JPS61144846A - Large scale integrated circuit device - Google Patents
Large scale integrated circuit deviceInfo
- Publication number
- JPS61144846A JPS61144846A JP26717784A JP26717784A JPS61144846A JP S61144846 A JPS61144846 A JP S61144846A JP 26717784 A JP26717784 A JP 26717784A JP 26717784 A JP26717784 A JP 26717784A JP S61144846 A JPS61144846 A JP S61144846A
- Authority
- JP
- Japan
- Prior art keywords
- chip
- layer
- equivalent
- region
- integrated circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000758 substrate Substances 0.000 claims abstract description 15
- 239000004065 semiconductor Substances 0.000 claims description 8
- 230000000295 complement effect Effects 0.000 claims 1
- 238000009434 installation Methods 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 13
- 230000003071 parasitic effect Effects 0.000 abstract description 5
- 238000003780 insertion Methods 0.000 abstract 1
- 230000037431 insertion Effects 0.000 abstract 1
- 238000013461 design Methods 0.000 description 8
- 238000009792 diffusion process Methods 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 101000721176 Homo sapiens Protein DBF4 homolog B Proteins 0.000 description 1
- 102100025199 Protein DBF4 homolog B Human genes 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/088—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
- H01L27/092—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
- H01L27/0921—Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Semiconductor Integrated Circuits (AREA)
- Design And Manufacture Of Integrated Circuits (AREA)
- Element Separation (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明はデータ処理装置等のシステム構成の簡単化をは
かった大規模集積回路装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a large-scale integrated circuit device that has a simplified system configuration such as a data processing device.
パーソナルコンピュータ等のシステム構成するKは、通
常複数個のr、sI(大規模集積回路)を組み合わせて
使う。これらはCPU (中央処理装置)、ROM (
リード・オンリ・メモリ)、RAM(ランダム・アクセ
ス・メモリ)、キー人力制御部、シリアル入出力部、パ
ラレル入出力部、カウンタタイミング制御部、表示駆動
部等多くのチップにカシ、各チップ間の相互配線はプリ
ント基板によシなされる。ところがこの方法は、プリン
ト基板上の相互配線が複雑で製作に手間がかかシ、コス
トアッグの原因となる。K, which constitutes a system such as a personal computer, is usually used in combination with a plurality of r and sI (large scale integrated circuits). These are CPU (Central Processing Unit), ROM (
Read-only memory), RAM (random access memory), key manual control section, serial input/output section, parallel input/output section, counter timing control section, display drive section, etc., and there are many chips between each chip. Inter-wiring is done on a printed circuit board. However, with this method, the interconnections on the printed circuit board are complicated and the manufacturing process is labor-intensive, resulting in increased costs.
またプリント配線の静電容量が大きい丸め、各チップの
スピードが早くなっても、システム全体のスピードアラ
fKつながらない。また故障率が高い等の理由から、ユ
ーザとしての要求は1システムに使用される複数個のL
SIを1チツグ化出来ないか″という要求が大変強い。Also, even if the printed wiring has a large capacitance and the speed of each chip becomes faster, the overall system speed will not be as high as fK. In addition, due to the high failure rate, the user's request is to reduce the number of L
There is a strong demand for SI to be made into a single unit.
上記1チツグ化の要求に応える方法としては、(支)全
システムを再度設計して新九表1チップL8Iをつくる
、←)複数個のチップを1つの74ツケージの中に封入
していわゆるハイブリッドIC(集積回路)とする、等
が考えられる。上記f。As a method to meet the above-mentioned demand for one chip, (support) redesign the entire system to create a new 1-chip L8I chip, or (←) encapsulate multiple chips in one 74-chip cage to create a so-called hybrid chip. It is conceivable to use an IC (integrated circuit). Above f.
