JPH0566737B2 - - Google Patents
Info
- Publication number
- JPH0566737B2 JPH0566737B2 JP26717784A JP26717784A JPH0566737B2 JP H0566737 B2 JPH0566737 B2 JP H0566737B2 JP 26717784 A JP26717784 A JP 26717784A JP 26717784 A JP26717784 A JP 26717784A JP H0566737 B2 JPH0566737 B2 JP H0566737B2
- Authority
- JP
- Japan
- Prior art keywords
- chip
- region
- equivalent
- layer
- wiring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000758 substrate Substances 0.000 claims description 12
- 239000004065 semiconductor Substances 0.000 claims description 7
- 230000006870 function Effects 0.000 claims description 3
- 230000000295 complement effect Effects 0.000 claims 1
- 238000009434 installation Methods 0.000 claims 1
- 238000000034 method Methods 0.000 description 12
- 238000013461 design Methods 0.000 description 8
- 238000009792 diffusion process Methods 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000003071 parasitic effect Effects 0.000 description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 3
- 229920005591 polysilicon Polymers 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/088—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
- H01L27/092—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
- H01L27/0921—Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Element Separation (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Semiconductor Integrated Circuits (AREA)
- Design And Manufacture Of Integrated Circuits (AREA)
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明はデータ処理装置等のシステム構成の簡
単化をはかつた大規模集積回路装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a large-scale integrated circuit device that simplifies the system configuration of a data processing device or the like.
パーソナルコンピユータ等のシステムを構成す
るには、通常複数個のLSI(大規模集積回路)を
組み合わせて使う。これらはCPU(中央処理装
置)、ROM(リード・オンリ・メモリ)、RAM
(ランダム・アクセス・メモリ)、キー入力制御
部、シリアル入出力部、パラレル入出力部、カウ
ンタタイミング制御部、表示駆動部等多くのチツ
プになり、各チツプ間の相互配線はプリント基板
によりなされる。ところがこの方法は、プリント
基板上の相互配線が複雑で製作に手間がかかり、
コストアツプの原因となる。またプリント配線の
静電要領が大きいため、各チツプのスピードが早
くなつても、システム全体のパワーアツプにつな
がらない。また故障率が高い等の理由から、ユー
ザとしての要求は“システムに使用される複数個
のLSIを1チツプ化出来ないか”という要求が大
変強い。
To configure a system such as a personal computer, multiple LSIs (Large-Scale Integrated Circuits) are usually used in combination. These are CPU (Central Processing Unit), ROM (Read Only Memory), RAM
(random access memory), key input control section, serial input/output section, parallel input/output section, counter timing control section, display drive section, etc., and interconnections between each chip are done by printed circuit boards. . However, this method requires complicated interconnections on the printed circuit board and is time-consuming to manufacture.
This causes an increase in costs. Also, because the electrostatic capacity of the printed wiring is large, even if the speed of each chip increases, it does not lead to an increase in the power of the entire system. In addition, due to the high failure rate, there is a strong demand from users that it is possible to integrate multiple LSIs used in a system into a single chip.
上記1チツプ化の要求に応える方法としては、
(イ)全システムを再度設計して新たな1チツプLSI
をつくる、(ロ)複数個のチツプを1つのパツケージ
の中に封入していわゆるハイブリツドIC(集積回
路)とする、等が考えられる。上記(イ)項の全シス
テムを再設計する方法の場合、現在ある設計手法
としては、全て手設計による方法、電算機を
導入したビルデイングブロツク方式の自動設計に
よる方法、ゲートアレイ等による自動設計、等
がある。これら〜ともいずれも利点/欠点が
あるが、再設計の最大の欠点は、「各チツプはす
でに開発されて、機能、特性とも充分評価され可
となつているのに、また同様のものを再度設計す
るため、設計、評価の手順をもう一度踏まねばな
らぬ」ことである。従つて設計ミスのおそれがあ
つたり、開発時間がかかる等種々の問題があり、
能がない方法と云わざるを得ない。 As a way to meet the above demand for single-chip integration,
(b) Re-design the entire system and create a new 1-chip LSI
(b) encapsulating multiple chips in one package to create a so-called hybrid IC (integrated circuit). In the case of the method of redesigning the entire system as described in item (a) above, the existing design methods include a completely manual design method, an automatic design method using a building block method using a computer, an automatic design method using a gate array, etc. etc. All of these have advantages/disadvantages, but the biggest disadvantage of redesigning is that even though each chip has already been developed and has been sufficiently evaluated in terms of function and characteristics, In order to design, the design and evaluation steps must be repeated. Therefore, there are various problems such as the risk of design errors and the need for development time.
I have to say that this is an incompetent method.
上記(ロ)項のハイブリツドICの方法は、これは
外部から見ると1個の部品として見えるだけで、
上記プリント基板に複数個のチツプを実装し、配
線する方法を単に小さくしただけにすぎない。勿
論小さくしただけのメリツトはそれなりにある
が、実際の実装技術として、どれだけの個数のチ
ツプがハイブリツド化できるか疑問が残るとろで
あり、実現出来たとしても相当のコストアツプと
なるであろう。 The hybrid IC method described in item (b) above is that when viewed from the outside, it only appears as a single component;
This is simply a method of mounting a plurality of chips on the printed circuit board and wiring them to a smaller size. Of course, there are some merits to just making it smaller, but as an actual implementation technology, it is questionable how many chips can be hybridized, and even if it were possible, the cost would increase considerably.
そこで本出願人は、再設計、ハイブリツド化い
ずれとも異なる新たなシステムの1チツプ化を可
能とする大規模集積回路を提案した(例えば特開
昭58−91003号)。第8図はこの提案を示すもの
で、図中1は半導体チツプ、A,Bはチツプ1内
で同一工程でいつしよに形成されたチツプ相当領
域で、これら領域はそれぞれ以前にチツプA、チ
ツプBとして評価ずみのものである。2,3はチ
ツプ相当領域A,Bが以前チツプA,Bであつた
時のボンデイングパツド(これを仮にインナーボ
ンデイングパツドという)、4はチツプ1のボン
デイングパツド(これを仮にアウターボンデイン
グパツドという)である。このように既に評価確
認ずみのチツプ相当領域AとBを適当なスペース
5を置いてチツプ1内に配置形成する。このスペ
ース5はチツプ相当領域A,B間の相互配線6の
配線領域であり、またチツプ周縁付近には、1チ
ツプ化した後にLSIからのリード端子として外部
と接続するためのボンデイングパツドとの配線
(これを仮に外部配線という)7に使用される配
線領域も設けられる。即ちチツプ相当領域AとB
間の相互配線6を、領域A,B各々が有している
当該ボンデイングパツド間で上記配線領域5を利
用して領域A,Bのプロセスによる配線層(ポリ
シリコン、アルミニウム等)でつくる。更に外部
配線7に相当するボンデイングパツド4をチツプ
周辺に必要個数レイアウトし、外部配線7を、該
当する領域A,Bのボンデイングパツド2,3と
アウターボンデイングパツド4の間で、やはりポ
リシリコン、アルミニウム等でつくる。 Therefore, the present applicant has proposed a large-scale integrated circuit that makes it possible to integrate a new system into a single chip, which is different from either redesign or hybridization (for example, Japanese Patent Application Laid-Open No. 58-91003). FIG. 8 shows this proposal. In the figure, 1 is a semiconductor chip, and A and B are chip-equivalent regions formed simultaneously in the same process in the chip 1. These regions were previously formed in the chip A, respectively. This has been evaluated as Chip B. 2 and 3 are the bonding pads when the chip equivalent areas A and B were previously chips A and B (this is temporarily called the inner bonding pad), and 4 is the bonding pad of chip 1 (this is temporarily called the outer bonding pad). ). In this way, the chip-corresponding regions A and B, which have already been evaluated and confirmed, are arranged and formed within the chip 1 with an appropriate space 5 between them. This space 5 is a wiring area for mutual wiring 6 between the chip equivalent areas A and B, and near the periphery of the chip there are bonding pads for connection to the outside as lead terminals from the LSI after the chip is integrated into a single chip. A wiring area used for wiring (temporarily referred to as external wiring) 7 is also provided. That is, chip equivalent areas A and B
Interconnection lines 6 between the bonding pads of areas A and B are made of a wiring layer (polysilicon, aluminum, etc.) by the process of areas A and B, using the wiring area 5 described above between the bonding pads that each area has. Furthermore, the required number of bonding pads 4 corresponding to the external wiring 7 are laid out around the chip, and the external wiring 7 is also placed between the bonding pads 2 and 3 in the corresponding areas A and B and the outer bonding pad 4. Made from silicon, aluminum, etc.
第9図は第8図の一部断面を示すもので、11
はチツプ相当領域AまたはBのトランジスタ領
域、12はN型基板、13,14はP+型ソース、
ドレイン領域、15は絶縁膜、16はポリシリコ
ンゲート電極、17はアルミニウム配線、18は
配線領域5での配線較差領域171,172は第8
図の配線6に対応するアルミニウム配線層、19
はポリシリコン配線層である。 FIG. 9 shows a partial cross section of FIG.
12 is an N type substrate, 13 and 14 are P + type sources,
15 is an insulating film, 16 is a polysilicon gate electrode, 17 is an aluminum wiring, 18 is a wiring difference region 17 1 and 17 2 in the wiring region 5, and 8th
Aluminum wiring layer 19 corresponding to wiring 6 in the figure
is a polysilicon wiring layer.
第8図、第9図に示される本集積回路装置は、
1枚の半導体基板12上につくられるが、このよ
うな装置をつくるためのガラスマスクパターンを
設計することは非常に容易であり、ミスを犯すこ
とも殆んどない。更にチツプ相当領域A,Bは従
来のチツプ構成にほとんど手を加えないので、機
能、特性ともに評価確認ずみのものがそのまま1
チツプ化される。また本装置を得るのに従来の製
造プロセスがそのまま適用できるものである。 This integrated circuit device shown in FIGS. 8 and 9 is
Although it is manufactured on a single semiconductor substrate 12, designing a glass mask pattern for manufacturing such a device is very easy and there is almost no chance of making a mistake. Furthermore, since the chip-equivalent regions A and B require almost no modification to the conventional chip configuration, the functions and characteristics that have been evaluated and confirmed can be used as is.
chipped. Furthermore, conventional manufacturing processes can be applied as they are to obtain this device.
ところで上記のように複数チツプ相当領域A,
Bを1チツプ内に形成した場合、チツプ相当領域
AとBとの間、もしくはチツプ相当領域Aまたは
Bとチツプ周縁との間にラツチアツプ現象、つま
り入出力端子に過大なサージ、ノイズ等の過大電
圧、電流が印加された場合もしくは内部回路から
のノイズにより電源間に異常電流が流れ続ける現
象が生じる。第10図、第11図はチツプ相当領
域AとBとの間のラツチアツプ現象を説明するた
めのもので、第10図はチツプA,B間の隣接付
近の回路構成図、第11図は同断面図である。図
中21,22はチツプA内に構成された低インピ
ーダンスバツフアのPチヤネル型、Nチヤネル型
トランジスタ、23はその出力パツド、24はチ
ツプB内に構成されたNチヤネル型トランジス
タ、25,26はN型基板27を電源VDDの電位
にバイアスするための基板バイアス用N+型拡散
層、28,29はトランジスタ21のソース、ド
レイン層、30はPウエル層、31,32はトラ
ンジスタ24のソース、ドレイン層、33はP+
層29または28、N+層25またはN型基板2
7、Pウエル層30をエミツタ、ベース、コレク
タとする寄生のラテラルPNPトランジスタ、3
4はN型基板27、Pウエル層30、N+層31
をコレクタ、ベース、エミツタとする寄生のラテ
ラルNPNトランジスタである。 By the way, as mentioned above, the area A corresponding to multiple chips,
If B is formed within one chip, there will be a latch-up phenomenon between chip-equivalent regions A and B, or between chip-equivalent regions A or B and the chip periphery, that is, excessive surges or excessive noise at the input/output terminals. When voltage or current is applied, or due to noise from internal circuits, a phenomenon occurs in which abnormal current continues to flow between the power supplies. Figures 10 and 11 are for explaining the latch-up phenomenon between chip-equivalent regions A and B. Figure 10 is a circuit diagram of the adjacent area between chips A and B, and Figure 11 is the same. FIG. In the figure, 21 and 22 are low impedance buffer P-channel and N-channel transistors configured in chip A, 23 is its output pad, 24 is an N-channel transistor configured in chip B, and 25, 26 28 and 29 are the source and drain layers of the transistor 21, 30 is the P well layer, and 31 and 32 are the substrate bias N + type diffusion layers for biasing the N type substrate 27 to the potential of the power supply VDD . Source and drain layers, 33 are P +
layer 29 or 28, N + layer 25 or N type substrate 2
7. Parasitic lateral PNP transistor with P-well layer 30 as emitter, base, and collector, 3
4 is an N type substrate 27, a P well layer 30, and an N + layer 31
It is a parasitic lateral NPN transistor with collector, base, and emitter.
第10図、第11図にあつては、パツド23を
介してP+層29に外来ノイズ(VDDレベル以上)
が入ると、電流i1が流れてラテラルPNPトランジ
スタ33のベース電流となり、そのhFE(電流増幅
率)に応じてコレクタ電流i2をPウエル層30に
対して流す。するとPウエル層30の電位が電源
VDD側に上り、電流i3が流れてラテラルNPNトラ
ンジスタ34がオンし、電流i4がN+層(接地電
位)より流れる。これにより基板27の電位が接
地側に引かれてN+層25付近の電位が下り、P+
層28をエミツタとするラテラルトランジスタ3
3のベース電流を流す。このときラテラルNPN
トランジスタ34もオン状態で、ラツチアツプ現
像に入るものである。 In Figures 10 and 11, external noise (above the V DD level) is applied to the P + layer 29 through the pad 23.
When current i 1 flows, it becomes the base current of the lateral PNP transistor 33, and a collector current i 2 flows to the P well layer 30 in accordance with its h FE (current amplification factor). Then, the potential of the P well layer 30 becomes the power supply.
The voltage rises to the V DD side, current i 3 flows and the lateral NPN transistor 34 is turned on, and current i 4 flows from the N + layer (ground potential). As a result, the potential of the substrate 27 is pulled to the ground side, the potential near the N + layer 25 is lowered, and the P +
Lateral transistor 3 with layer 28 as emitter
3 base current is applied. At this time, the lateral NPN
Transistor 34 is also on and enters latch-up development.
即ち、すでに設計評価されたチツプにおいて
は、その各端子に対してラツチアツプ電圧、電流
を保証するため、パツド周辺領域においてその対
策がなされている。しかしながら個々のチツプに
おいては、パツドよりチツプ内部にいたる領域に
おいてその対策がなさられるのみで、チツプ外部
にいたる領域においては同対策がなされていない
のが一般的である。なぜならパツドよりチツプ外
部へいたる領域においては、高々一方の導電型ト
ランジスタのみしか存在しないため、この領域で
のラツチアツプは生じないからである。 That is, in chips that have already been designed and evaluated, countermeasures have been taken in the area around the pads in order to guarantee the latch-up voltage and current for each terminal. However, in each chip, countermeasures are generally taken only in the area from the pad to the inside of the chip, but not in the area outside the chip. This is because in the region extending from the pad to the outside of the chip, only one conductivity type transistor exists at most, so no latch-up occurs in this region.
このように従来は、パツドよりチツプ内部へい
たる領域において、サージ吸収のためのパターン
的手段がとられる。ところが第8図ないし第11
図で示される如き大規模集積回路装置では、既に
設計評価された各チツプ(チツプ相当領域)のチ
ツプ外方向にもトランジスタ素子が存在する。第
8図においてチツプA内にパツド23が出力端子
であつたとすると、パツド23のスイツチング時
に瞬時電流が流れ、それがサージ電流となり、半
導体チツプ1の半導体基板を通してサージがチツ
プBに伝播し、ラツチアツプ現象を引き起こす。
特にチツプA,B間で、P,Nチヤネルトランジ
スタが対向して存在する場合にラツチアツプを起
こしやすい。 As described above, conventionally, pattern-like measures are taken to absorb surges in the area extending from the pad to the inside of the chip. However, Figures 8 to 11
In a large-scale integrated circuit device as shown in the figure, transistor elements exist even in the outward direction of each chip (chip-equivalent region) that has already been designed and evaluated. In FIG. 8, if pad 23 is an output terminal in chip A, an instantaneous current flows when pad 23 is switched, which becomes a surge current, and the surge propagates to chip B through the semiconductor substrate of semiconductor chip 1, causing the latch to open. cause a phenomenon.
In particular, when P and N channel transistors are located facing each other between chips A and B, latch-up is likely to occur.
更に高速動作に耐え得るチツプほど、そのスイ
ツチング特性を改善するため出力バツフアのイン
ピーダンスは低く設定され、従つてより多くのス
イツチング電流を誘起する。またパツド23が外
部端子へ接続されている場合には、外部からのサ
ージにより、チツプA,B間でラツチアツプを誘
起するものである。 Furthermore, the higher the chip can withstand high-speed operation, the lower the impedance of the output buffer is set to improve its switching characteristics, thus inducing more switching current. Further, when pad 23 is connected to an external terminal, a latch-up is induced between chips A and B due to a surge from the outside.
本発明は上記実情に鑑みてなされたもので、同
一半導体内にそれぞれ独立して形成された複数の
チツプ相当領域を有する大規模集積回路のラツチ
アツプ現象の防止を目的とするものである。
The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to prevent the latch-up phenomenon in large-scale integrated circuits having a plurality of chip-equivalent regions formed independently within the same semiconductor.
ラツチアツプ現象を防止するには、Pチヤネル
トランジスタが形成される領域とNチヤネルトラ
ンジスタが形成される領域の間に伝播するトリガ
電流をその間で軽減してやればよい。従つて本発
明では、複数のチツプ相当領域の対向する領域も
しくは、チツプ相用領域とチツプ外縁との間即
ち、チツプ相当領域外の領域に抵抗の小さい高濃
度の不純物層を設け、これを適当な電源レベルに
バイアスするものである。
In order to prevent the latch-up phenomenon, the trigger current propagating between the region where the P-channel transistor is formed and the region where the N-channel transistor is formed may be reduced therebetween. Therefore, in the present invention, a high concentration impurity layer with low resistance is provided in the opposing regions of a plurality of chip-equivalent regions or between the chip-phase region and the outer edge of the chip, that is, in the region outside the chip-equivalent region, and this is appropriately applied. This biases the power supply level to a certain level.
以下図面を参照して本発明の一実施例を説明す
る。第1図は同実施例の平面図、第2図はそのチ
ツプ相当領域間の隣接付近の平面的構成図、第3
図は同断面図であるが、これらは前記第8図、第
10図、第11図のものと対応させた場合の例で
あるから、対応個所には同一符号を付して説明を
省略し、特徴とする点を説明する。この実施例の
特徴は、チツプ相当領域A,B間に高濃度のN型
拡散層41を設け、これを電源VDD(>0)にバ
イアスしたことである。
An embodiment of the present invention will be described below with reference to the drawings. Fig. 1 is a plan view of the same embodiment, Fig. 2 is a planar configuration diagram of the vicinity of adjacent areas corresponding to the chip,
The figures are the same cross-sectional views, but since these are examples in which they correspond to those in Figures 8, 10, and 11, corresponding parts are given the same reference numerals and explanations will be omitted. , explain the features. The feature of this embodiment is that a highly doped N-type diffusion layer 41 is provided between the chip equivalent regions A and B, and this is biased to the power supply V DD (>0).
第1図ないし第3図のものにあつては、ボンデ
イングパツド42よりのサージもしくは低インピ
ーダンスバツフアのスイツチング時のサージによ
り、P+層29にサージが加わり、ここから基板
27を通して電源VDD側に電流i1が流れ込む。即
ち、この電流は、P+層29に全も近接しVDDにバ
イアスされたN+層25に流れ込む。これは寄生
ラテラルPNPトランジスタ33のベース電流と
なり、コレクタ電流i2を生ずる。 In the case of the devices shown in FIGS. 1 to 3, a surge is applied to the P + layer 29 due to a surge from the bonding pad 42 or a surge during switching of the low impedance buffer, and from there, the power supply V DD is applied to the P + layer 29 through the substrate 27. A current i1 flows into the side. That is, this current flows into the N + layer 25, which is all in close proximity to the P + layer 29 and biased to VDD . This becomes the base current of the parasitic lateral PNP transistor 33 and produces a collector current i 2 .
ここでN+層41が存在しない場合には、電流
の流し側にあるN+層25の電源VDDはより正の
VDDとなりN+層26との間に電位勾配を生ずる。
これは、N+層25ないしN+層27をベースとす
るトランジスタのベース領域に電位傾斜が生ずる
ことを意味し、ラテラルトランジスタ33の電流
利得を改善し、前述のようなラツチアツプ現象を
誘起しやすくなる。一方、低抵抗のN+層41を
挿入すれば、ラテラルトランジスタ33のベース
内の電位傾斜を軽減することができ、該トランジ
スタ33の電流利得を低下させ得てラツチアツプ
現象を防止できるものである。 Here, if the N + layer 41 does not exist, the power supply V DD of the N + layer 25 on the current flow side is more positive.
V DD and a potential gradient is generated between it and the N + layer 26 .
This means that a potential gradient occurs in the base region of the transistor based on the N + layer 25 or N + layer 27, which improves the current gain of the lateral transistor 33 and makes it easier to induce the latch-up phenomenon described above. Become. On the other hand, by inserting the low-resistance N + layer 41, the potential gradient in the base of the lateral transistor 33 can be reduced, the current gain of the transistor 33 can be reduced, and the latch-up phenomenon can be prevented.
上記実施例ではN型基板の場合を説明したが、
P型基板の場合には、N+層41の代りにP+層を
用い、これを電源VSSレベルにバイアスすればよ
いことは明らかである。 In the above embodiment, the case of an N-type substrate was explained, but
It is clear that in the case of a P type substrate, a P + layer may be used in place of the N + layer 41 and biased to the power supply V SS level.
第4図は本発明の他の実施例である。即ち高濃
度拡散層41を配線領域5内に広く設けてもよ
い。また第5図の如く高濃度拡散層41を配線領
域5いつぱいに設けると、更に効果は大きくな
る。 FIG. 4 shows another embodiment of the invention. That is, the high concentration diffusion layer 41 may be provided widely within the wiring region 5. Moreover, if the high concentration diffusion layer 41 is provided all over the wiring region 5 as shown in FIG. 5, the effect will be even greater.
第6図は本発明の異なる実施例であり、高濃度
拡散層41を配置する領域をチツプ相当領域A,
Bのそれぞれ囲りとしたものである。このように
すれば、チツプ相当領域A,Bと外部端子4との
間のラツチアツプを防止できるものである。 FIG. 6 shows a different embodiment of the present invention, in which the region where the high concentration diffusion layer 41 is arranged is a chip equivalent region A,
Each box in B. In this way, a latch-up between the chip-corresponding regions A and B and the external terminal 4 can be prevented.
第7図は本発明の更に異なる実施例で、高濃度
拡散層41のバイアス用電源51をチツプ相当領
域A,Bの電源52とは別に設けた場合の例であ
る。このようにすれば、高濃度層41のバイアス
に不安定なチツプ相当領域A,B用のバイアス電
源を用いないため、より安定した高濃度拡散層4
1へのバイアス供給が行なえるものである。 FIG. 7 shows still another embodiment of the present invention, in which a bias power source 51 for the heavily doped diffusion layer 41 is provided separately from power sources 52 for the chip equivalent regions A and B. In this way, since the bias power supply for the chip equivalent regions A and B, which are unstable to the bias of the high concentration layer 41, is not used, the high concentration diffusion layer 41 can be made more stable.
1 can be supplied with a bias.
なお本発明は、チツプ相当領域の構造がシリコ
ンゲート構造のもののみに限られず、アルミニウ
ムゲート構造等のものにも適用できる。 Note that the present invention is not limited to those in which the structure of the chip equivalent region is a silicon gate structure, but can also be applied to structures such as an aluminum gate structure.
以上説明した如く本発明によれば、チツプ相当
領域の対向する領域またはチツプ相当領域を囲む
領域に、電源レベルにバイアスされた高濃度層を
配することにより、容易にラツチアツプ現象を防
ぐごとができ、修正せずにチツプ相当領域を1チ
ツプ化することが可能である。上記高濃度層を配
線領域下に埋め込めば、チツプサイズを増加させ
ることなくラツチアツプを防止することができる
ものである。
As explained above, according to the present invention, the latch-up phenomenon can be easily prevented by arranging a highly concentrated layer biased to the power supply level in the region facing the chip-equivalent region or in the region surrounding the chip-equivalent region. , it is possible to reduce the chip equivalent area to one chip without modification. By burying the above-mentioned high concentration layer under the wiring region, latch-up can be prevented without increasing the chip size.
第1図は本発明の一実施例の概略的平面図、第
2図は同要部の回路構成図、第3図は同要部の断
面図、第4図ないし第7図は本発明の異なる実施
例の概略的平面図、第8図は従来の改良型大規模
集積回路の概略的平面図、第9図は同回路の一部
断面図、第10図は同回路の要部の平面的構成
図、第11図は同要部の断面図である。
1……半導体チツプ、5……配線領域、41…
…高濃度層、A,B……チツプ相当領域。
FIG. 1 is a schematic plan view of an embodiment of the present invention, FIG. 2 is a circuit configuration diagram of the essential parts, FIG. 3 is a sectional view of the essential parts, and FIGS. A schematic plan view of a different embodiment; FIG. 8 is a schematic plan view of a conventional improved large-scale integrated circuit; FIG. 9 is a partial cross-sectional view of the same circuit; and FIG. 10 is a plan view of essential parts of the circuit. FIG. 11 is a sectional view of the main parts. 1... Semiconductor chip, 5... Wiring area, 41...
...High concentration layer, A, B...chip equivalent area.
Claims (1)
れ、すでに機能、特性が評価済みの単独チツプに
それぞれ相当する複数のチツプ相当領域と、前記
チツプ相当領域の領域外導出用電極を選択的に接
続させる配線層と、前記チツプ相当領域相互間に
あつて前記配線層の設置領域となる配線領域と、
少くとも対向する前記チツプ相当領域間に挿入さ
れると共に一方の電源レベルにバイアスされた高
濃度層とを具備し、前記チツプ相当領域は相補型
MOS構成を有し、前記高濃度層を配置する領域
を前記チツプ相当領域外の領域としたことを特徴
とする大規模集積回路装置。 2 前記高濃度層のバイアス用電源を前記チツプ
相当領域の電源とは別に設けたことを特徴とする
特許請求の範囲第1項に記載の大規模集積回路装
置。[Scope of Claims] 1. A plurality of chip-equivalent regions, each of which is formed independently in the same semiconductor substrate and corresponds to a single chip whose functions and characteristics have already been evaluated, and an electrode for leading out of the region of the chip-equivalent region. a wiring layer for selectively connecting the chips; a wiring region between the chip-equivalent regions and serving as an installation region for the wiring layer;
at least a high-concentration layer inserted between the opposing chip-equivalent regions and biased to one power supply level, and the chip-equivalent regions are of complementary type.
1. A large-scale integrated circuit device having a MOS configuration, wherein a region in which the high concentration layer is arranged is a region outside the chip-equivalent region. 2. The large-scale integrated circuit device according to claim 1, wherein a power source for biasing the high concentration layer is provided separately from a power source for the chip-equivalent region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26717784A JPS61144846A (en) | 1984-12-18 | 1984-12-18 | Large scale integrated circuit device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26717784A JPS61144846A (en) | 1984-12-18 | 1984-12-18 | Large scale integrated circuit device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61144846A JPS61144846A (en) | 1986-07-02 |
JPH0566737B2 true JPH0566737B2 (en) | 1993-09-22 |
Family
ID=17441173
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26717784A Granted JPS61144846A (en) | 1984-12-18 | 1984-12-18 | Large scale integrated circuit device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61144846A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01204461A (en) * | 1988-02-09 | 1989-08-17 | Matsushita Electron Corp | Semiconductor integrated circuit |
KR0131373B1 (en) * | 1994-06-15 | 1998-04-15 | 김주용 | Semiconductor device data output buffer |
JPH08330431A (en) * | 1995-05-31 | 1996-12-13 | Nec Corp | Semiconductor integrated circuit |
-
1984
- 1984-12-18 JP JP26717784A patent/JPS61144846A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS61144846A (en) | 1986-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3523762B2 (en) | Semiconductor storage device | |
US6222213B1 (en) | Semiconductor integrated circuit device | |
KR920003676B1 (en) | Semiconductor device | |
JP3926011B2 (en) | Semiconductor device design method | |
US20020153591A1 (en) | Semiconductor memory device | |
JP3074003B2 (en) | Semiconductor integrated circuit device | |
JP3163039B2 (en) | Semiconductor device with static electricity protection circuit | |
JP3115787B2 (en) | Polycell integrated circuit | |
US5892261A (en) | SRAM bitline pull-up MOSFET structure for internal circuit electro-static discharge immunity | |
US5001487A (en) | Semiconductor integrated circuit device | |
JPH09102551A (en) | Semiconductor device | |
JPH0566737B2 (en) | ||
JP3996735B2 (en) | Semiconductor device | |
KR19980063892A (en) | Cell base semiconductor device and standard cell | |
JP2780896B2 (en) | Method for manufacturing semiconductor integrated circuit | |
JPS6074647A (en) | Semiconductor ic device | |
EP0113828B1 (en) | Master slice semiconductor chip having a new multi-function fet cell | |
JPS5856354A (en) | Master slice large-scale integrated circuit | |
JP3010911B2 (en) | Semiconductor device | |
JP2596406B2 (en) | Semiconductor integrated circuit | |
JP2001168209A (en) | Cmos integrated circuit and its automatic design method | |
JPS632152B2 (en) | ||
JPH053252A (en) | Semiconductor integrated circuit device | |
JPH11330434A (en) | Semiconductor device | |
JP2834186B2 (en) | Semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |