JPS61139051A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS61139051A
JPS61139051A JP26106184A JP26106184A JPS61139051A JP S61139051 A JPS61139051 A JP S61139051A JP 26106184 A JP26106184 A JP 26106184A JP 26106184 A JP26106184 A JP 26106184A JP S61139051 A JPS61139051 A JP S61139051A
Authority
JP
Japan
Prior art keywords
emitter
lead
semiconductor device
transistor
external electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26106184A
Other languages
Japanese (ja)
Inventor
Makoto Hideshima
秀島 誠
Kenichi Muramoto
村本 顕一
Wataru Takahashi
亘 高橋
Masashi Kuwabara
桑原 正志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26106184A priority Critical patent/JPS61139051A/en
Publication of JPS61139051A publication Critical patent/JPS61139051A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To reduce electric effect on transistor chips, which are connected in parallel, by forming an emitter electrode taking out lead at the center between the parallel transistor chips or in such a manner the approximately equal distance is provided. CONSTITUTION:An external electrode taking out lead 13 of an emitter is arranged at the center between the positions on a metal relay plate 12, to which bonding wires from two transistor chips 1 and 2 are connected. The lead is separated from the positions at the approximately equal distance. Then, electric resistance and the inductance component of wiring can be made equal along the path from each transistor chip 1 or 2 to the external electrode taking out lead 13 through each bonding wire 51 formed by aluminum and the like and the metal relay plate 12. Thus the operations of the parallel transistor chips are made equal, and the breakdown strength can be improved.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は樹脂封止絶縁型天竜カドランジスタモジュール
を構成する場合に適した半導体装置に関するもので、特
に大電流を扱うモータ制御等の用途に用いられるトラン
ジスタモジュールで、該モジュール内部において複数個
のトランジスタチップを並列動作させて機能させる場合
に使用されるものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a semiconductor device suitable for configuring a resin-sealed insulated Tenryu Quadrantistor module, and particularly for use in applications such as motor control that handles large currents. This is a transistor module that is used when a plurality of transistor chips are operated in parallel inside the module.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、天竜カドランジスタモジュールとして定格電流が
数百アンペアに及ぶものがある。一般にこれらの大電流
を扱うトランジスタモジュールは、一部圧接により電極
取り出しを行なう場合を除き、第13図の如く複数個の
トランジスタチップ1,2をモジュール内に配置し、デ
ンディングワイヤ51等の金属細線を用いて中継金属板
12,22.32をそのまま延在させ、封止樹脂外に電
極を導出している。また第14図の如く中継金属板に別
の金属リードを半田付げして、封止樹脂外に電極を導出
している場合もある。第13図、第14図中11.21
゜31はそれぞれエミッタ、:ルクタ、ペースの外部電
極取り出しリード、61はセラミック基板、71は半田
で、第13図(b)は第13図(a)、第14図の電気
的等価回路図である。
Conventionally, there are some Tenryu quadrant transistor modules with a rated current of several hundred amperes. In general, these transistor modules that handle large currents have a plurality of transistor chips 1 and 2 arranged inside the module as shown in FIG. The relay metal plates 12, 22, 32 are extended as they are using thin wires, and the electrodes are led out of the sealing resin. Further, as shown in FIG. 14, another metal lead may be soldered to the relay metal plate to lead out the electrode outside the sealing resin. 11.21 in Figures 13 and 14
゜31 is an emitter, a lead for taking out the external electrode of the luctor, and a paste, 61 is a ceramic substrate, and 71 is a solder. Fig. 13 (b) is the electrical equivalent circuit diagram of Fig. 13 (a) and Fig. 14. be.

ところでチップを並列にして用いる理由は、トランジス
タチップの量産性から一つのトランジスタチップの面積
を極端に大ならしめないこと、モジュールの外形をなる
べく小さくすること、またトランジスタチップの汎用性
を増すこと等のために必須の技術とされている。
By the way, the reasons why chips are used in parallel are to prevent the area of a single transistor chip from becoming extremely large in terms of mass production of transistor chips, to reduce the external size of the module as much as possible, and to increase the versatility of transistor chips. It is considered an essential technology for

複数個のトランジスタチップを並列にかつ74ランスよ
く動作させるためには、その並列接続されるトランジス
タチッf1,2間において、電流増幅率、Vc x (
a a t ) (コレクタ、エミッタ間飽和電圧)、
V□(sat)(ぺ一永、エミッタ間飽和電圧)等の静
特性に殆んど差がないことが肝要である。例えば第15
図に示すように、電源vco=500vで負荷RL 中
On、ヘース電流I、==2A。
In order to operate multiple transistor chips in parallel and with good performance, the current amplification factor, Vc x (
a a t ) (collector-emitter saturation voltage),
It is important that there is almost no difference in the static characteristics such as V□(sat) (saturation voltage between emitters). For example, the 15th
As shown in the figure, when the power supply VCO is 500V and the load RL is ON, the Heas current I is 2A.

パルス幅=30μsの電流を印加する試験で、電流増幅
率り、I!に差がある場合、コレクタ電流工、の立ち上
がシ後、約30μ8間2つのトランジスタ1゜2に流れ
るICの値に差が生じて′いる。ただし第15図(、)
でAはトランジスタチップ1の特性でhF!!大の場合
、Bはトランジスタチップ2の特性でh0小の場合であ
る。
In a test in which a current with a pulse width of 30 μs was applied, the current amplification factor, I! If there is a difference between the two transistors, there will be a difference in the value of the IC flowing through the two transistors 1°2 for about 30μ8 after the collector current rises. However, Fig. 15 (,)
And A is the characteristic of transistor chip 1, hF! ! If it is large, B is the characteristic of the transistor chip 2 and it is the case if h0 is small.

一方、第13図及び第14図に示した従来例では、たと
え電流増幅率を両チップ1,2間で同一とした場合にお
いても、第16図に示すように■。の立上がシ時に差が
生じていた。例えば負荷短絡時の安全動作領域を考える
と、■。の立ち上がシ時の瞬時パワーにより破壊すると
考えられておシ、上記例ではトランジスタ1によって破
壊が生じることになる。またL(インダクタンス)負荷
の場合にも、従来例の並列方式では電流増幅率が同一で
も、やはシ第17図に示すようにトランジスタ1の側に
よpI。が流れる。この時電源Vaa=300 V 、
 I、−+2A/−4Aを印加した。
On the other hand, in the conventional example shown in FIGS. 13 and 14, even if the current amplification factors are the same between both chips 1 and 2, as shown in FIG. There was a difference in the start-up time. For example, considering the safe operating area when a load is short-circuited, ■. It is thought that destruction occurs due to the instantaneous power generated when the voltage rises, and in the above example, the destruction occurs due to transistor 1. Also, in the case of an L (inductance) load, even if the current amplification factor is the same in the conventional parallel system, the pI is different from the transistor 1 side as shown in FIG. flows. At this time, power supply Vaa = 300 V,
I, -+2A/-4A was applied.

このことは逆バイアス安全動作領域においても、従来例
では過負荷であるトランジスタ1によって破壊が生じる
ことを意味する。
This means that even in the reverse bias safe operating region, destruction occurs due to transistor 1 being overloaded in the conventional example.

以上のように従来の並列方式では、電流増幅率ヲ合わせ
たトランジスタチップ1,2を並列接続した場合にも、
電流は各トランジスタ間で一定ではなく、エミッタの外
部取シ出し電極11に近い側のトランジスタチップ1に
よす多く流れていた。このため順方向、逆方向ともに安
全動作領域は、過負荷となるトランジスタで決まってい
た。
As described above, in the conventional parallel method, even when transistor chips 1 and 2 with matching current amplification factors are connected in parallel,
The current was not constant between each transistor, and a large amount of current flowed to the transistor chip 1 on the side closer to the externally leading electrode 11 of the emitter. For this reason, the safe operating area in both the forward and reverse directions was determined by the transistor that would be overloaded.

〔廃明の目的〕[Purpose of abolishing Ming]

本発明は上記実情に鑑みてなされたもので、並列トラン
ジスタチップの動作を均一化し、破壊耐量を向上させる
ことを目的としている。
The present invention has been made in view of the above-mentioned circumstances, and aims to equalize the operation of parallel transistor chips and improve breakdown resistance.

〔発明の概要〕[Summary of the invention]

本発明は、エミッタ電極取り出しリードを並列トランジ
スタチップ間の中央もしくは略等距離になるように形成
し、配線によるインダクタンス成分、抵抗成分を均一化
し、並列接続されるトランジスタチップに与える電気的
影響を極減したものである。
The present invention forms the emitter electrode lead at the center or approximately equidistant between the parallel transistor chips, equalizes the inductance component and resistance component due to the wiring, and minimizes the electrical influence on the transistor chips connected in parallel. It has been reduced.

〔発明の実施例〕[Embodiments of the invention]

以下図面を参照して本発明の詳細な説明する。第1図は
、本発明の2つのトランジスタチップの場合の並列結線
方式による第13図に対応する一実施例、第2図は第1
4図に対応する実施例である。ここで相対応する個所に
は同一符号を付して説明を省略し、特徴とする点を説明
する。本実施例の特徴は、第f図、第2図ともエミッタ
の外部取り出し電極リード13が、2つのトランジスタ
チップ1,2から引き出したデンディングワイヤの接続
された金属中継板12上の位置から略等距離に配置され
ていることである。このようにすると、各トランジスタ
チップ1,2からアルミニウム等で形成された?ンディ
ングワイヤ51.中継金属板12、外部数シ出し電極リ
ード13に至るまで、すべて電気抵抗、配線り成分が互
に同一化できる。本実施例ではエミッタだけを改良した
場合を示したが、ペース、コレクタの外部数シ出し電極
リードに対しても同様に中央に配置するととが望ましい
。しかし後述の効果は、エミッタ外部数シ出し電極リー
ド13への依存性が強く、エミッタ電極リードの改良だ
けでも、ある程度満足の得られる改良が達成される。
The present invention will be described in detail below with reference to the drawings. FIG. 1 shows an example corresponding to FIG. 13 using a parallel connection method in the case of two transistor chips of the present invention, and FIG.
This is an example corresponding to FIG. Here, corresponding parts are given the same reference numerals, explanations are omitted, and characteristic points will be explained. The feature of this embodiment is that in both FIG. They are placed at equal distances. In this way, each transistor chip 1, 2 is made of aluminum or the like. Ending wire 51. The electrical resistance and wiring components of everything from the relay metal plate 12 to the external electrode lead 13 can be made the same. Although this embodiment shows a case in which only the emitter is improved, it is desirable that the external electrode leads of the pacer and collector be similarly placed in the center. However, the effects described below are highly dependent on the emitter external output electrode lead 13, and a satisfactory improvement to some extent can be achieved just by improving the emitter electrode lead.

トランジスタチップを3個以上並列接続する場合にも、
同様にしてエミッタの外部数シ出し電極リードが、それ
ぞれのトランジスタチップから配線上全く等価となるよ
うに設計することで達成できる。
Even when connecting three or more transistor chips in parallel,
Similarly, this can be achieved by designing the external electrode leads of the emitter to be completely equivalent in terms of wiring from each transistor chip.

第3図は、第1図に示した実施例の並列結線方式を用い
九場合の第16図に相当する各トランジスタチッf1,
2のIC波形図である。第4図は第17図に対応するI
c波形図である。いずれの場合にも各トランジスタチッ
プ1.2に流れる電流値は、トランジスタチッf1.2
とも略同−となシ、その値は第16図、第17図の過負
荷トランジスタチップ1とチップ2の値の中間値を示し
ている。
FIG. 3 shows each transistor chip f1, corresponding to FIG.
FIG. 2 is an IC waveform diagram of No. 2. Figure 4 corresponds to Figure 17.
c is a waveform diagram. In either case, the current value flowing through each transistor chip 1.2 is transistor chip f1.2
Both are substantially the same, and the value is an intermediate value between the values of overload transistor chips 1 and 2 in FIGS. 16 and 17.

第5図は、本発明による2個のトランジスタチップの並
列結線方式によるモジュールの逆方向安全動作領域と従
来例とを比較したものであシ、各ポイントは破壊点を示
している。
FIG. 5 is a comparison between the reverse direction safe operation area of a module based on the parallel connection method of two transistor chips according to the present invention and a conventional example, and each point indicates a breaking point.

Vclg z (S u m )は”CICXCメサィ
ニング電圧、ICICXはコレクタ、エミッタ間を流れ
る電流で、本発明によるものの方が破壊に強いことが分
る。第6図は、上記試験に用いたトランジスタチップ単
体の場合の逆方向安全動作領域の破壊個所を示しである
。この時の測定条件は第17図の場合と同一である。た
だしI 、 = +IA/−2Aとしである。これらか
ら、本発明により並列接続されたものは、単体の逆方向
安全動作領域の2倍の工。
Vclg z (S um ) is the CICXC messing voltage, and ICICX is the current flowing between the collector and emitter, and it can be seen that the one according to the present invention is more resistant to destruction. Figure 6 shows the transistor chip used in the above test. This figure shows the location of destruction in the reverse direction safe operation area in the case of a single unit.The measurement conditions at this time are the same as in the case of Fig. 17.However, I, = +IA/-2A.From these, the present invention When connected in parallel, the safety operating area in the reverse direction is twice as large as that of a single unit.

に対応する安全動作領域が確保されていることが分かる
It can be seen that a safe operating area corresponding to the above is secured.

第7図は負荷短絡試験による破壊発生状況を、電源vc
c毎の発生数分布により比較したものである。第7図(
、)は従来例による場合、第7図(b)は本発明の実施
例による場合である。第8図は同じくトランジスタチッ
プ単体の場合を示している。測定回路は第9図である。
Figure 7 shows the breakdown caused by the load short circuit test.
A comparison is made based on the distribution of the number of occurrences for each c. Figure 7 (
, ) are based on the conventional example, and FIG. 7(b) is the case based on the embodiment of the present invention. FIG. 8 similarly shows the case of a single transistor chip. The measurement circuit is shown in FIG.

但し入力■。However, input ■.

は、単体トランジスタチップの場合IA、並列トランジ
スタの場合2人としである。この場合においても、本発
明により並列接続されたものは、単体の負荷短絡安全動
作領域と同等の実力であることが確認できる。第7図、
第9図から本発明によりトランジスタチップを並列接続
しても、単体トランジスタチップの破壊耐量実力に対応
した耐量が得られることが分る。以上本発明による効果
を述べたが、これらの効果は配線部分の抵抗成分、イン
ダクタンス成分が大きい場合により顕著となるものであ
る。
is IA in the case of a single transistor chip, and two people in the case of parallel transistors. Even in this case, it can be confirmed that the parallel connection according to the present invention has the same ability as the load short-circuit safe operation area of a single unit. Figure 7,
It can be seen from FIG. 9 that even if transistor chips are connected in parallel according to the present invention, a breakdown strength corresponding to the breakdown strength of a single transistor chip can be obtained. Although the effects of the present invention have been described above, these effects become more noticeable when the resistance component and inductance component of the wiring portion are large.

トランジスタモジ、−ルの内部構造を形成する回路支持
基板として、溶射基板や、第10図に示したDBC(D
ir@ct Bond Copp@r)基板が用いられ
る場合がある。前者はセラミックスインシェレータ上面
にCuを溶射して回路構成したものでl)、後者は同じ
くセラミック上面にCu薄膜を、Cuの亜共晶を用いて
接合したものである。
As a circuit support substrate that forms the internal structure of a transistor module, a thermal sprayed substrate or a DBC (D
An ir@ct Bond Copp@r) substrate may be used. The former is a circuit constructed by thermally spraying Cu on the top surface of a ceramic insulator (1), and the latter is a circuit formed by bonding a thin Cu film to the top surface of a ceramic using hypoeutectic Cu.

これらの部材を用いると、トランジスタモジュールの組
み立てが容易になることもあって、活発に回路支持基板
として採用されてきている。
The use of these members makes it easy to assemble transistor modules, so they are being actively used as circuit support substrates.

しかし回路を構成しているCuの厚さは、それぞれの基
板製法技術上の問題から、前者で数千オングストローム
、後者で数百μmが最大とされ、必然的に配線インピー
ダンス、インダクタンス共に大きな値となる。このよう
な場合には、本発明の効果は著しい。
However, due to problems with the manufacturing technology of each substrate, the maximum thickness of the Cu that makes up the circuit is several thousand angstroms for the former and several hundred μm for the latter, which inevitably results in large values for both wiring impedance and inductance. Become. In such cases, the effects of the present invention are significant.

更に上記回路板を用〜・る時には、エミッタ。Furthermore, when using the above circuit board, an emitter is used.

コレクタ、ペースの外部数シ出し電極リード13.21
.31は予め樹脂成形された第11図に示したようなタ
ーミナルホルダ(樹脂)81を併用することが、生産上
望ましい。この場合に本発明の理想的な適用、即ちエミ
ッタ。
Collector, pace external number electrode lead 13.21
.. 31 is desirably used in combination with a terminal holder (resin) 81 as shown in FIG. 11 which is pre-molded with resin. The ideal application of the invention in this case, namely the emitter.

コレクタ、ペースのすべての外部数シ出し電極リードに
おいて配線インピーダンス、インダクタンスを、並列接
続された半導体チップすべてに対し等価にすることをし
ようとすると、第11図のような形状となシ、外部取り
出し電極リード11.21.31と中継金属板12゜2
2.32との半田付は時に、樹脂81によるターミナル
ホルダ部品の安定性が極めて悪く、量産性に欠ける。第
12図はこれを解決するターミナルホルダ形状の一例で
あり、少くともエミッタ、コレクタ、ペースの外部数シ
出し電極リードの一つを、図のように二つに分岐させる
ことによりて安定性を得ている。以上トランジスタを例
に本発明を説明したが、適用できる素子はこれのみに限
られることはない。
If we try to equalize the wiring impedance and inductance for all semiconductor chips connected in parallel in all the external output electrode leads of the collector and pace, the shape as shown in Figure 11 will be obtained. Electrode lead 11.21.31 and relay metal plate 12゜2
When soldering with 2.32, the stability of the terminal holder part due to the resin 81 is sometimes extremely poor, resulting in a lack of mass productivity. Figure 12 is an example of a terminal holder shape that solves this problem, and stability is achieved by branching at least one of the external electrode leads for the emitter, collector, and pace into two as shown in the figure. It has gained. Although the present invention has been described above using a transistor as an example, the applicable elements are not limited to this.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明によれば、並列トランジスタチ
ップの動作を均一化したため、各チップへ与える電気的
影響を低減でき、また破壊耐量を向上させた半導体装置
が提供できるものである。
As described above, according to the present invention, since the operation of the parallel transistor chips is made uniform, the electrical influence on each chip can be reduced, and a semiconductor device with improved breakdown resistance can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の各実施例を示す斜視図、第3
図ないし第8図は同実施例の効果を説明するだめの特性
図、第9図は特性の試験回路図、第10図ないし第12
図は本発明の異なる実施例の要部を示す斜視図、第13
図(a)は従来装置の一例を示す斜視図、第13図(b
)はその等価回路図、第14図は従来装置の他の例を示
す斜視図、第15図(、)は従来装置の特性図、第15
図(b)はその試験回路図、第16図、第17図(、)
は従来装置の特性図、第17図(b)はその試験回路図
である。   − 1,2・・・トランジスタチップ、12.22゜32・
・・金属中継板、13,21.31・・・外部数シ出し
電極リード、51・・・ゲンデイングワイヤ、61・・
・セラミック基板、71・・・半田、81・・・樹脂O 第1図 第2図 第3図 第5図 第6図 VJ 第7図 (a)      (1)) 第8図 □V印 s9図 第10図 第11図 第12図 第13図 (a)       (b) 第14図 第15図 (a) (AIS) □を 第16図 □を 第17図
Figures 1 and 2 are perspective views showing each embodiment of the present invention, and Figure 3 is a perspective view showing each embodiment of the present invention.
8 through 8 are characteristic diagrams for explaining the effects of the same embodiment, FIG. 9 is a characteristic test circuit diagram, and FIGS. 10 through 12.
The figure is a perspective view showing main parts of a different embodiment of the present invention.
Figure (a) is a perspective view showing an example of a conventional device, and Figure 13 (b) is a perspective view showing an example of a conventional device.
) is its equivalent circuit diagram, FIG. 14 is a perspective view showing another example of the conventional device, FIG. 15 (,) is a characteristic diagram of the conventional device, and FIG.
Figure (b) is the test circuit diagram, Figures 16 and 17 (,)
is a characteristic diagram of a conventional device, and FIG. 17(b) is a test circuit diagram thereof. - 1,2...transistor chip, 12.22°32.
・・Metal relay plate, 13, 21. 31・・External number electrode lead, 51・・Gendering wire, 61・・
・Ceramic substrate, 71...Solder, 81...Resin O Fig. 1 Fig. 2 Fig. 3 Fig. 5 Fig. 6 VJ Fig. 7 (a) (1)) Fig. 8 □ V mark s9 Fig. Fig. 10 Fig. 11 Fig. 12 Fig. 13 (a) (b) Fig. 14 Fig. 15 (a) (AIS) □ Fig. 16 Fig. 17 □

Claims (8)

【特許請求の範囲】[Claims] (1)複数個の略同一特性を有する半導体チップを並列
接続しかつ一外囲器内に封じてなり、前記半導体チップ
のベース、エミッタ、コレクタの外部電極取り出しリー
ドの少くとも前記外囲器外まで導出されたエミッタ電極
取り出しリードから、並列接続された前記半導体チップ
のエミッタ部までは実質的に互に等価な金属配線により
接続されてなることを特徴とする半導体装置。
(1) A plurality of semiconductor chips having substantially the same characteristics are connected in parallel and sealed in one envelope, and at least the external electrode leads of the base, emitter, and collector of the semiconductor chips are outside the envelope. A semiconductor device characterized in that an emitter electrode lead led out to an emitter portion of the semiconductor chip connected in parallel is connected by substantially equivalent metal wiring.
(2)前記複数の半導体チップはDBC(Direct
Bond Copper)基板上に配置され、前記半導
体チップのエミッタ部と前記DBC基板上に形成された
金属中継板上に別に半田付けされたエミッタ電極外部取
り出しリードをそなえたことを特徴とする特許請求の範
囲第1項に記載の半導体装置。
(2) The plurality of semiconductor chips are DBC (Direct
The method of the present invention is characterized in that it is arranged on a bond copper (bond copper) substrate, and has an emitter electrode external lead that is separately soldered to an emitter part of the semiconductor chip and a metal relay plate formed on the DBC substrate. The semiconductor device according to scope 1.
(3)前記中継金属板とエミッタ電極外部取り出しリー
ドは一体物であることを特徴とした特許請求の範囲第2
項に記載の半導体装置。
(3) Claim 2, characterized in that the relay metal plate and the emitter electrode external lead are integrated.
The semiconductor device described in .
(4)前記ベース、エミッタ、コレクタの外部電極取り
出しリードは、該リードの中継金属板とは別に形成され
ており、該中継金属板と半田付けにより接続されてなる
ことを特徴とする特許請求の範囲第1項に記載の半導体
装置。
(4) The external electrode lead of the base, emitter, and collector is formed separately from the relay metal plate of the lead, and is connected to the relay metal plate by soldering. The semiconductor device according to scope 1.
(5)前記中継金属板と外部電極取り出しリードは一体
物であることを特徴とする特許請求の範囲第4項に記載
の半導体装置。
(5) The semiconductor device according to claim 4, wherein the relay metal plate and the external electrode lead are integrated.
(6)前記ベース、エミッタ、コレクタの外部電極取り
出しリードは、該リードの中継金属板に半田付けされる
前に予め樹脂により一体化された部品であることを特徴
とする特許請求の範囲第1項に記載の半導体装置。
(6) The external electrode lead of the base, emitter, and collector is a component that is integrated with resin in advance before being soldered to the relay metal plate of the lead. The semiconductor device described in .
(7)前記外部電極取り出しリードの少くとも一つは、
二つ以上の分岐を有し、前記リードの中継金属板と少く
とも二個所以上で半田付けされることを特徴とする特許
請求の範囲第1項に記載の半導体装置。
(7) At least one of the external electrode extraction leads is
2. The semiconductor device according to claim 1, wherein the semiconductor device has two or more branches and is soldered to the relay metal plate of the lead at at least two or more locations.
(8)前記中継金属板と外部電極取り出しリードは一体
物であることを特徴とする特許請求の範囲第7項に記載
の半導体装置。
(8) The semiconductor device according to claim 7, wherein the relay metal plate and the external electrode lead are integrated.
JP26106184A 1984-12-11 1984-12-11 Semiconductor device Pending JPS61139051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26106184A JPS61139051A (en) 1984-12-11 1984-12-11 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26106184A JPS61139051A (en) 1984-12-11 1984-12-11 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS61139051A true JPS61139051A (en) 1986-06-26

Family

ID=17356529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26106184A Pending JPS61139051A (en) 1984-12-11 1984-12-11 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS61139051A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03132066A (en) * 1989-10-18 1991-06-05 Fuji Electric Co Ltd Transistor module for power conversion device
EP0609432A1 (en) * 1992-08-24 1994-08-10 IVERSEN, Arthur H. Power semiconductor packaging
EP0987762A3 (en) * 1998-09-08 2000-11-08 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Semiconductor module
JP2003158231A (en) * 2001-11-26 2003-05-30 Toyota Industries Corp Semiconductor device and its wiring method
US6800934B2 (en) 2001-08-08 2004-10-05 Mitsubishi Denki Kabushiki Kaisha Power module
JP2009277975A (en) * 2008-05-16 2009-11-26 Toyota Industries Corp Semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59195857A (en) * 1983-04-21 1984-11-07 Fuji Electric Co Ltd Semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59195857A (en) * 1983-04-21 1984-11-07 Fuji Electric Co Ltd Semiconductor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03132066A (en) * 1989-10-18 1991-06-05 Fuji Electric Co Ltd Transistor module for power conversion device
EP0609432A1 (en) * 1992-08-24 1994-08-10 IVERSEN, Arthur H. Power semiconductor packaging
EP0609432A4 (en) * 1992-08-24 1995-03-01 Arthur H Iversen Power semiconductor packaging.
EP0987762A3 (en) * 1998-09-08 2000-11-08 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Semiconductor module
US6566750B1 (en) 1998-09-08 2003-05-20 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Semiconductor module
US6800934B2 (en) 2001-08-08 2004-10-05 Mitsubishi Denki Kabushiki Kaisha Power module
JP2003158231A (en) * 2001-11-26 2003-05-30 Toyota Industries Corp Semiconductor device and its wiring method
JP2009277975A (en) * 2008-05-16 2009-11-26 Toyota Industries Corp Semiconductor device

Similar Documents

Publication Publication Date Title
KR100735852B1 (en) Semiconductor device
JP2002110905A (en) Semiconductor device
KR100284241B1 (en) Semiconductor device
US7498195B2 (en) Multi-chip semiconductor connector assembly method
JPS6393126A (en) Semiconductor device
US5436502A (en) Semiconductor component and method for the manufacturing thereof
JP2022025587A (en) Semiconductor device
JPS61139051A (en) Semiconductor device
JP2000049281A (en) Semiconductor device
JPH0397257A (en) Large power semiconductor device
JPH11163045A (en) Semiconductor device and its manufacture
JPH0513383B2 (en)
US11973063B2 (en) Semiconductor package with low parasitic connection to passive device
JP3525823B2 (en) Mounting structure of complementary IGBT
US7423332B2 (en) Vertical laminated electrical switch circuit
JP2002064180A (en) Semiconductor module
JPH0567697A (en) Resin sealed-type semiconductor device
WO2023112735A1 (en) Electronic device
JP2693688B2 (en) Multi-input / low-loss voltage regulator
JPH06342872A (en) Semiconductor device
JP3467605B2 (en) Composite module using foil frame diode
CN115050656A (en) Gallium nitride power device integrated with freewheeling diode and packaging method
JP2000243883A (en) Aluminium-packaged aluminum silicon carbide substrate having aluminum nitride insulating layer for packaging semiconductor die
KR20210041425A (en) Power Module Connected by Multi-layer and the Manufacturing Method thereof
JPS6025900Y2 (en) semiconductor equipment