項の全システムを再設計する方法の場合、現在ある設計
手法としては、■全て手設計による方法、■電算機を導
入したビルディングブロック方式の自動設計による方法
、■ダートアレイ等による自動設計、等がある。これら
■〜■ともいずれも利点/欠点があるが、再設計の最大
の欠点は、「各チップはすでに開発されて、機能、特性
とも充分評価され可となっているのに、また同様のもの
を再度設計するため、設計、評価のqPJI[をもう一
度踏まねばならぬ」ことである。In the case of the method of redesigning the entire system described in section 3.2, the current design methods include: ■ Complete manual design method, ■ Automatic design method using a building block method using a computer, ■ Automatic design using a dirt array, etc. There is. All of these ■~■ have advantages and disadvantages, but the biggest disadvantage of redesigning is that ``each chip has already been developed and has been sufficiently evaluated in terms of function and characteristics; In order to design the project again, the design and evaluation qPJI must be carried out again.
従って設計ミスのおそれがあったシ、開発時間がかかる
等種々の問題があシ、能がない方法と云わざるを得ない
。Therefore, there are various problems such as the risk of design errors and the time required for development, so it cannot help but be said that this method is ineffective.
上記←)項のハイブリッドICの方法は、これは外部か
ら見ると1個の部品として見えるだけで、上記プリント
基板に複数個のチップを実装し、配線する方法を単に小
さくしただけにすぎない。勿論小さくしただけのメリッ
トはそれなシにあるが、実際の実装技術として、どれだ
けの個数のチップがハイブリッド化できるか疑問が残る
ところであシ、実現出来たとしても相当のコストアッグ
となるであろう。The hybrid IC method described in item ←) above appears as a single component when viewed from the outside, and is merely a miniaturization of the method of mounting and wiring a plurality of chips on the printed circuit board. Of course, there are advantages to just making it smaller, but as an actual implementation technology, there are still doubts as to how many chips can be hybridized, and even if it were possible, the cost would increase considerably. Dew.
そこで本出願人は、再設計、ハイブリッド化いずれとも
異なる新たなシステムの1チツプ化を可能とする大規模
集積回路を提案したく例えば特願昭58−91003号
)。第8図はこの提案を示すもので、図中1は半導体チ
ップ、人。Therefore, the present applicant would like to propose a large-scale integrated circuit that enables a new system to be integrated into a single chip, which is different from either redesign or hybridization (for example, Japanese Patent Application No. 58-91003). Figure 8 shows this proposal, where 1 represents a semiconductor chip and a person.
Bはチッf1内で同一工程でいっしょに形成されたチッ
プ相当領域で、これら領域はそれぞれ以゛前にチッfh
、チッfBとして評価ずみのものである。2,3はチッ
プ相当領域A、Bが以前チップA、Bであった時のがン
ディングパッド(これを仮にインナーがンディングノ4
.ドという)、4はチップ1の一ンディングΔツド(こ
れを仮にアウターがンディングノ譬ツドという)である
。このように既に評価確認ずみのチップ相当領域AとB
を適当なスペース5を置いてチップ1内に配置形成する
。このスペース5はチップ相当領域ム、B間の相互配線
6の配線領域であシ、またチップ周縁付近には、1チツ
プ化した後KLSIからのリード端子として外部と接続
するための?ンディングパッドとの配11(これを仮に
外部配線という)7に使用される配線領域も設けられる
。即ちチップ相当領域Aと1間の相互配線6を、領域A
、B各々が有している該当?ンディングノ々ツド間で上
記配線領域5を利用して領域A、Bのプロセスによる配
線層(/リシリコン、アルミニウム等)でつくる。更に
外部配線7に相幽す′るぎ7デイングパツド4をチップ
周辺に必要個数レイアウトし、外部配線7を、該当する
領域A、BのゲンディングΔツド2,3とアクタ−がン
ディングパ。B is a chip-equivalent region formed together in the same process in the chip f1, and these regions were previously formed in the chip fh.
