(1)又は(2)に記載のエピタキシャル炭化珪素ウエハの製造方法、
(4) 前記塩化珪素系材料ガスをキャリアガスと共に供給する(1)〜(3)のいずれかに記載のエピタキシャル炭化珪素ウエハの製造方法、
(5) 前記炭化水素系材料ガスと共に流すキャリアガスが水素である(3)に記載のエピタキシャル炭化珪素ウエハの製造方法、
(6) 前記塩化珪素系材料ガスと共に流すキャリアガスがアルゴンである(4)に記載のエピタキシャル炭化珪素ウエハの製造方法、
(7) 前記塩化珪素系材料ガスを供給してから炭化水素系材料ガスの供給を開始するまでの待ち時間を1秒以上120秒以下にする(1)〜(6)のいずれかに記載のエピタキシャル炭化珪素ウエハの製造方法、
(8) 前記塩化珪素系材料ガスを炭化水素系材料ガスより先に炭化珪素単結晶基板上に到達させることを、これらの材料ガスを個別に供給する材料ガス供給管に付された材料ガスバルブを開けるタイミング差で行うようにする(1)〜(7)のいずれかに記載のエピタキシャル炭化珪素ウエハの製造方法、
(9) 前記炭化珪素単結晶基板のオフ角度が4°以下である(1)〜(8)のいずれかに記載のエピタキシャル炭化珪素ウエハの製造方法、
である。
That is, the present invention
( 1 ) Using a substrate processing apparatus having a vertical arrangement structure in which a plurality of silicon carbide single crystal substrates are arranged in the growth chamber in the direction of stacking with a gap therebetween, silicon chloride-based material gas and hydrocarbon-based material gas are mixed. It is a method of manufacturing an epitaxial silicon carbide wafer by epitaxially growing a silicon carbide single crystal thin film by a CVD method on a silicon carbide single crystal substrate while individually supplying each,
An epitaxial silicon carbide wafer characterized in that after a silicon chloride-based material gas is supplied onto a silicon carbide single crystal substrate at a growth temperature for epitaxial growth , the supply of the hydrocarbon-based material gas is started to epitaxially grow the silicon carbide single crystal thin film. Manufacturing method,
(2) The method for producing an epitaxial silicon carbide wafer according to (1), wherein the growth temperature is 1550 to 1650 ° C.
(3) supplying the hydrocarbon-based material gas together with a carrier gas (1) or the method for producing an epitaxial silicon carbide wafer according to (2),
(4) Supplying the silicon chloride-based material gas together with a carrier gas (1) to (3), the method for producing an epitaxial silicon carbide wafer according to any one of
(5) The method for producing an epitaxial silicon carbide wafer according to (3), wherein the carrier gas flowing together with the hydrocarbon-based material gas is hydrogen,
(6) The method for producing an epitaxial silicon carbide wafer according to (4), wherein the carrier gas flowing together with the silicon chloride-based material gas is argon,
(7) The waiting time from the supply of the silicon chloride-based material gas to the start of the supply of the hydrocarbon-based material gas is 1 second to 120 seconds or less (1) to (6) Manufacturing method of epitaxial silicon carbide wafer,
(8) A material gas valve attached to a material gas supply pipe for individually supplying these material gases is used to reach the silicon chloride material gas on the silicon carbide single crystal substrate prior to the hydrocarbon material gas. The method for producing an epitaxial silicon carbide wafer according to any one of (1) to (7), which is performed with a timing difference to open,
(9) The method for producing an epitaxial silicon carbide wafer according to any one of (1) to (8), wherein an off angle of the silicon carbide single crystal substrate is 4 ° or less,
It is.
本発明によれば、縦型装置を用いる場合のように、塩化珪素系材料ガスと炭化水素系材料ガスとをそれぞれ個別に導入してSiC基板にSiC単結晶薄膜をエピタキシャル成長させる際に、エピタキシャル欠陥を従来よりも低減した高品質エピタキシャル膜を有するエピタキシャルSiCウエハを製造することができる。また、本発明で利用するのはCVD法であるため、装置構成が容易で制御性にも優れ、均一性、再現性の高いエピタキシャル膜が得られる。さらに、本発明のエピタキシャルSiCウエハを用いたデバイスは、エピタキシャル欠陥を低減した高品質エピタキシャル膜上に形成されるため、その特性及び歩留りが向上する。 According to the present invention, as in the case of using a vertical apparatus, when a silicon single crystal material gas and a hydrocarbon material gas are separately introduced and an SiC single crystal thin film is epitaxially grown on an SiC substrate, epitaxial defects are produced. It is possible to manufacture an epitaxial SiC wafer having a high-quality epitaxial film in which the above is reduced as compared with the prior art. In addition, since the CVD method is used in the present invention, an epitaxial film with an easy apparatus configuration, excellent controllability, and high uniformity and reproducibility can be obtained. Furthermore, since the device using the epitaxial SiC wafer of the present invention is formed on a high-quality epitaxial film with reduced epitaxial defects, its characteristics and yield are improved.
本発明の具体的な内容について述べる。
先ず、SiC基板上へのエピタキシャル成長について述べる。
本発明で好適にエピタキシャル成長に用いる装置は、CVD装置である。CVD法は、装置構成が簡単であり、ガスのon/offで成長を制御できるため、エピタキシャル膜の制御性、再現性に優れた成長方法である。なお、CVD法以外にも、分子線エピタキシー法(MBE法)、液層エピタキシー法(LPE法)等によってエピタキシャル成長を行なうこともできる。
The specific contents of the present invention will be described.
First, epitaxial growth on a SiC substrate will be described.
An apparatus preferably used for epitaxial growth in the present invention is a CVD apparatus. The CVD method has a simple apparatus configuration and can control growth by gas on / off, and is therefore a growth method with excellent controllability and reproducibility of the epitaxial film. In addition to the CVD method, epitaxial growth can also be performed by a molecular beam epitaxy method (MBE method), a liquid layer epitaxy method (LPE method), or the like.
図4には、縦型配列構造を有する基板処理装置(縦型CVD装置)の概要を説明する説明図が示されており、図5には、その成長室内において互いに隙間を空けて縦型に配列されたSiC基板に対して、Si系の材料ガス、C系の材料ガス、及びドーピングガスをそれぞれ個別のガス供給管を通じて供給し、熱CVD法によりSiC単結晶薄膜を形成する様子を説明する説明図が示されている。 FIG. 4 is an explanatory diagram for explaining the outline of a substrate processing apparatus (vertical CVD apparatus) having a vertical arrangement structure. FIG. 5 shows a vertical type with a gap between each other in the growth chamber. A description will be given of how a SiC single crystal thin film is formed by thermal CVD by supplying Si-based material gas, C-based material gas, and doping gas to the arranged SiC substrates through separate gas supply pipes. An illustration is shown.
この基板処理装置1は、複数のSiC基板を互いに隙間を設けて積層する方向に配列することができる縦型配列構造を備えており、外周を誘導加熱ヒーター等の加熱手段7により取り囲まれた成長室2内には、SiC基板を1枚ずつ配置することができる基板ホルダー3が複数配設されている。この基板ホルダー3は、それぞれに備え付けられたSiC基板自体を水平方向に回転させる基板回転手段(図示外)を有しており、SiC基板の表面に成長させるエピタキシャル膜の面内での膜厚のばらつきを抑えることができるようになっている。また、成長室2を黒鉛等で形成することで、誘導加熱ヒーターによって成長室自体が発熱体となる。 The substrate processing apparatus 1 has a vertical arrangement structure in which a plurality of SiC substrates can be arranged in a stacking direction with a gap between each other, and the growth is surrounded by a heating means 7 such as an induction heater. In the chamber 2, a plurality of substrate holders 3 on which SiC substrates can be disposed one by one are disposed. The substrate holder 3 has a substrate rotating means (not shown) for rotating the SiC substrate itself provided in each of the substrate holders 3 in the horizontal direction, and has a film thickness within the plane of the epitaxial film grown on the surface of the SiC substrate. Variations can be suppressed. Further, by forming the growth chamber 2 from graphite or the like, the growth chamber itself becomes a heating element by the induction heater.
また、成長室2内には、基板ホルダー3に配置されたSiC基板の外周方向からガスを供給することができるように、Si系材料ガス供給管4、C系材料ガス供給管5、及びドーピングガス供給管6が成長室2の縦方向に沿って配置されている。これらのガス供給管4,5,6は、図5に示したように、各基板ホルダー3(図5では記載を省略している)に配置されたSiC基板10の表面にSiC単結晶薄膜を成長させることができるように、SiC基板10の間に形成される各隙間に対応する位置にそれぞれガス吹出し口4a,5a,6aを有しており、各SiC基板10の表面に対して平行ないし略平行にSi系材料ガス、C系材料ガス、及びドーピングガスが吹出されるようになっている。更に、これらの加熱手段7及び成長室2は断熱効果を備えた容器(筐体)8に収容され、また、成長室内に供給された各ガスは、真空ポンプ9を介して容器外に排出される。 Further, in the growth chamber 2, the Si-based material gas supply pipe 4, the C-based material gas supply pipe 5, and the doping are provided so that gas can be supplied from the outer peripheral direction of the SiC substrate disposed in the substrate holder 3. A gas supply pipe 6 is arranged along the vertical direction of the growth chamber 2. As shown in FIG. 5, these gas supply pipes 4, 5, 6 are formed with SiC single crystal thin films on the surfaces of the SiC substrates 10 arranged in the respective substrate holders 3 (not shown in FIG. 5). Gas outlets 4a, 5a, 6a are provided at positions corresponding to the gaps formed between the SiC substrates 10 so that they can be grown, and are parallel to the surface of each SiC substrate 10. Si-based material gas, C-based material gas, and doping gas are blown out substantially in parallel. Further, the heating means 7 and the growth chamber 2 are accommodated in a container (housing) 8 having a heat insulating effect, and each gas supplied into the growth chamber is discharged out of the container via a vacuum pump 9. The
なお、ここで言う「縦型」とは、SiC基板10を積層させる(重ね合わせる)方向に配列させることを意味するものであり、その場合の成長室の長手方向を「縦方向」と呼ぶ。図4、図5の例のように、SiC基板10を鉛直方向に積層させる場合を含むのは勿論、例えば、SiC基板10を水平方向に積層させて横長の成長室を形成する場合も本発明に含まれるものとする。図4では、Si系材料ガス供給管4、C系材料ガス供給管5、及びドーピングガス供給管6を1本ずつ備えた例を示すが、SiC基板10の外周にそれぞれを複数本配置するようにしてもよい。また、SiC単結晶薄膜を成長させる前などに行うSiC基板のエッチングに関しては、水素やHCl等のエッチングガスを成長室内に導入する際に窒素を含んだドーピングガスと混合されないようにすればよく、Si系材料ガス供給管4やC系材料ガス供給管5を利用してもよく、エッチングガスを導入するエッチングガス供給管を別途設けるようにしてもよい。更には、SiC基板10の成長面を上向きにしてSiC単結晶薄膜を成長させてもよく、成長面を下向きにしてSiC単結晶薄膜を成長させてもよい。図4のようにSiC基板を鉛直方向に積層させる場合には、異物の落下やそれに起因する欠陥発生を抑えるには、成長面を下向きにするのが有利である。 Here, the “vertical type” means that the SiC substrates 10 are arranged in the direction in which they are stacked (overlapped), and the longitudinal direction of the growth chamber in this case is referred to as “vertical direction”. As shown in FIGS. 4 and 5, the present invention includes the case where the SiC substrate 10 is stacked in the vertical direction, as well as the case where, for example, the horizontally elongated growth chamber is formed by stacking the SiC substrate 10 in the horizontal direction. Shall be included. FIG. 4 shows an example in which one Si-based material gas supply pipe 4, one C-based material gas supply pipe 5, and one doping gas supply pipe 6 are provided. A plurality of each is arranged on the outer periphery of the SiC substrate 10. It may be. In addition, regarding the etching of the SiC substrate performed before growing the SiC single crystal thin film, it is sufficient that the etching gas such as hydrogen or HCl is not mixed with the doping gas containing nitrogen when introduced into the growth chamber. The Si-based material gas supply pipe 4 and the C-based material gas supply pipe 5 may be used, or an etching gas supply pipe for introducing an etching gas may be separately provided. Furthermore, the SiC single crystal thin film may be grown with the growth surface of the SiC substrate 10 facing upward, or the SiC single crystal thin film may be grown with the growth surface facing downward. In the case where the SiC substrates are stacked in the vertical direction as shown in FIG. 4, it is advantageous to face the growth surface downward in order to suppress the fall of foreign matter and the occurrence of defects resulting therefrom.
縦型CVD装置でエピタキシャル膜成長を行なう際の従来の成長方法を図1の成長シーケンスで説明する。
先ず、SiC基板をセットし、成長炉内を真空排気した後、水素ガスとアルゴンガスの混合ガスを導入して圧力を5×103〜1×104Pa程度に調整する。その後、圧力を一定に保ちながら成長炉の温度を上げ、1550℃程度に達した後に数分間保持し、SiC基板表面のエッチング処理を行う。エッチング処理後、アルゴンガスを止め、水素ガスの流量を増やしながら圧力を1×103Pa程度に下げ、ガス流量および圧力が安定した時点でSi系の材料ガスとC系の材料ガス、及びドーピングガスを同時に導入してエピタキシャル成長を開始する。
A conventional growth method for epitaxial film growth using a vertical CVD apparatus will be described with reference to the growth sequence of FIG.
First, after setting the SiC substrate and evacuating the inside of the growth furnace, a mixed gas of hydrogen gas and argon gas is introduced to adjust the pressure to about 5 × 10 3 to 1 × 10 4 Pa. Thereafter, the temperature of the growth furnace is raised while keeping the pressure constant, and after reaching about 1550 ° C., the temperature is maintained for several minutes, and the SiC substrate surface is etched. After the etching process, the argon gas is stopped and the pressure is lowered to about 1 × 10 3 Pa while increasing the flow rate of hydrogen gas. When the gas flow rate and pressure are stabilized, the Si-based material gas, the C-based material gas, and doping are performed. Epitaxial growth is started by introducing gas simultaneously.
Si系の材料ガスとしては、横型装置の場合にはシランが多用されるが、縦型装置の場合には、前述したように成長温度とほぼ等しい温度になる配管を通過するため、シランでは分解してSiドロップレットやSi化合物等が発生し、配管(ノズル)の閉塞やパーティクル生成の原因となる。そこで、ジクロルシラン、トリクロルシラン、テトラクロルシラン等の塩化珪素系材料ガスが好適に用いられる。また、Si系の材料ガスは単独で流すことができるが、アルゴン等のキャリアガスと共に流すこともできる。一方のC系の材料ガスとしては、エチレン、プロパン等の炭化水素系材料ガスが用いられ、これらのガスは通常水素のキャリアガスと共に、Si系の材料ガスとは別の配管を通じて供給される。 As a Si-based material gas, silane is often used in the case of a horizontal apparatus, but in the case of a vertical apparatus, since it passes through a pipe having a temperature substantially equal to the growth temperature as described above, it is decomposed by silane. As a result, Si droplets, Si compounds, and the like are generated, which causes blockage of the pipe (nozzle) and particle generation. Therefore, silicon chloride material gases such as dichlorosilane, trichlorosilane, and tetrachlorosilane are preferably used. Further, the Si-based material gas can be flowed alone, but can be flowed together with a carrier gas such as argon. On the other hand, hydrocarbon-based material gases such as ethylene and propane are used as the C-based material gas, and these gases are usually supplied through a separate pipe from the Si-based material gas together with a hydrogen carrier gas.
また、ドーピングガスとして、n型の場合は主として窒素が用いられるが、これは独立した別の配管を通じて供給してもよく、Si系あるいはC系材料ガスと混合して供給することも可能である。成長速度は毎時3〜5μm程度である。この成長速度は、通常利用されるエピタキシャル層の膜厚が10μm程度であるため、生産性を考慮して決定されたものである。一定時間成長し、所望の膜厚が得られた時点で、Si系の材料ガスとC系の材料ガス、及びドーピングガスの導入を止め、水素ガスのみ少量流した状態で温度を下げる。温度が常温まで下がった後、水素ガスの導入を止め、成長室内を真空排気し、不活性ガスを成長室に導入して、成長室を大気圧に戻してから、エピタキシャルSiCウエハを取り出す。 In addition, nitrogen is mainly used as a doping gas in the case of n-type, but this may be supplied through another independent pipe, or may be supplied mixed with Si-based or C-based material gas. . The growth rate is about 3 to 5 μm per hour. This growth rate is determined in consideration of productivity because the film thickness of the normally used epitaxial layer is about 10 μm. When a desired film thickness is obtained after growing for a certain period of time, the introduction of the Si-based material gas, the C-based material gas, and the doping gas is stopped, and the temperature is lowered while only a small amount of hydrogen gas is allowed to flow. After the temperature drops to room temperature, the introduction of hydrogen gas is stopped, the growth chamber is evacuated, an inert gas is introduced into the growth chamber, the growth chamber is returned to atmospheric pressure, and the epitaxial SiC wafer is taken out.
次に、縦型CVD装置でエピタキシャル膜成長を行なう際の本発明の成長方法を図2の成長シーケンスで説明する。
先ず、SiC基板をセットし、成長開始直前までは従来方法と同じである。従来方法では、Si系の材料ガスとC系の材料ガス、及びドーピングガスを同時に導入しているが、本発明ではSi系の材料ガスである塩化珪素系材料ガスを先に導入し、その後、C系の材料ガスである炭化水素系材料ガス及びドーピングガスを導入して成長を開始する。それ以降のプロセスについては従来方法と同様にすることができる。このように、成長開始時に塩化珪素系材料ガスを先に導入することによって、従来の場合に比べSiC基板の表面状態が改善する。
Next, the growth method of the present invention when epitaxial film growth is performed with a vertical CVD apparatus will be described with reference to the growth sequence of FIG.
First, the SiC substrate is set, and the process is the same as the conventional method until just before the start of growth. In the conventional method, the Si-based material gas, the C-based material gas, and the doping gas are simultaneously introduced. In the present invention, the silicon chloride-based material gas that is the Si-based material gas is first introduced, and then, Growth is started by introducing a hydrocarbon-based material gas and a doping gas, which are C-based material gases. Subsequent processes can be the same as in the conventional method. Thus, by introducing the silicon chloride material gas first at the start of growth, the surface state of the SiC substrate is improved as compared with the conventional case.
具体的には、炭化水素系材料ガスの供給に先立って、塩化珪素系材料ガスをはじめに導入することで、成長初期のC/Si比が低く抑えられて、ステップフロー成長が促進され、ステップバンチングや三角形欠陥、キャロット/コメット欠陥等の発生を防ぐことができ、平坦性に優れたエピタキシャル膜が得られるようになる。従来方法では、成長開始時に塩化珪素系材料ガスと炭化水素系材料ガスとを同時に供給していたが、上述したように、炭化水素系材料ガスは流量が大きい水素のキャリアガスと共に供給されるため、塩化珪素系材料ガスを同時に流しても、流量の小さい塩化珪素系材料ガスより先に炭化水素系材料ガスがSiC基板表面に到達する。その結果、成長初期ではC/Si比が上がり、ステップフロー成長が阻害されて、表面欠陥が増えてしまう。そこで、本発明のように塩化珪素系材料ガスを先に導入することで、成長初期のC/Si比を低くすることができ、表面欠陥やステップバンチングを抑えることが可能になる。 Specifically, by introducing the silicon chloride material gas first prior to the supply of the hydrocarbon material gas, the C / Si ratio at the initial stage of growth is kept low, step flow growth is promoted, and step bunching is performed. And triangular defects, carrot / comet defects and the like can be prevented, and an epitaxial film with excellent flatness can be obtained. In the conventional method, the silicon chloride-based material gas and the hydrocarbon-based material gas are simultaneously supplied at the start of growth. However, as described above, the hydrocarbon-based material gas is supplied together with the hydrogen carrier gas having a large flow rate. Even if the silicon chloride-based material gas is caused to flow simultaneously, the hydrocarbon-based material gas reaches the SiC substrate surface before the silicon chloride-based material gas having a small flow rate. As a result, the C / Si ratio increases at the initial stage of growth, step flow growth is inhibited, and surface defects increase. Therefore, by introducing the silicon chloride material gas first as in the present invention, the C / Si ratio at the initial stage of growth can be lowered, and surface defects and step bunching can be suppressed.
塩化珪素系材料ガスを炭化水素系材料ガスより先にSiC基板上に到達させる手段について特に制限はないが、例えば、これらの材料ガスを個別に供給する材料ガス供給管に付された材料ガスバルブを開けるタイミング差で行うことができる。また、好ましくは、塩化珪素系材料ガスを供給してから炭化水素系材料ガスの供給を開始するまでの待ち時間(タイムラグ)を1秒以上120秒以下、より好ましくは5秒以上60秒以下にするのがよい。一般的な成長速度は10〜20Å/秒程度であるため、この待ち時間が少なくとも1秒あればSiCの数原子層以上に相当する分のSi原子を先に供給することができるため、単結晶薄膜のエピタキシャル成長において、成長開始時のエピタキシャル欠陥の発生を効果的に防ぐことができる。反対に待ち時間が120秒を超えるとキャリアガスである水素によるSiC基板のエッチングで表面荒れが生じてしまうおそれがある。 There is no particular limitation on the means for causing the silicon chloride-based material gas to reach the SiC substrate prior to the hydrocarbon-based material gas. For example, a material gas valve attached to a material gas supply pipe for individually supplying these material gases is provided. This can be done with the timing difference. Preferably, the waiting time (time lag) from the supply of the silicon chloride-based material gas to the start of the supply of the hydrocarbon-based material gas is 1 second to 120 seconds, more preferably 5 seconds to 60 seconds. It is good to do. Since the general growth rate is about 10 to 20 liters / second, if this waiting time is at least 1 second, Si atoms corresponding to several atomic layers or more of SiC can be supplied first, so that the single crystal In the thin film epitaxial growth, it is possible to effectively prevent the occurrence of epitaxial defects at the start of the growth. On the contrary, if the waiting time exceeds 120 seconds, the surface of the SiC substrate may be roughened by etching of the SiC substrate with hydrogen as a carrier gas.
本発明により、SiC基板上に成長させるエピタキシャル膜について、表面欠陥の少ないSiC単結晶薄膜が得られるようになる。特に、4°乃至それ以下のオフ角を持ったSiC基板を用いてエピタキシャルSiCウエハを得るのにも好適である。そして、本発明は、縦型CVD装置を用いる場合の問題点、すなわち、材料ガスの供給部がSiC基板とほぼ同じ温度であるため、材料ガスをSi系、C系でそれぞれ独立して導入する必要があることから、キャリアガスと共に供給されるC系の材料ガスの方がSiC基板上に速く到達することで表面欠陥が増加する、という不具合を解決するものである。従って、予め材料ガスを混合できる通常の横型CVDの場合には問題とはならず、見落とされていた点であり、今まで検討が殆どなされていなかった縦型CVD装置によるエピタキシャル成長技術の開発の中で初めて見出された知見である。本発明は、今後の量産化を考えた場合に有望な縦型装置を用いて成長したエピタキシャル膜の表面状態の改善には有効な技術である。 According to the present invention, an SiC single crystal thin film with few surface defects can be obtained for an epitaxial film grown on a SiC substrate. In particular, it is also suitable for obtaining an epitaxial SiC wafer using a SiC substrate having an off angle of 4 ° or less. The present invention has a problem in the case of using a vertical CVD apparatus, that is, since the material gas supply unit has substantially the same temperature as the SiC substrate, the material gas is independently introduced into the Si system and the C system, respectively. Since it is necessary, the problem that the surface defect increases when the C-based material gas supplied together with the carrier gas reaches the SiC substrate faster is solved. Therefore, this is not a problem in the case of ordinary horizontal CVD in which material gases can be mixed in advance, and is an overlooked point. In the development of an epitaxial growth technique using a vertical CVD apparatus that has not been studied so far. This is the first finding found in Japan. The present invention is an effective technique for improving the surface state of an epitaxial film grown using a promising vertical apparatus when considering mass production in the future.
このようにして成長されたエピタキシャルSiCウェハ上に好適に形成されるデバイスとしては、例えば、ショットキーバリアダイオード、PINダイオード、MOSダイオード、MOSトランジスタ等、特に電力制御用に用いられるデバイスが挙げられる。 Examples of devices suitably formed on the epitaxial SiC wafer thus grown include devices used for power control, such as Schottky barrier diodes, PIN diodes, MOS diodes, MOS transistors, and the like.
(実施例1)
4インチ(100mm)ウェハ用SiC単結晶インゴットから、約400μmの厚さでスライスし、粗削りとダイヤモンド砥粒による通常研磨後CMPによる仕上げ研磨を実施した、4H型のポリタイプを有するSiC基板のSi面に、図4に示したような縦型CVD装置を用いてエピタキシャル成長を実施した。SiC基板のオフ角は4°である。エピタキシャル成長の手順としては、成長炉(成長室)にSiC基板をセットし、成長炉内を真空排気した後、水素ガスを毎分0.75L、アルゴンガスを毎分15L導入しながら圧力を8×103Paに調整した。その後、圧力を一定に保ちながら成長炉の温度を1550℃まで上げ、5分間のエッチング処理を行った。
(Example 1)
Si of a SiC substrate having a 4H type polytype obtained by slicing from a SiC single crystal ingot for a 4-inch (100 mm) wafer to a thickness of about 400 μm, performing rough polishing and normal polishing with diamond abrasive grains, and then performing final polishing by CMP. On the surface, epitaxial growth was performed using a vertical CVD apparatus as shown in FIG. The off-angle of the SiC substrate is 4 °. As an epitaxial growth procedure, a SiC substrate is set in a growth furnace (growth chamber), the inside of the growth furnace is evacuated, and then a pressure of 8 × is introduced while introducing hydrogen gas at 0.75 L / min and argon gas at 15 L / min. The pressure was adjusted to 10 3 Pa. Thereafter, the temperature of the growth furnace was raised to 1550 ° C. while keeping the pressure constant, and an etching process for 5 minutes was performed.
エッチング処理終了後、アルゴンガスの導入を止め、水素ガスの流量を増やしながら、成長圧力が1.0×103Paとなるように調整し、水素ガスの流量が毎分200Lになって安定した時点で、各材料ガス供給管に付された材料ガスバルブを開けるタイミング差を設けてテトラクロロシラン(SiCl4)を毎分300cm3で最初に5秒導入し、その後SiCl4の流量は変えずにそのまま流したまま、C3H8を毎分100cm3、さらにドーピングガスであるN2を流して120分間のエピタキシャル成長を行い、SiC単結晶薄膜を約10μm成長させた。この時、SiCl4はアルゴンガス(毎分15L)と共にSi系材料ガス供給管4を通じて導入され、また、C3H8はキャリアガスである水素ガス(毎分200L)と共にC系材料ガス供給管5を通じて導入し、更に、N2はSi系材料ガス供給管4と共にドーピングガス供給管6の2本を用い、全体で毎分30ccを導入した。また、結晶成長中の成長温度は1550℃で一定にして行った。 After completion of the etching process, the introduction of argon gas was stopped and the hydrogen gas flow rate was increased while the growth pressure was adjusted to 1.0 × 10 3 Pa, and the hydrogen gas flow rate was stabilized at 200 L / min. At that time, tetrachlorosilane (SiCl 4 ) was first introduced at 300 cm 3 per minute for 5 seconds at the timing of opening the material gas valve attached to each material gas supply pipe, and then the flow rate of SiCl 4 was not changed. while flowing, C 3 H 8 every minute 100 cm 3, epitaxial growth was performed for 120 minutes by flowing N 2 is more doping gas was about 10μm grown SiC single crystal thin film. At this time, SiCl 4 is introduced through the Si-based material gas supply pipe 4 together with argon gas (15 L / min), and C 3 H 8 is a C-based material gas supply pipe together with hydrogen gas (200 L / min) as a carrier gas. In addition, N 2 was introduced at 30 cc per minute in total using two doping gas supply pipes 6 together with the Si-based material gas supply pipe 4. The growth temperature during crystal growth was fixed at 1550 ° C.
このようにしてエピタキシャル成長を行った膜の光学顕微鏡写真を図3に示す。図3より、表面荒れや欠陥の少ない良好な膜が得られていることが分かり、三角形欠陥や、キャロット/コメット等のエピタキシャル欠陥の密度は、1ヶ/cm2であった。また、このエピタキシャル膜表面をAFMで評価したところ、表面粗さのRa値は0.25nmと平坦性に優れていた。 An optical micrograph of the film epitaxially grown in this way is shown in FIG. FIG. 3 shows that a good film with less surface roughness and defects was obtained, and the density of triangular defects and epitaxial defects such as carrot / comet was 1 / cm 2 . Further, when the surface of the epitaxial film was evaluated by AFM, the Ra value of the surface roughness was 0.25 nm and the flatness was excellent.
(実施例2)
実施例1と同様にスライス、粗削り、通常研磨および仕上げ研磨を行った、4H型のポリタイプを有する4インチ(100mm)のSiC基板のSi面に、縦型CVD装置を用いてエピタキシャル成長を実施した。SiC基板のオフ角は4°である。水素ガスの流量が毎分200Lになって安定するまでの手順は、実施例1と同様であるが、水素ガスの流量が安定した後、SiCl4を毎分300cm3で最初に30秒導入し、その後SiCl4の流量は変えずにC3H8を毎分100cm3、さらにドーピングガスであるN2を流して実施例1と同様にして120分間のエピタキシャル成長を行い、SiC単結晶薄膜を約10μm成長させた。この時、SiCl4はアルゴンガス(毎分15L)と共にSi系材料ガス供給管4を通じて導入し、また、C3H8はキャリアガスである水素ガス(毎分200L)と共にC系材料ガス供給管5を通じて導入し、更に、N2はSi系材料ガス供給管4と共にドーピングガス供給管6の2本を用い、全体で毎分30ccを導入した。なお、結晶成長中の成長温度は1550℃で一定にして行った。
(Example 2)
Epitaxial growth was performed using a vertical CVD apparatus on the Si surface of a 4 inch (100 mm) SiC substrate having a 4H type polytype subjected to slicing, rough cutting, normal polishing and finish polishing in the same manner as in Example 1. . The off-angle of the SiC substrate is 4 °. The procedure until the hydrogen gas flow rate is stabilized at 200 L / min is the same as in Example 1. However, after the hydrogen gas flow rate is stabilized, SiCl 4 is first introduced at 300 cm 3 / min for 30 seconds. Then, without changing the flow rate of SiCl 4 , C 3 H 8 was supplied at 100 cm 3 / min, and N 2 as a doping gas was supplied to perform epitaxial growth for 120 minutes in the same manner as in Example 1 to obtain a SiC single crystal thin film of about Grow 10 μm. At this time, SiCl 4 is introduced through the Si-based material gas supply pipe 4 together with argon gas (15 L / min), and C 3 H 8 is a C-based material gas supply pipe together with hydrogen gas (200 L / min) as a carrier gas. In addition, N 2 was introduced at 30 cc per minute in total using two doping gas supply pipes 6 together with the Si-based material gas supply pipe 4. The growth temperature during crystal growth was fixed at 1550 ° C.
このようにしてエピタキシャル成長を行った膜について、実施例1と同様にして評価したところ、エピタキシャル欠陥密度が0.8ヶ/cm2であり、Ra値も0.22nmであって、表面荒れや欠陥の少ない良好な膜であった。 The film epitaxially grown in this way was evaluated in the same manner as in Example 1. As a result, the epitaxial defect density was 0.8 / cm 2 and the Ra value was 0.22 nm. It was a good film with little.
(実施例3)
実施例1と同様にスライス、粗削り、通常研磨および仕上げ研磨を行った、4H型のポリタイプを有する4インチ(100mm)のSiC基板のSi面に、縦型CVD装置を用いてエピタキシャル成長を実施した。SiC基板のオフ角は4°である。水素ガスの流量が毎分200Lになって安定するまでの手順は、実施例1と同様であるが、水素ガスの流量が安定した後、SiCl4を毎分200cm3で最初に20秒導入し、その後SiCl4の流量を毎分300cm3にすると同時にC3H8を毎分100cm3、さらにドーピングガスであるN2を流して実施例1と同様にして120分間のエピタキシャル成長を行い、SiC単結晶薄膜を約10μm成長させた。この時、SiCl4はアルゴンガス(毎分15L)と共にSi系材料ガス供給管4を通じて導入し、また、C3H8はキャリアガスである水素ガス(毎分200L)と共にC系材料ガス供給管5を通じて導入し、更に、N2はSi系材料ガス供給管4と共にドーピングガス供給管6の2本を用い、全体で毎分30ccを導入した。なお、結晶成長中の成長温度は1550℃で一定にして行った。
Example 3
Epitaxial growth was performed using a vertical CVD apparatus on the Si surface of a 4 inch (100 mm) SiC substrate having a 4H type polytype subjected to slicing, rough cutting, normal polishing and finish polishing in the same manner as in Example 1. . The off-angle of the SiC substrate is 4 °. The procedure until the hydrogen gas flow rate is stabilized at 200 L / min is the same as in Example 1. However, after the hydrogen gas flow rate is stabilized, SiCl 4 is first introduced at 200 cm 3 / min for 20 seconds. Thereafter, the flow rate of SiCl 4 is changed to 300 cm 3 per minute, and at the same time, C 3 H 8 is supplied at 100 cm 3 per minute and N 2 as a doping gas is supplied to perform epitaxial growth for 120 minutes in the same manner as in Example 1. A crystal thin film was grown about 10 μm. At this time, SiCl 4 is introduced through the Si-based material gas supply pipe 4 together with argon gas (15 L / min), and C 3 H 8 is a C-based material gas supply pipe together with hydrogen gas (200 L / min) as a carrier gas. In addition, N 2 was introduced at 30 cc per minute in total using two doping gas supply pipes 6 together with the Si-based material gas supply pipe 4. The growth temperature during crystal growth was fixed at 1550 ° C.
このようにしてエピタキシャル成長を行った膜について、実施例1と同様にして評価したところ、エピタキシャル欠陥密度が1.1ヶ/cm2であり、Ra値も0.24nmであって、表面荒れや欠陥の少ない良好な膜であった。 The film epitaxially grown in this way was evaluated in the same manner as in Example 1. As a result, the epitaxial defect density was 1.1 pcs / cm 2 and the Ra value was 0.24 nm. It was a good film with little.
(実施例4)
実施例1と同様にスライス、粗削り、通常研磨および仕上げ研磨を行った、4H型のポリタイプを有する4インチ(100mm)のSiC基板のSi面に、縦型CVD装置を用いてエピタキシャル成長を実施した。SiC基板のオフ角は4°である。水素ガスの流量が毎分200Lになって安定するまでの手順は、実施例1と同様であるが、水素ガスの流量が安定した後、トリクロロシラン(SiHCl3)を毎分300cm3で最初に5秒導入し、その後SiHCl3の流量は変えずにC3H8を毎分100cm3、さらにドーピングガスであるN2を流して実施例1と同様にして120分間のエピタキシャル成長を行い、SiC単結晶薄膜を約10μm成長させた。この時、SiHCl3はアルゴンガス(毎分15L)と共にSi系材料ガス供給管4を通じて導入し、また、C3H8はキャリアガスである水素ガス(毎分200L)と共にC系材料ガス供給管5を通じて導入し、更に、N2はSi系材料ガス供給管4と共にドーピングガス供給管6の2本を用い、全体で毎分30ccを導入した。なお、結晶成長中の成長温度は1550℃で一定にして行った。
Example 4
Epitaxial growth was performed using a vertical CVD apparatus on the Si surface of a 4 inch (100 mm) SiC substrate having a 4H type polytype subjected to slicing, rough cutting, normal polishing and finish polishing in the same manner as in Example 1. . The off-angle of the SiC substrate is 4 °. The procedure until the hydrogen gas flow rate is stabilized at 200 L / min is the same as in Example 1, but after the hydrogen gas flow rate is stabilized, trichlorosilane (SiHCl 3 ) is first added at 300 cm 3 / min. After introducing for 5 seconds, without changing the flow rate of SiHCl 3 , C 3 H 8 was supplied at 100 cm 3 / min, and N 2 as a doping gas was supplied to perform epitaxial growth for 120 minutes in the same manner as in Example 1. A crystal thin film was grown about 10 μm. At this time, SiHCl 3 is introduced through an Si-based material gas supply pipe 4 together with argon gas (15 L / min), and C 3 H 8 is a C-based material gas supply pipe together with hydrogen gas (200 L / min) as a carrier gas. In addition, N 2 was introduced at 30 cc per minute in total using two doping gas supply pipes 6 together with the Si-based material gas supply pipe 4. The growth temperature during crystal growth was fixed at 1550 ° C.
このようにしてエピタキシャル成長を行った膜について、実施例1と同様にして評価したところ、エピタキシャル欠陥密度が1.5ヶ/cm2であり、Ra値も0.27nmであって、表面荒れや欠陥の少ない良好な膜であった。 The film epitaxially grown in this way was evaluated in the same manner as in Example 1. As a result, the epitaxial defect density was 1.5 pcs / cm 2 and the Ra value was 0.27 nm. It was a good film with little.
(実施例5)
実施例1と同様にスライス、粗削り、通常研磨および仕上げ研磨を行った、4H型のポリタイプを有する4インチ(100mm)のSiC基板のSi面に、縦型CVD装置を用いてエピタキシャル成長を実施した。SiC基板のオフ角は4°である。水素ガスの流量が毎分200Lになって安定するまでの手順は、実施例1と同様であるが、水素ガスの流量が安定した後、ジクロロシラン(SiH2Cl2)を毎分300cm3で最初に5秒導入し、その後SiH2Cl2の流量は変えずにC3H8を毎分100cm3、さらにドーピングガスであるN2を流して実施例1と同様にして120分間のエピタキシャル成長を行い、SiC単結晶薄膜を約10μm成長させた。この時、SiH2Cl2はアルゴンガス(毎分15L)と共にSi系材料ガス供給管4を通じて導入し、また、C3H8はキャリアガスである水素ガス(毎分200L)と共にC系材料ガス供給管5を通じて導入し、更に、N2はSi系材料ガス供給管4と共にドーピングガス供給管6の2本を用い、全体で毎分30ccを導入した。なお、結晶成長中の成長温度は1550℃で一定にして行った。
(Example 5)
Epitaxial growth was performed using a vertical CVD apparatus on the Si surface of a 4 inch (100 mm) SiC substrate having a 4H type polytype subjected to slicing, rough cutting, normal polishing and finish polishing in the same manner as in Example 1. . The off-angle of the SiC substrate is 4 °. The procedure until the hydrogen gas flow rate is stabilized at 200 L / min is the same as in Example 1, but after the hydrogen gas flow rate is stabilized, dichlorosilane (SiH 2 Cl 2 ) is added at 300 cm 3 / min. First, 5 seconds was introduced, and then, without changing the flow rate of SiH 2 Cl 2 , C 3 H 8 was supplied at 100 cm 3 / min, and N 2 as a doping gas was supplied to perform epitaxial growth for 120 minutes in the same manner as in Example 1. A SiC single crystal thin film was grown to about 10 μm. At this time, SiH 2 Cl 2 is introduced together with argon gas (15 L / min) through the Si-based material gas supply pipe 4, and C 3 H 8 is C-type material gas together with hydrogen gas (200 L / min) as a carrier gas. Introduced through the supply pipe 5, N 2 was introduced in a total of 30 cc per minute using two Si-based material gas supply pipes 4 and a doping gas supply pipe 6. The growth temperature during crystal growth was fixed at 1550 ° C.
このようにしてエピタキシャル成長を行った膜について、実施例1と同様にして評価したところ、エピタキシャル欠陥密度が1.8ヶ/cm2であり、Ra値も0.29nmであって、表面荒れや欠陥の少ない良好な膜であった。 The film epitaxially grown in this manner was evaluated in the same manner as in Example 1. As a result, the epitaxial defect density was 1.8 pcs / cm 2 and the Ra value was 0.29 nm. It was a good film with little.
(実施例6)
実施例1と同様にスライス、粗削り、通常研磨および仕上げ研磨を行った、4H型のポリタイプを有する4インチ(100mm)のSiC基板のSi面に、縦型CVD装置を用いてエピタキシャル成長を実施した。SiC基板のオフ角が2°である以外は、実施例1と同様のプロセスを用いた。このようにしてエピタキシャル成長を行った膜は、エピタキシャル欠陥密度が2.2ヶ/cm2であり、Ra値も0.32nmであって、表面荒れや欠陥の少ない良好な膜であった。
Example 6
Epitaxial growth was performed using a vertical CVD apparatus on the Si surface of a 4 inch (100 mm) SiC substrate having a 4H type polytype subjected to slicing, rough cutting, normal polishing and finish polishing in the same manner as in Example 1. . The same process as in Example 1 was used except that the off-angle of the SiC substrate was 2 °. The film epitaxially grown in this way had an epitaxial defect density of 2.2 / cm 2 and an Ra value of 0.32 nm, and was a good film with little surface roughness and defects.
(実施例7)
実施例1と同様にスライス、粗削り、通常研磨および仕上げ研磨を行った、4H型のポリタイプを有する4インチ(100mm)のSiC基板のSi面に、縦型CVD装置を用いてエピタキシャル成長を実施した。SiC基板のオフ角が0.5°である以外は、実施例1と同様のプロセスを用いた。このようにしてエピタキシャル成長を行った膜は、エピタキシャル欠陥密度が2.8ヶ/cm2であり、Ra値も0.38nmであって、表面荒れや欠陥の少ない良好な膜であった。
(Example 7)
Epitaxial growth was performed using a vertical CVD apparatus on the Si surface of a 4 inch (100 mm) SiC substrate having a 4H type polytype subjected to slicing, rough cutting, normal polishing and finish polishing in the same manner as in Example 1. . A process similar to that in Example 1 was used except that the off-angle of the SiC substrate was 0.5 °. The film epitaxially grown in this way had an epitaxial defect density of 2.8 / cm 2 , an Ra value of 0.38 nm, and was a good film with little surface roughness and defects.
(比較例1)
実施例1と同様にスライス、粗削り、通常研磨および仕上げ研磨を行った、4H型のポリタイプを有する4インチ(100mm)のSiC基板のSi面に、縦型CVD装置を用いてエピタキシャル成長を実施した。SiC基板のオフ角は4°である。水素ガスの流量が毎分200Lになって安定するまでの手順は実施例1と同様であり、また、SiCl4、C3H8、及びドーピングガスをそれぞれ個別のガス供給管を通じて導入する方法や、各材料ガスと共に流すキャリアガスの種類とその流量、並びに成長温度も実施例1と同様にしたが、SiCl4を毎分300cm3、C3H8を毎分100cm3、さらにドーピングガスであるN2をSi系材料ガス供給管4と共にドーピングガス供給管6の2本を用い、全体で毎分30ccにしてこれらを成長開始時に同時に成長炉内に導入し、120分間のエピタキシャル成長を行ってSiC単結晶薄膜を約10μm成長させた。
(Comparative Example 1)
Epitaxial growth was performed using a vertical CVD apparatus on the Si surface of a 4 inch (100 mm) SiC substrate having a 4H type polytype subjected to slicing, rough cutting, normal polishing and finish polishing in the same manner as in Example 1. . The off-angle of the SiC substrate is 4 °. The procedure until the hydrogen gas flow rate is stabilized at 200 L / min is the same as in Example 1, and a method of introducing SiCl 4 , C 3 H 8 , and doping gas through individual gas supply pipes, respectively. The type and flow rate of the carrier gas that flows together with each material gas, and the growth temperature were also the same as in Example 1, but SiCl 4 was 300 cm 3 / min, C 3 H 8 was 100 cm 3 / min, and the doping gas. N 2 is used in two doping gas supply pipes 6 together with the Si-based material gas supply pipe 4, and the total is set to 30 cc per minute, and these are simultaneously introduced into the growth furnace at the start of growth, and epitaxial growth is performed for 120 minutes to produce SiC. A single crystal thin film was grown to about 10 μm.
このようにしてエピタキシャル成長を行った膜について、実施例1と同様にして評価したところ、エピタキシャル欠陥密度が12ヶ/cm2と実施例1に比べて増加し、Ra値も1.0nmと大きい値を示した。これは、SiCl4とC3H8を同じタイミングで供給したことにより、成長開始時にC3H8がSiCl4よりも早くSiC基板上に到達し、C/Si比が上昇したためと考えられる。 The film grown in this manner was evaluated in the same manner as in Example 1. As a result, the epitaxial defect density increased to 12 / cm 2 compared to Example 1, and the Ra value was as large as 1.0 nm. showed that. This can be achieved by supplying the SiCl 4 and C 3 H 8 at the same timing, C 3 H 8 reaches earlier SiC substrate than SiCl 4 at the start of growth, presumably because C / Si ratio is increased.
(比較例2)
実施例1と同様にスライス、粗削り、通常研磨および仕上げ研磨を行った、4H型のポリタイプを有する4インチ(100mm)のSiC基板のSi面に、縦型CVD装置を用いてエピタキシャル成長を実施した。SiC基板のオフ角は4°である。水素ガスの流量が毎分200Lになって安定するまでの手順は実施例1と同様とし、また、Si系の材料ガスとしてシラン(SiH4)を使用した以外は実施例1と同様にした。すなわち、水素ガスの流量が安定した後、シラン(SiH4)を毎分300cm3で最初に5秒導入し、その後SiH4の流量は変えずにC3H8を毎分100cm3、さらにドーピングガスであるN2を流して実施例1と同様にして120分間のエピタキシャル成長を行い、SiC単結晶薄膜を約10μm成長させた。この時、SiH4はアルゴンガス(毎分15L)と共にSi系材料ガス供給管4を通じて導入し、また、C3H8はキャリアガスである水素ガス(毎分200L)と共にC系材料ガス供給管5を通じて導入し、更に、N2はSi系材料ガス供給管4と共にドーピングガス供給管6の2本を用い、全体で毎分30ccを導入した。なお、結晶成長中の成長温度は1550℃で一定にして行った。
(Comparative Example 2)
Epitaxial growth was performed using a vertical CVD apparatus on the Si surface of a 4 inch (100 mm) SiC substrate having a 4H type polytype subjected to slicing, rough cutting, normal polishing and finish polishing in the same manner as in Example 1. . The off-angle of the SiC substrate is 4 °. The procedure until the hydrogen gas flow rate was stabilized at 200 L / min was the same as in Example 1, and was the same as in Example 1 except that silane (SiH 4 ) was used as the Si-based material gas. That is, after the flow rate of the hydrogen gas is stabilized, silane (SiH 4 ) is first introduced at 300 cm 3 per minute for 5 seconds, and then C 3 H 8 is added at 100 cm 3 per minute without changing the SiH 4 flow rate. N 2 as a gas was flown and epitaxial growth was performed for 120 minutes in the same manner as in Example 1 to grow a SiC single crystal thin film of about 10 μm. At this time, SiH 4 is introduced through the Si-based material gas supply pipe 4 together with argon gas (15 L / min), and C 3 H 8 is a C-based material gas supply pipe together with hydrogen gas (200 L / min) as a carrier gas. In addition, N 2 was introduced at 30 cc per minute in total using two doping gas supply pipes 6 together with the Si-based material gas supply pipe 4. The growth temperature during crystal growth was fixed at 1550 ° C.
このようにしてエピタキシャル成長を行った膜について、実施例1と同様にして評価したところ、エピタキシャル欠陥密度が55ヶ/cm2であり、Ra値も2.5nmと大きい値を示した。これは、Si系材料ガス供給管の中でSiH4が分解し、それにより生成したSiドロップレットあるいはSi化合物等の影響で表面状態が悪化したためと考えられる。 The film epitaxially grown in this manner was evaluated in the same manner as in Example 1. As a result, the epitaxial defect density was 55 / cm 2 and the Ra value was as large as 2.5 nm. This is presumably because SiH 4 was decomposed in the Si-based material gas supply pipe, and the surface state deteriorated due to the influence of Si droplets or Si compounds generated thereby.
この発明によれば、好適には、縦型CVD装置を用いたSiC単結晶基板上へのエピタキシャル成長において、エピタキシャル欠陥を低減した高品質エピタキシャル膜を有するエピタキシャルSiCウエハを作成することが可能である。そのため、このようなエピタキシャルSiCウエハ上に電子デバイスを形成すれば、デバイスの特性及び歩留まりが向上することが期待できる。 According to the present invention, preferably, an epitaxial SiC wafer having a high-quality epitaxial film with reduced epitaxial defects can be produced in epitaxial growth on a SiC single crystal substrate using a vertical CVD apparatus. Therefore, if an electronic device is formed on such an epitaxial SiC wafer, it can be expected that device characteristics and yield are improved.
1:基板処理装置、2:成長室、3:基板ホルダー、4:Si系材料ガス供給管、4a:Si系材料ガス吹出し口、5:C系材料ガス供給管、5a:C系材料ガス吹出し口、6:ドーピングガス供給管、6a:ドーピングガス吹出し口、7:加熱手段、8:容器(筐体)、9:真空ポンプ、10:炭化珪素単結晶基板。 1: substrate processing apparatus, 2: growth chamber, 3: substrate holder, 4: Si-based material gas supply pipe, 4a: Si-based material gas outlet, 5: C-based material gas supply pipe, 5a: C-based material gas outlet 6: doping gas supply pipe, 6a: doping gas outlet, 7: heating means, 8: container (housing), 9: vacuum pump, 10: silicon carbide single crystal substrate.
Claims (9)
エピタキシャル成長の成長温度において塩化珪素系材料ガスを炭化珪素単結晶基板上に供給した後に、炭化水素系材料ガスの供給を開始して炭化珪素単結晶薄膜をエピタキシャル成長させることを特徴とするエピタキシャル炭化珪素ウエハの製造方法。 Using a substrate processing apparatus having a vertical arrangement structure in which a plurality of silicon carbide single crystal substrates are arranged in a growth chamber in a direction in which they are stacked with a gap therebetween, silicon chloride-based material gas and hydrocarbon-based material gas are individually separated A method for producing an epitaxial silicon carbide wafer by epitaxially growing a silicon carbide single crystal thin film by a CVD method on a silicon carbide single crystal substrate while supplying,
An epitaxial silicon carbide wafer characterized in that after a silicon chloride-based material gas is supplied onto a silicon carbide single crystal substrate at a growth temperature for epitaxial growth , the supply of the hydrocarbon-based material gas is started to epitaxially grow the silicon carbide single crystal thin film. Manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012203079A JP5910430B2 (en) | 2012-09-14 | 2012-09-14 | Method for manufacturing epitaxial silicon carbide wafer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012203079A JP5910430B2 (en) | 2012-09-14 | 2012-09-14 | Method for manufacturing epitaxial silicon carbide wafer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014058411A JP2014058411A (en) | 2014-04-03 |
JP5910430B2 true JP5910430B2 (en) | 2016-04-27 |
Family
ID=50615261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012203079A Active JP5910430B2 (en) | 2012-09-14 | 2012-09-14 | Method for manufacturing epitaxial silicon carbide wafer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5910430B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112021006680T5 (en) | 2021-02-01 | 2023-11-23 | Rohm Co., Ltd. | PRODUCTION DEVICE OF A SIC EPITAXY WAFER AND PROCESS FOR PRODUCING THE SIC EPITAXY WAFER |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105658847B (en) * | 2014-02-28 | 2018-08-10 | 昭和电工株式会社 | The manufacturing method of epi-taxial silicon carbide silicon wafer |
JP6315579B2 (en) | 2014-07-28 | 2018-04-25 | 昭和電工株式会社 | Method for manufacturing SiC epitaxial wafer |
US9279192B2 (en) * | 2014-07-29 | 2016-03-08 | Dow Corning Corporation | Method for manufacturing SiC wafer fit for integration with power device manufacturing technology |
JP6579710B2 (en) * | 2015-12-24 | 2019-09-25 | 昭和電工株式会社 | Method for manufacturing SiC epitaxial wafer |
JP6481790B2 (en) * | 2018-03-20 | 2019-03-13 | 昭和電工株式会社 | SiC epitaxial wafer |
KR102229588B1 (en) | 2020-05-29 | 2021-03-17 | 에스케이씨 주식회사 | Manufacturing method of wafer, manufacuring method of epitaxial wafer, wafer and epitaxial wafer manufactured thereby |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003234301A (en) * | 2001-10-25 | 2003-08-22 | Matsushita Electric Ind Co Ltd | Semiconductor substrate, semiconductor element and method for manufacturing the same |
US7147713B2 (en) * | 2003-04-30 | 2006-12-12 | Cree, Inc. | Phase controlled sublimation |
JP4581081B2 (en) * | 2004-03-25 | 2010-11-17 | 独立行政法人産業技術総合研究所 | Method for producing silicon carbide smoothed substrate used for producing epitaxial wafer, apparatus for smoothing silicon carbide substrate surface and SiC epitaxial growth |
US8574528B2 (en) * | 2009-09-04 | 2013-11-05 | University Of South Carolina | Methods of growing a silicon carbide epitaxial layer on a substrate to increase and control carrier lifetime |
JP2012019081A (en) * | 2010-07-08 | 2012-01-26 | Hitachi Kokusai Electric Inc | Substrate treatment apparatus, semiconductor device manufacturing method and substrate manufacturing method |
JP2012178492A (en) * | 2011-02-28 | 2012-09-13 | Hitachi Kokusai Electric Inc | Substrate processing device, gas nozzle, and method of manufacturing substrate or semiconductor device |
-
2012
- 2012-09-14 JP JP2012203079A patent/JP5910430B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112021006680T5 (en) | 2021-02-01 | 2023-11-23 | Rohm Co., Ltd. | PRODUCTION DEVICE OF A SIC EPITAXY WAFER AND PROCESS FOR PRODUCING THE SIC EPITAXY WAFER |
Also Published As
Publication number | Publication date |
---|---|
JP2014058411A (en) | 2014-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5910430B2 (en) | Method for manufacturing epitaxial silicon carbide wafer | |
KR101478331B1 (en) | Method for producing epitaxial silicon carbide single crystal substrate | |
CN106757324B (en) | A kind of manufacturing method of silicon epitaxial wafer | |
US10907273B2 (en) | Growing epitaxial 3C-SiC on single-crystal silicon | |
CN111029246B (en) | Method for reducing triangular defects in SiC epitaxial layer | |
US10090152B2 (en) | Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium | |
JPH01162326A (en) | Manufacture of beta-silicon carbide layer | |
KR101971597B1 (en) | Wafer and method of fabrication thin film | |
JP6304699B2 (en) | Method for manufacturing epitaxial silicon carbide wafer | |
CN104867818B (en) | A kind of method for reducing silicon carbide epitaxy material defect | |
JP5786759B2 (en) | Method for manufacturing epitaxial silicon carbide wafer | |
JP5996406B2 (en) | Method for manufacturing silicon carbide epitaxial wafer | |
CN117153671B (en) | Epitaxial growth method of silicon carbide substrate and silicon carbide epitaxial wafer | |
JP2015198213A (en) | Method of manufacturing epitaxial silicon carbide wafer, and holde for silicon carbide single cristal substrate used for the same | |
WO2020158657A1 (en) | Film forming apparatus and film forming method | |
JP2006526277A (en) | Epitaxial semiconductor film growth method and structure | |
JP2013035731A (en) | Manufacturing method for single crystal silicon carbide film and manufacturing method for substrate with single crystal silicon carbide film | |
JP2000315656A (en) | Manufacture of epitaxial silicon substrate | |
GB2540608A (en) | Growing epitaxial 3C-SiC on single-crystal silicon | |
US9269572B2 (en) | Method for manufacturing silicon carbide semiconductor substrate | |
JP2008243938A (en) | Thermal cvd method and thermal cvd device | |
JP2016096178A (en) | Deposition method, semiconductor element manufacturing method and free-standing substrate manufacturing method | |
WO2012161265A1 (en) | Method and apparatus for producing semiconductor thin film crystal | |
JP2024500584A (en) | Method for growing high-quality heteroepitaxial monoclinic gallium oxide crystals | |
KR101088678B1 (en) | Method of forming a thin film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140811 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150729 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150818 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150928 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160301 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160314 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5910430 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |