JPS61141117A - Manufacture of semiconductor single crystal thin film - Google Patents
Manufacture of semiconductor single crystal thin filmInfo
- Publication number
- JPS61141117A JPS61141117A JP59263538A JP26353884A JPS61141117A JP S61141117 A JPS61141117 A JP S61141117A JP 59263538 A JP59263538 A JP 59263538A JP 26353884 A JP26353884 A JP 26353884A JP S61141117 A JPS61141117 A JP S61141117A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- laser beam
- silicon film
- semiconductor
- single crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02664—Aftertreatments
- H01L21/02667—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
- H01L21/02675—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
- H01L21/02683—Continuous wave laser beam
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/0242—Crystalline insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02488—Insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02532—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02587—Structure
- H01L21/0259—Microstructure
- H01L21/02598—Microstructure monocrystalline
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02664—Aftertreatments
- H01L21/02667—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
- H01L21/02691—Scanning of a beam
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Optics & Photonics (AREA)
- Materials Engineering (AREA)
- Recrystallisation Techniques (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は半導体単結晶薄膜の形成方法に関すム〔従来の
技術〕
まず、第5図〜第7図を参照しながら、従来の半導体単
結晶薄膜の形成方法について説明する。Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for forming a semiconductor single crystal thin film [Prior Art] First, referring to FIGS. A method for forming a crystal thin film will be explained.
第5図は半導体装置を示し、絶縁体としての石英(S1
0□)基板(1)上に例えば数百nm厚の多結晶シリコ
ン(Sl)薄膜(2)が島状に形成される。この島状の
多結晶シリコン薄膜(2)と石英基板(1)とが、アル
がン(Ar)レーデ光(3)によって紙面(垂直な方向
に走査される。波長が488 nmのアルゴンレーデ光
(3)は多結晶シリコン薄膜(2)によく吸収されて熱
エネルギーとなシ、シリコン薄膜(2)を溶融させる。FIG. 5 shows a semiconductor device, in which quartz (S1
0□) A polycrystalline silicon (Sl) thin film (2) having a thickness of, for example, several hundred nm is formed in the form of an island on a substrate (1). The island-shaped polycrystalline silicon thin film (2) and the quartz substrate (1) are scanned in the direction perpendicular to the plane of the paper by argon (Ar) Rede light (3). 3) is well absorbed by the polycrystalline silicon thin film (2) and becomes thermal energy, melting the silicon thin film (2).
一方、石英基板(1)はアルゴンレーデ光(3)を殆ど
吸収しないので、アルゴンレーザ光(3)の照射領域に
おいては、第6図に示すように、石英基板(1)の表面
温度は多結晶シリコン薄膜(2)に被覆された部分で高
く、露出部分(]@)で低くなる。On the other hand, since the quartz substrate (1) hardly absorbs the argon laser beam (3), the surface temperature of the quartz substrate (1) in the area irradiated with the argon laser beam (3) is lower than that of the polycrystalline crystal, as shown in FIG. It is high in the part covered with the silicon thin film (2) and low in the exposed part (]@).
第7図は第5図の半導体装置の平面を示し、レーザ光走
査方向(4)に対してレーデ光照射領域後縁(3b)よ
シも後方の部分では、シリコン膜(2)は自然冷却によ
って溶融状態から再結晶化される。この場合、レーデ光
走査方向(4)に垂直な方向には、第6図に示したよう
な温度分布が依然として存在するので、シリコン膜(2
ン上の等電線は、レーデ光走査方向(4)に対して、両
端縁部の方が中央部よシも先行しており、シリコン膜(
2)の液相領域(2t)と固相領域(2s)との界面(
5)は上述の等弧線と同一形状で走査方向(4)に移動
する。従って、シリコン膜(2)の再結晶化は、矢印(
6)で示すように、シリコン膜(2)の端縁部から中央
部に向かうこととなる。FIG. 7 shows a plane view of the semiconductor device in FIG. 5, and the silicon film (2) is naturally cooled in the rear part of the laser beam irradiation area (3b) with respect to the laser beam scanning direction (4). recrystallized from the molten state by In this case, the temperature distribution as shown in FIG. 6 still exists in the direction perpendicular to the Rade light scanning direction (4), so the silicon film (2
The isoelectric lines on the surface of the silicon film (
2) The interface between the liquid phase region (2t) and the solid phase region (2s) (
5) moves in the scanning direction (4) in the same shape as the above-mentioned isoarc line. Therefore, the recrystallization of the silicon film (2) is caused by the arrow (
As shown in 6), the direction is from the edge of the silicon film (2) to the center.
ところが、上述のように、シリコン膜(2)の両端縁か
ら結晶が成長するときは、多数の結晶核から再結晶化が
進んだ場合と同様に、多数のサブ結晶粒界が生じ、更に
、中央部に結晶粒界が形成されて、結晶性の良好な単結
晶が得難いという欠点があった。又、レーデ光(3)か
らの熱エネルギーの吸収の度合は、多結晶シリコン薄膜
(2)の方が石英基板(1)に比べて遥かに大きいこと
から、得られた半導体結晶薄膜にクラックを生じる可能
性が高かった。このため良質な単結晶薄膜が形成され難
く、半導体素子を有効に形成し得る領域が少なくなると
いう欠点があった。However, as mentioned above, when crystals grow from both edges of the silicon film (2), many sub-crystal boundaries are generated as in the case where recrystallization progresses from many crystal nuclei, and furthermore, There was a drawback that grain boundaries were formed in the center, making it difficult to obtain a single crystal with good crystallinity. Furthermore, since the degree of absorption of thermal energy from the Rede light (3) is much greater in the polycrystalline silicon thin film (2) than in the quartz substrate (1), cracks may occur in the obtained semiconductor crystal thin film. was likely to occur. For this reason, it is difficult to form a high-quality single crystal thin film, and there is a drawback that the area in which semiconductor elements can be effectively formed is reduced.
斯る点に鑑み、本発明は、結晶性の良い半導体単結晶薄
膜を容易に得ることのできる半導体単結晶薄膜の形成方
法を提供しようとするものである。In view of this, the present invention provides a method for forming a semiconductor single crystal thin film that can easily obtain a semiconductor single crystal thin film with good crystallinity.
本発明は絶縁体(1)に密着した半導体薄膜(2)を加
熱溶融した後、冷却再結晶化させる半導体単結晶薄膜の
形成方法において、絶縁体(1)を帯状に露出させると
共K、絶縁体(1)に主に吸収されるエネルギービーム
(2)と半導体薄膜(2)K主に吸収されるエネルギー
ビーム(3)とで同時に絶縁体(す及び半導体薄膜(2
)を走査して、半導体薄膜(2)における固液相界面(
2)がエネルギービーム(3)、(2)の走査方向(4
)に沿って凸となるようにした半導体単結晶薄膜の形層
方法である。The present invention provides a method for forming a semiconductor single crystal thin film in which a semiconductor thin film (2) in close contact with an insulator (1) is heated and melted, and then cooled and recrystallized. The energy beam (2) that is mainly absorbed by the insulator (1) and the energy beam (3) that is mainly absorbed by the semiconductor thin film (2) are simultaneously
) in the semiconductor thin film (2) to find the solid-liquid phase interface (
2) is the scanning direction (4) of the energy beam (3), (2)
) is a method of forming a semiconductor single crystal thin film so that it has a convex shape.
かかる本発明によれば、単一の結晶核から結晶成長が起
シ、結晶性のよい半導体単結晶薄膜が得られる。According to the present invention, crystal growth occurs from a single crystal nucleus, and a semiconductor single crystal thin film with good crystallinity can be obtained.
以下、第1図〜第3図を参照しながら、本発明による半
導体単結晶薄膜の形成方法の一実施例について説明する
。Hereinafter, an embodiment of the method for forming a semiconductor single crystal thin film according to the present invention will be described with reference to FIGS. 1 to 3.
なお、第1図及び第3図において、第5図及び第7図に
対応する部分には同一の符号を付して重複説明を省略す
る。Note that in FIGS. 1 and 3, parts corresponding to those in FIGS. 5 and 7 are given the same reference numerals, and redundant explanation will be omitted.
第1図は第5図と同様の半導体装置を示し、(至)は炭
酸ガス(CO2)レーデ光であって、アルゴンレーデ光
(3)と共に石英基板(1)及び多結晶シリコン薄膜(
2)を走査する。波長が10μmの炭酸fスレーブ光(
2)は、多結晶シリコン薄膜(2)の上面及び薄膜(2
)と石英基板(1)との境界面とでかなりの部分、例え
ば30チが反射され、残部が石英基板(1)に吸収され
る。周知のように、この反射と透過の比率はシリコン薄
膜(2)の厚さによって大幅に変化する。一方、石英基
板(1)の露出部分(la)においては、反射は僅かで
あって、炭酸がスレーブ光の大部分、例えば90%が石
英基板(1)に吸収される。従って、炭酸ガスレーデ光
(2)のみによる基板(1)の表面温度は、第2図に示
すように、第6図とは逆に、露出部分(le)で高く、
多結晶シリコン薄膜(2)に被覆された部分で低くなる
。FIG. 1 shows a semiconductor device similar to that in FIG.
2) Scan. Carbonic acid f slave light with a wavelength of 10 μm (
2) shows the top surface of the polycrystalline silicon thin film (2) and the thin film (2).
) and the quartz substrate (1), a considerable portion, for example 30 cm, is reflected, and the remainder is absorbed by the quartz substrate (1). As is well known, this ratio of reflection and transmission varies significantly depending on the thickness of the silicon thin film (2). On the other hand, in the exposed portion (la) of the quartz substrate (1), the reflection is slight, and most of the carbonic acid slave light, for example 90%, is absorbed by the quartz substrate (1). Therefore, as shown in FIG. 2, the surface temperature of the substrate (1) due only to the carbon dioxide gas Lede light (2) is high in the exposed portion (le), contrary to FIG.
It becomes lower in the part covered with the polycrystalline silicon thin film (2).
そこで、プルがンレーデ光(3)及び炭酸ガスレーデ光
(2)のエネルギー密度を適宜に選定し、更に、レンズ
をデフォーカスさせる等の適宜の光学的手段によって、
炭酸ガスレーザ光(2)の照射領域をアルゴンレーデ光
(3)の照射領域よシも幾分大きく設定すると、第3・
図は第1図の半導体装置の平面を示し、炭酸ガスレーデ
光照射領域の後縁(13b )は、レーデ光走査方向(
4)に対して、アルがンレーデ光照射領域の後縁(3b
)よシも後になる。また、シリコン膜(2)はアルゴン
レーデ光(3)の単独照射時よシも短時間で所要の温度
に到達すると共に、シリコン膜(2)の両端縁部の方が
中央部よシも高温となシ、前出第7図の場合とは逆に、
シリコン膜(2)の液相領域(2t)と固相領域(2s
)との界面(2)は、第3図に示すように、レーデ光走
査方向(4)に対して、中央部の方が両端線部よシも先
行する形で移動する。Therefore, by appropriately selecting the energy densities of the pull-inrede light (3) and the carbon dioxide rade light (2), and by using appropriate optical means such as defocusing the lens,
If the irradiation area of the carbon dioxide laser beam (2) is set to be somewhat larger than the irradiation area of the argon Rede beam (3), the third
The figure shows a plan view of the semiconductor device shown in FIG.
4), Al is the trailing edge of the Nrade light irradiation area (3b
) Yoshi will also come later. In addition, the silicon film (2) reaches the required temperature in a shorter time than when irradiated with the argon Radical light (3) alone, and both edges of the silicon film (2) are higher in temperature than the center. Contrary to the case of Figure 7 above,
The liquid phase region (2t) and the solid phase region (2s) of the silicon film (2)
), as shown in FIG. 3, the center portion moves ahead of both end line portions with respect to the Raded light scanning direction (4).
従って、本実施例においては、シリコン膜(2)の再結
晶化は、矢印ヘリで示すように、シリコン膜(2)の中
央部から両端部へ向かって結晶が成長する。この場合、
単一の結晶核から結晶成長が起こシ、これが継続して成
長する状態となって、シリコン薄膜の1個の島全体が1
個の単結晶になシ易く、結晶性のよい半導体単結晶薄膜
が得られる。Therefore, in this embodiment, during recrystallization of the silicon film (2), crystals grow from the center of the silicon film (2) toward both ends, as shown by the arrows. in this case,
Crystal growth occurs from a single crystal nucleus, and this continues to grow until the entire island of the silicon thin film becomes one.
A semiconductor single-crystal thin film that is easy to form into single crystals and has good crystallinity can be obtained.
また、炭酸ガスレーデのみを使用して再結晶化を行なう
場合に比べて、基板表面の温度を下げることができるの
で、半導体単結晶薄膜のクラックの発生を抑えることが
できる。Moreover, since the temperature of the substrate surface can be lowered compared to the case where recrystallization is performed using only carbon dioxide gas Rade, the occurrence of cracks in the semiconductor single crystal thin film can be suppressed.
更に、予熱時間が短縮されるため、半導体単結晶薄膜の
汚染が起シ難い。Furthermore, since the preheating time is shortened, contamination of the semiconductor single crystal thin film is less likely to occur.
次に、第4図を参照しながら、本発明の他の実施例につ
いて説明する。Next, another embodiment of the present invention will be described with reference to FIG.
第4図は他の構゛成の半導体装置を示し、シリコン基板
(7)上に絶縁膜としての2酸化シリコン(8102)
膜α摩が数百nmの厚さに被着形成され、両者が絶縁基
板を構成する。5io2膜αや上に数百nm厚の多結晶
シリコン膜(6)が形成され、更に、このシリコン膜(
6)の上に複数のSiO2細条(ロ)が相互に平行に形
成される。FIG. 4 shows a semiconductor device with another structure, in which silicon dioxide (8102) is used as an insulating film on a silicon substrate (7).
A film α is deposited to a thickness of several hundred nm, and both constitute an insulating substrate. A polycrystalline silicon film (6) with a thickness of several hundred nm is formed on the 5io2 film α, and this silicon film (
6) A plurality of SiO2 strips (b) are formed in parallel to each other.
このように構成されたシリコン膜に)及び5IO2細条
(財)が、前述の実施例と同様に、アルゴンレーデ光(
3)及び炭酸ガスレーデ光(2)によって紙面に垂直な
方向に同時に走査される。In the silicon film thus constructed, 5IO2 stripes and 5IO2 stripes were exposed to argon led light (
3) and carbon dioxide gas Rade light (2) simultaneously in a direction perpendicular to the plane of the paper.
炭酸ガスレーザ光(ロ)は5in2細条(財)に良く吸
収されると共に、一部は、シリコン膜(2)の露出部(
12・)を透過して、5IO2膜αυに吸収される。従
って、炭酸ガスレーデ光(2)のみによるシリコン膜(
2)の温度は、5102細条(ロ)の直下で最も高く、
露出部(12・)の中央で低くなる。The carbon dioxide laser beam (b) is well absorbed by the 5in2 strip (foundation), and a portion of it is absorbed by the exposed part of the silicon film (2) (
12.) and is absorbed by the 5IO2 membrane αυ. Therefore, the silicon film (
The temperature of 2) is highest immediately below the 5102 strip (b),
It becomes lower at the center of the exposed part (12).
そこで、両レーデ光(3)及び(至)のエネルギー密度
を適宜に選定すれば、前述の実施例におけると同様に、
シリコン膜(2)の固液相界面は、レーデ光の走査方向
く対し、露出部(12・)の中央部が先行し。Therefore, by appropriately selecting the energy densities of both Radhe beams (3) and (to), as in the above embodiment,
At the solid-liquid phase interface of the silicon film (2), the central portion of the exposed portion (12.) leads in the scanning direction of the Rade light.
前述の実施例と同様の効果を生ずる。The same effect as the previous embodiment is produced.
なお、上述の例では絶縁基板等として石英を用いたが、
窒化シリコン(81,N4) tたはアルミナ(At2
03)等を用い、これらの材料に吸収されるレーデ光を
照射してもよい。In addition, in the above example, quartz was used as the insulating substrate, etc.
Silicon nitride (81, N4) or alumina (At2
03) or the like may be used to irradiate the laser beam with Raded light that is absorbed by these materials.
一以上詳述のよりに、本発明によれば、結晶性の良い半
導体単結晶薄膜を容易に形成することができる。As described in more detail, according to the present invention, a semiconductor single crystal thin film with good crystallinity can be easily formed.
第1図は本発明による半導体単結晶薄膜の形成方法の一
実施例を説明するための半導体装置の断面図、第2図は
その温度分布を示す線図、第3図は本発明の一実施例の
結晶生成の説明に供する半導体装置の平面図、wc4図
は本発明の他の実施例を説明するための半導体装置の断
面図、第5図は従来の半導体単結晶薄膜の形成方法を説
明するための半導体装置の断面図、第6図及び第7図は
従来方法の説明に供する線図及び半導体装置の平面図で
ある。
(1)、(転)は基板、(2)、(6)は半導体薄膜、
(3) 、(2)はエネルギービーム(レーデ光)
、 (5) 、(ハ)は固液相界面、aηは絶縁膜であ
る。
第1v!J
@2図
第5図
第7図FIG. 1 is a cross-sectional view of a semiconductor device for explaining an embodiment of the method for forming a semiconductor single crystal thin film according to the present invention, FIG. 2 is a diagram showing its temperature distribution, and FIG. 3 is an embodiment of the present invention. FIG. 5 is a plan view of a semiconductor device used to explain crystal formation in an example, FIG. 4 is a cross-sectional view of a semiconductor device used to explain another embodiment of the present invention, and FIG. 6 and 7 are diagrams and plan views of the semiconductor device for explaining the conventional method. (1) and (trans) are substrates, (2) and (6) are semiconductor thin films,
(3) and (2) are energy beams (Rede light)
, (5), (c) is a solid-liquid phase interface, and aη is an insulating film. 1st v! J @2 Figure 5 Figure 7
Claims (1)
再結晶化させる半導体単結晶薄膜の形成方法において、
上記絶縁体を帯状に露出させると共に、上記絶縁体に主
に吸収されるエネルギービームと上記半導体薄膜に主に
吸収されるエネルギービームとで同時に上記絶縁体及び
上記半導体薄膜を走査して、上記半導体薄膜における固
液相界面が上記エネルギービームの走査方向に沿つて凸
となるようにしたことを特徴とする半導体単結晶薄膜の
形成方法。In a method for forming a semiconductor single crystal thin film in which a semiconductor thin film in close contact with an insulator is heated and melted, and then cooled and recrystallized,
The insulator is exposed in a strip shape, and the insulator and the semiconductor thin film are simultaneously scanned with an energy beam that is mainly absorbed by the insulator and an energy beam that is mainly absorbed by the semiconductor thin film. A method for forming a semiconductor single crystal thin film, characterized in that the solid-liquid phase interface in the thin film is convex along the scanning direction of the energy beam.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59263538A JPS61141117A (en) | 1984-12-13 | 1984-12-13 | Manufacture of semiconductor single crystal thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59263538A JPS61141117A (en) | 1984-12-13 | 1984-12-13 | Manufacture of semiconductor single crystal thin film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61141117A true JPS61141117A (en) | 1986-06-28 |
Family
ID=17390932
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59263538A Pending JPS61141117A (en) | 1984-12-13 | 1984-12-13 | Manufacture of semiconductor single crystal thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61141117A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4888302A (en) * | 1987-11-25 | 1989-12-19 | North American Philips Corporation | Method of reduced stress recrystallization |
-
1984
- 1984-12-13 JP JP59263538A patent/JPS61141117A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4888302A (en) * | 1987-11-25 | 1989-12-19 | North American Philips Corporation | Method of reduced stress recrystallization |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0732124B2 (en) | Method for manufacturing semiconductor device | |
US4888302A (en) | Method of reduced stress recrystallization | |
US4743567A (en) | Method of forming thin, defect-free, monocrystalline layers of semiconductor materials on insulators | |
JPS59161014A (en) | Crystallization of semiconductor thin film | |
US4578143A (en) | Method for forming a single crystal silicon layer | |
JPH0883765A (en) | Manufacture of polycrystalline semiconductor film | |
US4737233A (en) | Method for making semiconductor crystal films | |
JPS61141117A (en) | Manufacture of semiconductor single crystal thin film | |
JPH06140321A (en) | Method of crystallizing of semiconductor film | |
JPS6221207A (en) | Manufacture of semiconductor device | |
JPH01200615A (en) | Method of forming insulator with thin single crystal semiconductor material layer | |
JPS6354715A (en) | Beam annealing of semiconductor thin-film | |
EP0346987A1 (en) | A method of forming thin defect-free monocrystalline strips of semiconductor materials on insulators | |
JPS60161396A (en) | Manufacture of silicon thin film | |
JPS60191090A (en) | Manufacture of semiconductor device | |
JPH0140485B2 (en) | ||
JPH0793261B2 (en) | Single crystal thin film forming equipment | |
JPS6233415A (en) | Manufacture of single crystal semiconductor film | |
JPS5886716A (en) | Forming of single crystal semiconductor film | |
JPH0377654B2 (en) | ||
JPH0482213A (en) | Method of forming single crystal layer having no defect of silicon | |
JPS5952831A (en) | Beam annealing method | |
JPS61106484A (en) | Substrate for semiconductor device and its preparation | |
JPH0834175B2 (en) | Method for manufacturing semiconductor device | |
JPS62179112A (en) | Formation of soi structure |