, which has been evaluated as ChifB. 2 and 3 are the landing pads when the chip equivalent areas A and B used to be chips A and B (temporarily assume that the inner
.. The number 4 is the leading edge of the chip 1 (this is temporarily referred to as the outer winding point). In this way, the chip equivalent areas A and B whose evaluation has already been confirmed
are arranged and formed within the chip 1 with an appropriate space 5. This space 5 is a wiring area for mutual wiring 6 between the chip corresponding area M and B, and there is also space near the chip periphery for connection to the outside as a lead terminal from the KLSI after it is integrated into one chip. A wiring area used for wiring 11 (temporarily referred to as external wiring) 7 with the landing pad is also provided. That is, the mutual wiring 6 between the chip-equivalent regions A and 1 is
, which B each has? The wiring region 5 is used between the bonding nodes to form a wiring layer (of silicon, aluminum, etc.) by the process of regions A and B. Furthermore, a necessary number of connecting pads 4 are laid out around the chip, and the external wiring 7 is connected to the ending pads 2 and 3 of the corresponding areas A and B, and the actuator landing pads.
ド4の間で、やはj9/リシリコン、アルミニウム等で
つくる。Between 4 and 4, it is made of silicon, aluminum, etc.
第9図は第8図の一部断面を示すもので、11はチップ
相当領域AまたはBのトランジスタ領域、12はN型基
板、13.14はpmソース、ドレイン領域、15は絶
縁膜、16は一すシリコンff−)電極、17はアルミ
ニウム配線、18は配線領域5での配線交差領域で、1
71.17゜は第8図の配線6に対応するアルミ−ラム
配線層、19は4リシリコン配線層である。9 shows a partial cross section of FIG. 8, 11 is a transistor region of chip equivalent area A or B, 12 is an N-type substrate, 13.14 is a pm source and drain region, 15 is an insulating film, 16 is a 1 is a silicon ff-) electrode, 17 is an aluminum wiring, 18 is a wiring crossing area in the wiring area 5,
71.17° is an aluminum-ram wiring layer corresponding to the wiring 6 in FIG. 8, and 19 is a 4-Si wiring layer.
第8図、第9図に示される本集積回路装置は、1枚の半
導体基体12上につくら゛れるが、このような装置をつ
くるためのガラスiスクΔターンを設計することは非常
に容易であシ、ミスを ゛犯すことも殆んどない。更
にチップ相当領域A。The present integrated circuit device shown in FIGS. 8 and 9 is fabricated on a single semiconductor substrate 12, but it is very easy to design a glass i-sk Δ turn to fabricate such a device. I almost never make a mistake. Furthermore, chip equivalent area A.
Bは従来のチップ構成にほとんど手を加えないので、機
能、特性ともに評価確認ずみのものがそのまま1チツグ
化される。また本装置を得るのに従来の製造プロセスが
そのまま適用できるものである。B requires almost no modification to the conventional chip configuration, so the functions and characteristics that have already been evaluated and confirmed can be integrated into a single chip. Furthermore, conventional manufacturing processes can be applied as they are to obtain this device.
ところで上記のように複数チップ相当領域A。By the way, as mentioned above, the area A corresponds to multiple chips.
B’QIチップ内に形成した場合、チップ相当領域Aと
Bとの間、もしくはチップ相当領域大またiBとチップ
周縁との間にラッチアップ現象、つまシ入出力端子に過
大なサージ、ノイズ等の過大電圧、電流が印加された場
合もしくは内部回路からのノイズによシミ連間に異常電
流が流れ続ける現象が生じる。第10図、第11図はチ
ップ相当領域AとBとの間のラッチアップ現象を説明す
るためのもので、第10図はチップA、B間の隣接付近
の回路構成図、第11図は同断面図である。図中21.
22はチップ人肉に構成された低インピーダンスバッフ
ァのPチャネル型、Nチャネル型トランジスタ、23は
その出カッ々ツド、24はチッグB内に構成され九Nチ
ャネル型トランジスタ、25.26はN型基板27を電
源VDDの電位にバイヤスするための基板バイヤス用N
型拡散層、28.29はトランジスタ21のソース、ド
レイン層、30はPウェル層、31.32はトランジス
タ24のソース、ドレイン層、33は2層29または2
8゜+
N層25またはN型基板27.Pウェル層30をエミッ
タ、ベース、コレクタとする寄生のラテラルPNP )
ランジスタ、34はN型基板27゜Pウェル層so、N
層sxtコレクタ、ベース。When formed in a B'QI chip, there may be latch-up phenomenon between the chip-equivalent areas A and B, or between the chip-equivalent area or iB and the chip periphery, excessive surges, noise, etc. at the input/output terminals. If an excessive voltage or current is applied to the product, or noise from the internal circuit occurs, an abnormal current may continue to flow between the stains. Figures 10 and 11 are for explaining the latch-up phenomenon between chip equivalent areas A and B. Figure 10 is a circuit diagram of the adjacent area between chips A and B, and Figure 11 is a diagram of the circuit configuration near the adjacent chips. It is the same sectional view. 21 in the figure.
22 is a P-channel type and N-channel type transistor of a low impedance buffer configured in the chip body, 23 is its output capacitor, 24 is a nine N-channel type transistor configured in the chip B, and 25.26 is an N-type substrate. N for board bias to bias 27 to the potential of power supply VDD
type diffusion layer, 28.29 is the source and drain layer of the transistor 21, 30 is the P well layer, 31.32 is the source and drain layer of the transistor 24, 33 is the double layer 29 or 2
8°+N layer 25 or N type substrate 27. Parasitic lateral PNP with P-well layer 30 as emitter, base, and collector)
transistor, 34 is N-type substrate 27°P well layer so, N
Layer sxt collector, base.
エミッタとする寄生のラテラルNPN )ランジスタで
ある。It is a parasitic lateral NPN transistor with an emitter.
第1O図、第11図にあっては、/4ツド23を介して
2層29に外来ノイズ(vDDレベル以上)が入ると、
電流11が流れてラテラルPNP )ランジスタ33の
ベース電流となシ、そのh□(電流増幅率)に応じてコ
レクタ電流i、をPウェル層30に対しで流す。すると
Pウェル層30の電位が電源VDD側に上シ、電流1s
が流れてラテラルNPN )ランジスタ34がオンし、
電流I4がN層(接地電位)よ電流れる。これによシ基
板27の電位が接地側に引かれてN層25付近の電位が
下シ、2層28をエミッタとするラテラルトランジスタ
33のベース電流を流す。このときラテラルNPN )
ランジスタ34もオン状態で、ラッチアップ現象に入る
ものである。In FIGS. 1O and 11, when external noise (above the vDD level) enters the second layer 29 through the /4 wire 23,
A current 11 flows and becomes a base current of the lateral PNP transistor 33, and a collector current i is caused to flow to the P well layer 30 in accordance with its h□ (current amplification factor). Then, the potential of the P well layer 30 rises to the power supply VDD side, and the current increases for 1 s.
flows and lateral NPN ) transistor 34 turns on,
A current I4 flows through the N layer (ground potential). As a result, the potential of the substrate 27 is pulled to the ground side, the potential near the N layer 25 is lowered, and a base current of the lateral transistor 33 whose emitter is the second layer 28 flows. At this time, lateral NPN)
The transistor 34 is also in an on state and enters a latch-up phenomenon.
即ち、すでに設計評価されたチップにおいては、その各
端子に対してラッチアップ電圧、電流を保証するため、
A/ツド周辺領域K>いてその対策がなされている。し
かしながら個々のチップにシいては、ノ臂ツドよシチッ
デ内部にいたる領域においてその対策がなされるのみで
、チップ外部にいたる領域においては同対策がなされて
いないのが一般的である。なぜならパッドよシチッグ外
部へいたる領域においては、高々一方の導電型トランジ
スタのみしか存在しないため、この領域でのラッチアッ
プは生じないからである。In other words, in a chip that has already been designed and evaluated, in order to guarantee the latch-up voltage and current for each terminal,
A/Tsudo peripheral area K> and countermeasures have been taken. However, when it comes to individual chips, countermeasures are generally taken only in areas from the neck to the inside of the chip, but not in areas outside the chip. This is because in the region extending from the pad to the outside of the transistor, only one conductivity type transistor exists at most, so latch-up does not occur in this region.
このように従来は、パッドよシチッグ内部へいたる領域
において、サージ吸収のための14タ一ン的手段がとら
れる。ところが第8図ないし第11図で示される如き大
規模集積回路装置では、既に設計評価された各チップ(
チップ相当領域)のチップ外方向にもトランジスタ素子
かのスイ・チノ゛グ蒔門瞬時電流が流れ、それがサージ
電流となシ、半導体チッf1の半導体基板を通してサー
ジがチッfHに伝播し、ラッチアップ現象を引き起こす
、特にチッ7’A 、 1間で、P、Nチャネルトラン
ジスタが対向して存在する場合にラッチアップを起こし
やすい。As described above, conventionally, 14-tank measures are taken to absorb surges in the region from the pad to the inside of the trigger. However, in large-scale integrated circuit devices such as those shown in FIGS. 8 to 11, each chip (
An instantaneous switching current from the transistor element also flows in the outside of the chip (chip equivalent area), and this does not become a surge current.The surge propagates to the chip fH through the semiconductor substrate of the semiconductor chip f1, causing the latch. In particular, when P and N channel transistors are located facing each other between chips 7'A and 1, latch-up is likely to occur.
更に高速動作に耐え得るチップはど、そのスイッチング
特性を改善するために出力バッファのイyビーダ/スは
低く設定され、従りてよシ多くのスイッチング電流を誘
起する。またデッド23が外部端子へ接続されている場
合には、外部からのサージによシ、チップA、B間でラ
ッチアップを誘起するものである。Furthermore, in a chip capable of withstanding high speed operation, the output buffer's enabler/s is set low to improve its switching characteristics, thus inducing more switching current. Further, when the dead 23 is connected to an external terminal, a latch-up is induced between the chips A and B due to a surge from the outside.
本発明は上記実情に鑑みてなされたもので、同一半導体
内にそれぞれ独立して形成された複数のチップ相当領域
を有する大規模集積回路のラッチアップ現象の防止を目
的とするものである。The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to prevent the latch-up phenomenon in a large-scale integrated circuit having a plurality of chip-equivalent regions formed independently within the same semiconductor.
ラッチアップ現象を防止するには、Pチャネルトランジ
スタが形成される領域とNチャネルトランジスタが形成
される領域の間に伝播するトリガ電流をその間で軽減し
てやればよい。従りて本発明では、複数のチップ相当領
域の対向する領域もしくは、チッグ相用領域とチップ外
縁との間即ち、チップ相当領域外の領域に抵抗の小さい
高濃度の不純物層を設け、これを適当な電源レベルにバ
イヤスするものである。In order to prevent the latch-up phenomenon, the trigger current that propagates between the region where the P-channel transistor is formed and the region where the N-channel transistor is formed may be reduced therebetween. Therefore, in the present invention, a highly concentrated impurity layer with low resistance is provided in the opposing regions of a plurality of chip-equivalent regions or between the chig phase region and the outer edge of the chip, that is, in the region outside the chip-equivalent region. It biases the power supply level appropriately.
以下因習を参照して本発明の一実施例を説明する。第1
図は同実施例の平面図、第2図はそのチップ相当領域間
の隣接付近の平面的構成図、第3図は同断両図であるが
、これらは前記第8図、第10図、第11図のものと対
応させた場合の例であるから、対応個所には同一符号を
付しく説明を省略し、特徴とする点を説明する。An embodiment of the present invention will be described below with reference to the following. 1st
The figure is a plan view of the same embodiment, FIG. 2 is a planar configuration diagram of the adjacent area between chip-equivalent regions, and FIG. 3 is a cross-sectional view of the same. Since this is an example of a case where this corresponds to that shown in FIG. 11, the corresponding parts are given the same reference numerals, and the explanation will be omitted, and the characteristic points will be explained.
この実施例の特徴は、チップ相当領域A、1間に高濃度
のN型拡散層41を設け、これを電源VDり(>0)に
バイヤスしたことである。The feature of this embodiment is that a high concentration N-type diffusion layer 41 is provided between the chip equivalent regions A and 1, and this is biased relative to the power supply VD (>0).
第1図ないし第3図のものにあっては、ゲンディングΔ
ツド42よりのサージもしくは低インピーダンスバッフ
ァのスイッチング時のサージによシ、2層29にサージ
が加わシ、ここから基板27を通して電源VDtl側に
電流11が流れ込む。即ち、この電流は、2層29に最
も近接しvDDK/4イアスされAN層25に流れ込む
。For those shown in Figures 1 to 3, the gendering Δ
Due to a surge from the pin 42 or a surge during switching of the low impedance buffer, a surge is applied to the second layer 29, and the current 11 flows from there through the substrate 27 to the power supply VDtl side. That is, this current flows into the AN layer 25 closest to the second layer 29 and is biased by vDDK/4.
これは寄生ラテラルPNP )ランジスタ33のベース
電流となシ、コレクタ電流13を生ずる。This causes a base current of the parasitic lateral PNP transistor 33 and a collector current 13.
ζζでN層41が存在しない場合には、電流の流し側に
あるN層25の電源MDI)はより正のVl)Dとな)
N層26との間に電位勾配を生ずる。If the N layer 41 does not exist at ζζ, the power supply MDI) of the N layer 25 on the current flow side becomes a more positive Vl)D)
A potential gradient is generated between the N layer 26 and the N layer 26.
これは、N層25ないし8層27をベースとするトラン
ジスタのベース領域に電位傾斜が生ずることを意味し、
ラテラルトランジスタ33の電流利得を改善し、前述の
ようなラッチアップ現象を誘起しやすくなる。一方、低
抵抗のN層41を挿入すれば、ラテラルトランジスタ3
30ペース内の電位傾斜を軽減することができ、該トラ
ンジスタ33の電流利得を低下させ得てラッチアップ現
象を防止できるものでおる。This means that a potential gradient occurs in the base region of the transistor based on the N layer 25 to the 8 layer 27,
This improves the current gain of the lateral transistor 33, making it easier to induce the aforementioned latch-up phenomenon. On the other hand, if a low resistance N layer 41 is inserted, the lateral transistor 3
This makes it possible to reduce the potential gradient within the transistor 30, reduce the current gain of the transistor 33, and prevent the latch-up phenomenon.
上記実施例ではN型基板の場合を説明したが、PH1基
板の場合にB s N”層41の代シにP+層を。In the above embodiment, the case of an N-type substrate was explained, but in the case of a PH1 substrate, a P+ layer is used instead of the B s N'' layer 41.
用い、これを電源v1.レベルにバイヤスすればよいと
とは明らかである。This is used as the power source v1. It is clear that all you have to do is bias the level.
第4図は本発明の他の実施例である。即ち高濃度拡散層
41を配線領域5内に広く設けてもよい。また第5図の
如く高濃度拡散層41を配線領域6いっばいに設けると
、更に効果は大きくなる。FIG. 4 shows another embodiment of the invention. That is, the high concentration diffusion layer 41 may be provided widely within the wiring region 5. Moreover, if the high concentration diffusion layer 41 is provided in the entire wiring region 6 as shown in FIG. 5, the effect will be even greater.
第6図は本発明の異なる実施例であり、高濃度拡散層4
1を配置する領域をチップ相当領域A、Bのそれぞれ囲
シとしたものである。このようにすれば、チップ相当領
域A、Bと外部端子4との間のラッチアップを防止でき
るものである。FIG. 6 shows a different embodiment of the present invention, in which the high concentration diffusion layer 4
The area where 1 is placed is surrounded by chip equivalent areas A and B, respectively. In this way, latch-up between the chip-equivalent regions A and B and the external terminals 4 can be prevented.
第7図は本発明の更に異なる実施例で、高濃度拡散層4
1のノ々イアス用電源51をチップ相当領域A、Bの電
源52とは別に設けた場合の例である。このようにすれ
ば、高濃度層41のバイヤスに不安定なチップ相当領域
A、B用のバイヤス電源を用いないため、よシ安定した
高濃度拡散層41へのバイヤス供給が行なえるものであ
る。FIG. 7 shows a further different embodiment of the present invention, in which a high concentration diffusion layer 4
This is an example in which one noise power source 51 is provided separately from the power sources 52 of the chip equivalent areas A and B. In this way, since the bias power supply for the chip-equivalent regions A and B, which are unstable in the bias of the high concentration layer 41, is not used, a more stable bias supply to the high concentration diffusion layer 41 can be performed. .
なお本発明は、チップ相当領域の構造がシリコンゲート
構造のもののみに限られず、アルミニウムダート構造等
のものにも適用できる。Note that the present invention is not limited to those in which the structure of the chip equivalent region is a silicon gate structure, but can also be applied to structures such as an aluminum dart structure.
以上説明した如く本発明によれば、チップ相当領域の対
向する領域またはチップ相箔領域を囲む領域に、電源レ
ベルにバイヤスされた高濃度層を配することにより、容
易にラッチアップ現象を防ぐことができ、修正せずにチ
ップ相当領域を1チツプ化することが可能である。上記
高濃度層を配線領域下に埋め込めば、チップサイズを増
加させることなくラッチアップを防止することができる
ものである。As explained above, according to the present invention, the latch-up phenomenon can be easily prevented by disposing a high concentration layer biased to the power supply level in the region facing the chip equivalent region or in the region surrounding the chip phase foil region. It is possible to reduce the chip equivalent area to one chip without modification. By burying the above-mentioned high concentration layer under the wiring region, latch-up can be prevented without increasing the chip size.
第1図は本発明の一実施例の概略的平面図、第2図は同
要部の回路構成図、第3図は同要部の断面図、第4図な
いし第7図は本発明の異なる実施例の概略的平面図、第
8図は従来の改良型大規模集積回路の概略的平面図、第
9図は同回路の一部断面図、第10図は同回路の要部の
平面的構成図、第11図は同要部の断面図である。
1・・・半導体チップ、5・・・配線領域、41・−高
濃度層、A、B・・・チップ相当領域。
出願人代理人 弁理士 鈴 江 武 彦第1図
第2図
第4図
第5WiFIG. 1 is a schematic plan view of an embodiment of the present invention, FIG. 2 is a circuit configuration diagram of the essential parts, FIG. 3 is a sectional view of the essential parts, and FIGS. A schematic plan view of a different embodiment; FIG. 8 is a schematic plan view of a conventional improved large-scale integrated circuit; FIG. 9 is a partial cross-sectional view of the same circuit; and FIG. 10 is a plan view of essential parts of the circuit. FIG. 11 is a sectional view of the main parts. DESCRIPTION OF SYMBOLS 1... Semiconductor chip, 5... Wiring area, 41... High concentration layer, A, B... Chip equivalent area. Applicant's Representative Patent Attorney Takehiko Suzue Figure 1 Figure 2 Figure 4 Figure 5 Wi
Claims (4)
複数のチップ相当領域と、前記チップ相当領域の領域外
導出用電極を選択的に接続させる配線層と、前記チップ
相当領域相互間にあって前記配線層の設置領域となる配
線領域と、少くとも対向する前記チップ相当領域間に挿
入されると共に一方の電源レベルにバイヤスされた高濃
度層とを具備したことを特徴とする大規模集積回路装置
。(1) A plurality of chip-equivalent regions each independently formed in the same semiconductor substrate, a wiring layer that selectively connects an electrode for leading out of the chip-equivalent region, and a wiring layer that selectively connects a plurality of chip-equivalent regions that are formed independently in the same semiconductor substrate; A large-scale integrated circuit device comprising a wiring area serving as an installation area for a wiring layer, and a highly concentrated layer inserted between at least the opposing chip-equivalent areas and biased to one power supply level. .
ことを特徴とする特許請求の範囲第1項に記載の大規模
集積回路装置。(2) The large-scale integrated circuit device according to claim 1, wherein the chip-equivalent region has a complementary MOS configuration.
域外の領域としたことを特徴とする特許請求の範囲第1
項に記載の大規模集積回路装置。(3) Claim 1, characterized in that the region where the high concentration layer is arranged is a region outside the chip equivalent region.
Large-scale integrated circuit device as described in Section.
領域の電源とは別に設けたことを特徴とする特許請求の
範囲第1項または第2項または第3項に記載の大規模集
積回路装置。(4) The large-scale integrated circuit according to claim 1, 2, or 3, characterized in that a power source for biasing the high concentration layer is provided separately from a power source for the chip-equivalent region. Device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26717784A JPS61144846A (en) | 1984-12-18 | 1984-12-18 | Large scale integrated circuit device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26717784A JPS61144846A (en) | 1984-12-18 | 1984-12-18 | Large scale integrated circuit device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61144846A true JPS61144846A (en) | 1986-07-02 |
JPH0566737B2 JPH0566737B2 (en) | 1993-09-22 |
Family
ID=17441173
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26717784A Granted JPS61144846A (en) | 1984-12-18 | 1984-12-18 | Large scale integrated circuit device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61144846A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01204461A (en) * | 1988-02-09 | 1989-08-17 | Matsushita Electron Corp | Semiconductor integrated circuit |
JPH08162539A (en) * | 1994-06-15 | 1996-06-21 | Hyundai Electron Ind Co Ltd | Data output buffer |
JPH08330431A (en) * | 1995-05-31 | 1996-12-13 | Nec Corp | Semiconductor integrated circuit |
-
1984
- 1984-12-18 JP JP26717784A patent/JPS61144846A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01204461A (en) * | 1988-02-09 | 1989-08-17 | Matsushita Electron Corp | Semiconductor integrated circuit |
JPH08162539A (en) * | 1994-06-15 | 1996-06-21 | Hyundai Electron Ind Co Ltd | Data output buffer |
JPH08330431A (en) * | 1995-05-31 | 1996-12-13 | Nec Corp | Semiconductor integrated circuit |
Also Published As
Publication number | Publication date |
---|---|
JPH0566737B2 (en) | 1993-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR920003676B1 (en) | Semiconductor device | |
US7712066B2 (en) | Area-efficient power switching cell | |
JPH03165061A (en) | Semiconductor integrated circuit device | |
JPS61144846A (en) | Large scale integrated circuit device | |
JPH1098108A (en) | Semiconductor device | |
JP2780896B2 (en) | Method for manufacturing semiconductor integrated circuit | |
JPH0122733B2 (en) | ||
JPS58222573A (en) | Semiconductor integrated circuit device | |
JP3010911B2 (en) | Semiconductor device | |
JPS60231356A (en) | Complementary type metal-oxide-film semiconductor integrated circuit device | |
JPS61280650A (en) | Input circuit | |
JPH08186176A (en) | Semiconductor integrated circuit device | |
JP3038896B2 (en) | Semiconductor device | |
JP3189797B2 (en) | Manufacturing method of semiconductor integrated circuit | |
JPS60140842A (en) | Semiconductor device | |
JPH0661439A (en) | Semiconductor integrated circuit device | |
JP2634800B2 (en) | Semiconductor integrated circuit standard cell | |
JP2834186B2 (en) | Semiconductor device | |
JPH0824177B2 (en) | Semiconductor device | |
JPH0982928A (en) | Master slice integrated circuit | |
JPH08321551A (en) | Semiconductor integrated circuit device and its manufacture | |
JPS59181028A (en) | Semiconductor integrated circuit device | |
JPH0574945A (en) | Semi-custom integrated circuit | |
JPH05335308A (en) | Semiconductor integrated circuit device | |
JPS61208864A (en) | C-mos integrated circuit device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |