JPS61137368A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS61137368A
JPS61137368A JP25915584A JP25915584A JPS61137368A JP S61137368 A JPS61137368 A JP S61137368A JP 25915584 A JP25915584 A JP 25915584A JP 25915584 A JP25915584 A JP 25915584A JP S61137368 A JPS61137368 A JP S61137368A
Authority
JP
Japan
Prior art keywords
region
substrate
type
regions
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25915584A
Other languages
Japanese (ja)
Inventor
Tetsuo Iijima
哲郎 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP25915584A priority Critical patent/JPS61137368A/en
Publication of JPS61137368A publication Critical patent/JPS61137368A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To enhance the withstand voltage of an FET by composing of a high impurity density region different from a substrate when surrounding a cell region for forming a vertical MOSFET by a field limiting ring, and coupling a shallow and low density region with the outer end, thereby interrupting a depletion layer extending outside. CONSTITUTION:An N<+> type layer 2 to become a drain electrode is diffused on the back surface of an N<-> type Si substrate 1 to become a drain, a plurality of P type channel regions 5 are formed in the surface layer of the substrate 1, and an N<+> type source region 6 is formed therein. Then, an SiO2 film 3 is coated on the cell regions, holes are opened corresponding to the regions 5, a polycrystalline Si gate 4 surrounded by an SiO2 film is formed over the regions 5, and an aluminum source electrode 9 is mounted on the regions 5. Then, when a field limiting ring region is formed in the surface layer of the substrate 1 while surrounding the cell region, the region is a deep P type region 11 at the cell side, and the region coupled therewith is composed of a shallow P<-> type region 12 to avoid the current concentration on the surface of the substrate 1.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は半導体装置における窩耐圧化技術に関する。[Detailed description of the invention] 〔Technical field〕 The present invention relates to a technique for increasing voltage resistance in a semiconductor device.

〔背景技術〕[Background technology]

パワーMO5FETは、例えば1981年11月23日
日経マグロウヒル社発行日経エレクトロニクス誌130
項〜141項に示されるように種々の構造が開発されて
いるが、第4図に示すように半導体基板1の表面に形成
された複数のMOSセルを構成する半導体Pn接合の耐
圧を向上するためにこれらセルを囲み半導体基板周辺に
そって半導体Pn接合からなるフィールド・リミット・
リング(FLR)11を設けたものがある。
The power MO5FET is described, for example, in Nikkei Electronics Magazine 130, published by Nikkei McGraw-Hill on November 23, 1981.
Various structures have been developed as shown in Sections 1 to 141, and as shown in FIG. For this purpose, a field limit circuit consisting of semiconductor Pn junctions is placed around these cells and along the periphery of the semiconductor substrate.
Some are equipped with a ring (FLR) 11.

このFLR構造は、本来フローティングなPn接合から
延びる空乏層により、MO3素子を構成する主接合の電
界を緩和し、それによって主接合の耐圧の向上を図るよ
うになっているが、FLR自身の耐圧が小さいとFLR
側で耐圧が決定されることになる。したがってMO3素
子(IC)を設計する段階では、MO8素子の耐圧をF
LRが主接合のいずれかの耐圧により決定する。
This FLR structure uses a depletion layer extending from the originally floating Pn junction to alleviate the electric field of the main junction that constitutes the MO3 element, thereby improving the breakdown voltage of the main junction.However, the breakdown voltage of the FLR itself is is small, FLR
The withstand pressure will be determined by the side. Therefore, at the stage of designing the MO3 element (IC), the withstand voltage of the MO8 element should be set to F.
LR is determined by the breakdown voltage of one of the main junctions.

FLR側で耐圧を決定した場合1表面の可動イオンの影
響を受けやすく、信頼性試験で耐圧低下現象が発生する
。したがって、主接合で素子の耐圧を決定することにな
るが、このためにはFLRの十分な耐圧マージンが必要
となる。
When the breakdown voltage is determined on the FLR side, it is susceptible to the influence of mobile ions on the first surface, and a breakdown voltage drop phenomenon occurs during reliability tests. Therefore, the breakdown voltage of the element is determined by the main junction, and for this purpose, a sufficient breakdown voltage margin of the FLR is required.

〔発明の目的〕[Purpose of the invention]

本発明の目的とするところは、FLR構造を有する半導
体装置において、高い耐圧のFLR構造をうることによ
り、半導体装置の素子の耐圧を向上することにある。
An object of the present invention is to improve the breakdown voltage of elements of a semiconductor device by providing a high breakdown voltage FLR structure in a semiconductor device having an FLR structure.

〔発明の概要〕[Summary of the invention]

本願において開示される発明のうち代表的なものの概要
を簡単に説明すれば下記のとおりである。
A brief overview of typical inventions disclosed in this application is as follows.

すなわち、半導体基体の主表面に半導体素子が形成され
、この半導体素子を取り囲み、基体周辺部表面に基体表
面と導電型の異なる半導体領域からなるフィールド・リ
ミット・リングが形成された半導体装置において上記フ
ィールド・リミット・リングに接してその外側の接合勾
配をゆるやかにするような低濃度の耐圧層を形成するこ
とにより、フィールド・リミット・リングの耐圧を高め
、それにより素子の耐圧を向上するものである。
That is, in a semiconductor device in which a semiconductor element is formed on the main surface of a semiconductor substrate, a field limit ring is formed on the peripheral surface of the substrate, surrounding the semiconductor element, and consisting of a semiconductor region having a conductivity type different from that of the substrate surface.・By forming a low-concentration breakdown voltage layer that is in contact with the limit ring and softens the junction gradient on the outside, the breakdown voltage of the field limit ring is increased, thereby improving the breakdown voltage of the device. .

〔実施例〕 第1図は本発明の一実施例を示すもので、縦形D S 
A (Diffusion 5elf Alignme
nt)構造のパワーMO8FETの要部断面図である。
[Embodiment] Fig. 1 shows an embodiment of the present invention.
A (Diffusion 5elf Alignme
nt) is a cross-sectional view of a main part of a power MO8FET having a structure.

同図において、1はドレインとなるn−型シリコン基板
(チップ本体)、2はドレイ電極(D)形成のためのn
″型層、3は絶縁膜(Si02膜)、4はポリシリコン
ゲート、5はチャネル部となるP型層、6はソースとな
るn4型層でP型層5゜n0型層6は上記ポリシリコン
ゲート4をマスクとして不純物をイオン打込み、拡散す
ることによりセルファライン(自己整合物)にゲート長
を決定するものである。これらP型層、n”型層6及び
ゲート4とでMOSFETの一つのセルを構成する。
In the figure, 1 is an n-type silicon substrate (chip body) that will become a drain, and 2 is an n-type silicon substrate for forming a drain electrode (D).
3 is an insulating film (Si02 film), 4 is a polysilicon gate, 5 is a P-type layer that becomes a channel part, 6 is an n4-type layer that becomes a source, and P-type layer 5゜n0-type layer 6 is the polysilicon layer. Using the silicon gate 4 as a mask, impurity ions are implanted and diffused to determine the gate length in a self-aligned material.These P-type layer, n''-type layer 6, and gate 4 form a MOSFET. Configure one cell.

7はフィールド絶縁膜で、この上にたとえばゲート用ボ
ンディングバットとなるアルミニウム膜8を形成し、前
記ポリシリコンゲート4とを接続している。9はアルミ
ニウム膜からなるソース電極で前記P型層5の一部及び
n“型層6にコンタクトさせである。10はアルミニウ
ム膜よりなるフィールドプレートでチップlの周縁にそ
って形成される。
Reference numeral 7 denotes a field insulating film, on which an aluminum film 8 serving as a gate bonding bat, for example, is formed, and is connected to the polysilicon gate 4. Reference numeral 9 denotes a source electrode made of an aluminum film, which is in contact with a part of the P-type layer 5 and the n'' type layer 6. Reference numeral 10 denotes a field plate made of an aluminum film, which is formed along the periphery of the chip l.

11はP型層からなるフィールド・リミット・リング(
FL’R部)で複数のMOSセルを取り餌むように基板
(チップ)1の周辺部に形成されるにのP型層11は各
セルを構成するP型層5と同じ拡散工程で形成される。
11 is a field limit ring (
The P-type layer 11 formed on the periphery of the substrate (chip) 1 to capture a plurality of MOS cells in the FL'R section) is formed in the same diffusion process as the P-type layer 5 constituting each cell. .

12はP−型高耐圧層で低濃度ボロンイオン打込みによ
り上記FLRに接し、その外側の接合勾配をゆるやかに
するような低濃度で接合深さが浅い層(0,5〜1.0
μm)として形成される。
Reference numeral 12 denotes a P-type high breakdown voltage layer which is in contact with the above FLR by implanting low concentration boron ions, and a layer with a low concentration and shallow junction depth (0.5 to 1.0
μm).

(第2図) すなわち、このP−型高耐圧層は濃度、横幅あるいは接
合深さxjは下記の条件にしたがって決定される。
(FIG. 2) That is, the concentration, width, or junction depth xj of this P-type high breakdown voltage layer is determined according to the following conditions.

(1)P−型高耐圧層12の電界はP−型層が空乏層化
することにより、P型のFLR部11の電界より小さく
押える。
(1) The electric field of the P-type high voltage layer 12 is suppressed to be smaller than the electric field of the P-type FLR section 11 because the P-type layer becomes a depletion layer.

(2)P−型高耐圧層12の空乏層化(ピンチオフ)が
速やかに行われるために、n−型基板1の濃度に比べP
−型層12を低濃度とするが、FLRlttの面積の増
大を押えるように接合深さxjの最適値化設計が必要と
なる。
(2) Since the P-type high breakdown voltage layer 12 is quickly depleted (pinch-off), the concentration of P
- Although the mold layer 12 has a low concentration, it is necessary to design the junction depth xj to an optimum value so as to suppress an increase in the area of FLRltt.

〔効果〕〔effect〕

以上実施例で述べた本発明によれば下記のように効果が
得られる。
According to the present invention described in the embodiments above, the following effects can be obtained.

従来のFLRを有する半導体装置においては、たとえば
第5図に示すように、素子電極へのノ(イアス印加によ
って接合(主接合)とFLRの接合よりの空乏層の延び
(あるいは電気力線の延び)が互いに相殺することでバ
ランスするが、FLRのみの場合、外側では空乏層が横
方向へ延びにくく、基板表面で電流集中し、耐圧が決定
される。
In a conventional semiconductor device having an FLR, for example, as shown in FIG. ) are balanced by canceling each other out, but in the case of only an FLR, the depletion layer is difficult to extend laterally on the outside, current concentrates on the substrate surface, and the withstand voltage is determined.

これに対してFLRI lに接して高耐圧層12を設け
た本発明では、第3図に示すように空乏層が高耐圧層に
そって外側へ延びて、電流集中を緩和し、耐圧性が向上
する。
On the other hand, in the present invention, in which the high breakdown voltage layer 12 is provided in contact with the FLRI 1, the depletion layer extends outward along the high breakdown voltage layer to alleviate current concentration and improve the breakdown voltage. improves.

第6図及び第7図は印加電圧の変化に伴う主接合CB)
とFLRの接合(A)における電界の変化を曲線図であ
られしたものである。
Figures 6 and 7 show the main junction CB as the applied voltage changes)
This is a curve diagram showing the change in electric field at the junction (A) of FLR and FLR.

従来のFLRを有する半導体装置では第6図に示すよう
に、所定の印加電圧(ピンチオフ電圧)Vpで主接合側
の電界(B)にFLR側の電界(A)が追いつくことに
なるのに対し、本発明では、第7図に示すように、高耐
圧層を設けることでFLR側(A′)の電界上昇の傾き
が小さくなっていることにより、前記電圧Vpにおいて
も電界に余裕があり、より高い■p′でピンチオフされ
る。
In a conventional semiconductor device having an FLR, as shown in FIG. 6, the electric field (A) on the FLR side catches up with the electric field (B) on the main junction side at a predetermined applied voltage (pinch-off voltage) Vp. In the present invention, as shown in FIG. 7, the slope of the rise in the electric field on the FLR side (A') is reduced by providing the high breakdown voltage layer, so there is a margin in the electric field even at the voltage Vp, It is pinched off at higher ■p'.

第8図は主接合(素子側)とFLRとの間の間隔dに対
する耐圧変動の方向を、従来構造の場合(1)と2本発
明構造の場合(TI)とを対して示すものである。
FIG. 8 shows the direction of breakdown voltage variation with respect to the distance d between the main junction (element side) and the FLR for the conventional structure (1) and the structure of the present invention (TI). .

同図によれば、本発明の構造では、FLRと主接合間の
距離dと耐圧の関係は、FLRのみの従来構造の場合よ
り高耐圧に設計できることを示している。高温逆バイア
ス試験による耐圧変動は。
According to the figure, in the structure of the present invention, the relationship between the distance d between the FLR and the main junction and the breakdown voltage shows that the structure can be designed to have a higher breakdown voltage than the conventional structure including only the FLR. What is the breakdown voltage variation due to high temperature reverse bias test?

同図矢印の方向に進み、本発明構造(II)では、FL
Rの耐圧にマージンがあるため耐圧低下まで進まない。
Proceeding in the direction of the arrow in the figure, in the structure (II) of the present invention, FL
Since there is a margin in the withstand voltage of R, the process does not proceed to the point where the withstand voltage drops.

以上本発明者によってなされた発明を実施例にもとづき
具体的に説明したが1本発明は上記実施例に限定される
ものではなく、その要旨を逸脱しない範囲で種々に変更
できることはいうまでもなし1 。
Although the invention made by the present inventor has been specifically explained above based on examples, it goes without saying that the present invention is not limited to the above-mentioned examples, and can be modified in various ways without departing from the gist thereof. 1.

たとえば、FLRと同時に基板表面上に第1図で示すよ
うにアルミニウム膜からなるフィールドプレート(F、
P)10を併用することができる。
For example, a field plate (F,
P) 10 can be used in combination.

〔利用分野〕[Application field]

本発明は、FLR構造を利用した半導体装置(MOS 
T C,B i −I C,B−MOS I C)に適
用することができる。
The present invention is a semiconductor device (MOS) using an FLR structure.
It can be applied to T C, B i -IC, B-MOS I C).

本発明は、特にFLRを有する高耐圧(300V以上)
のパワーMO3FET、パワートランジスタに応用して
有効である。
The present invention is particularly suitable for high voltage withstand voltage (300V or more) having FLR.
It is effective when applied to power MO3FETs and power transistors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すパワーMO5rcの要
部断面図である。 第2図は第1図における二部拡大断面図、第3図は本発
明の詳細な説明するための断面図である。 第4図はFLR構造を有する半導体装置の例を模型図で
示す正面断面斜面図である。 第5図は第4図におけるFLRの動作原理を示す断面図
である。 第6図乃至第8図は本発明の詳細な説明するための曲線
図である。 l・・・n−型シリコン基板、2・・・n″型層3・・
・絶縁ゲート、4・・・ゲート、5・・・P型層(チャ
ネル部)6・−・n0型N(ドレイン)、7・・フィー
ルド絶縁膜、8,9・・・アルミニウム電極、10・・
・フィールドプレート、11・・P型層(FLR)、1
2・・・高耐圧P−型層。 第  3  図 第  4  図 第  6  図 第  7  図 Q  27[1%!  L          VP 
  CV)第  8  図 (fl?r死ず珀訊) 闇不伶を−
FIG. 1 is a sectional view of a main part of a power MO5rc showing an embodiment of the present invention. FIG. 2 is an enlarged sectional view of two parts in FIG. 1, and FIG. 3 is a sectional view for explaining the present invention in detail. FIG. 4 is a front cross-sectional oblique view schematically showing an example of a semiconductor device having an FLR structure. FIG. 5 is a sectional view showing the operating principle of the FLR in FIG. 4. 6 to 8 are curve diagrams for explaining the present invention in detail. l...n-type silicon substrate, 2...n'' type layer 3...
・Insulated gate, 4... Gate, 5... P type layer (channel part) 6... n0 type N (drain), 7... Field insulating film, 8, 9... Aluminum electrode, 10...・
・Field plate, 11...P-type layer (FLR), 1
2...High voltage P-type layer. Figure 3 Figure 4 Figure 6 Figure 7 Q 27 [1%! L VP
CV) Figure 8 (fl?r deathless question) Darkness -

Claims (1)

【特許請求の範囲】 1、半導体基体の一主表面に半導体素子が形成され、こ
の半導体素子を取り囲み、基体周辺部表面に基体表面と
導電型の異なる半導体領域からなるフィールドリミット
リングが形成された半導体装置であって、上記導電形の
異なる半導体領域に接してその外側の接合勾配をゆるや
かにするような低濃度の耐圧層が形成されていることを
特徴とする半導体装置。 2、上記半導体素子は縦形のMOSFETである特許請
求の範囲第1項に記載の半導体装置。
[Claims] 1. A semiconductor element is formed on one main surface of a semiconductor substrate, and a field limit ring is formed on the peripheral surface of the substrate, surrounding the semiconductor element, and consisting of a semiconductor region having a conductivity type different from that of the substrate surface. 1. A semiconductor device, characterized in that a low concentration breakdown voltage layer is formed in contact with the semiconductor regions having different conductivity types to soften the junction gradient on the outside thereof. 2. The semiconductor device according to claim 1, wherein the semiconductor element is a vertical MOSFET.
JP25915584A 1984-12-10 1984-12-10 Semiconductor device Pending JPS61137368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25915584A JPS61137368A (en) 1984-12-10 1984-12-10 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25915584A JPS61137368A (en) 1984-12-10 1984-12-10 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS61137368A true JPS61137368A (en) 1986-06-25

Family

ID=17330103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25915584A Pending JPS61137368A (en) 1984-12-10 1984-12-10 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS61137368A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63194366A (en) * 1987-02-09 1988-08-11 Toshiba Corp High breakdown-voltage planar type semiconductor element
EP0568692A1 (en) * 1991-11-25 1993-11-10 Harris Corp Power fet with shielded channels.
EP0624943A1 (en) * 1993-05-10 1994-11-17 STMicroelectronics S.A. Serial current limiting device
US5430324A (en) * 1992-07-23 1995-07-04 Siliconix, Incorporated High voltage transistor having edge termination utilizing trench technology
US5543645A (en) * 1992-11-24 1996-08-06 Sgs-Thomson Microelectronics S.A. Forward overvoltage protection circuit for a vertical semiconductor component
FR2768858A1 (en) * 1997-09-22 1999-03-26 Sgs Thomson Microelectronics Grid contact pad structure
JP2006516815A (en) * 2003-01-15 2006-07-06 クリー インコーポレイテッド Edge termination structure for silicon carbide semiconductor device and manufacturing method thereof
JP2009016618A (en) * 2007-07-05 2009-01-22 Denso Corp Semiconductor device and manufacturing method thereof
US9515135B2 (en) 2003-01-15 2016-12-06 Cree, Inc. Edge termination structures for silicon carbide devices
WO2018207712A1 (en) * 2017-05-08 2018-11-15 ローム株式会社 Semiconductor device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63194366A (en) * 1987-02-09 1988-08-11 Toshiba Corp High breakdown-voltage planar type semiconductor element
EP0568692A1 (en) * 1991-11-25 1993-11-10 Harris Corp Power fet with shielded channels.
US5605852A (en) * 1992-07-23 1997-02-25 Siliconix Incorporated Method for fabricating high voltage transistor having trenched termination
US5430324A (en) * 1992-07-23 1995-07-04 Siliconix, Incorporated High voltage transistor having edge termination utilizing trench technology
US5780895A (en) * 1992-10-24 1998-07-14 Sgs-Thomson Microelectronics S.A. Forward overvoltage protection circuit for a vertical semiconductor component
US5543645A (en) * 1992-11-24 1996-08-06 Sgs-Thomson Microelectronics S.A. Forward overvoltage protection circuit for a vertical semiconductor component
US5563436A (en) * 1992-11-24 1996-10-08 Sgs-Thomson Microelectronics S.A. Forward overvoltage protection circuit for a vertical semiconductor component
US5956582A (en) * 1993-05-10 1999-09-21 Sgs-Thomson Microelectronics S.A. Current limiting circuit with continuous metallization
FR2705173A1 (en) * 1993-05-10 1994-11-18 Sgs Thomson Microelectronics Serial current limiter component.
EP0624943A1 (en) * 1993-05-10 1994-11-17 STMicroelectronics S.A. Serial current limiting device
FR2768858A1 (en) * 1997-09-22 1999-03-26 Sgs Thomson Microelectronics Grid contact pad structure
JP2006516815A (en) * 2003-01-15 2006-07-06 クリー インコーポレイテッド Edge termination structure for silicon carbide semiconductor device and manufacturing method thereof
JP2011243999A (en) * 2003-01-15 2011-12-01 Cree Inc Edge termination structure for silicon carbide semiconductor devices and methods of fabricating same
US8124480B2 (en) 2003-01-15 2012-02-28 Cree, Inc. Methods of fabricating silicon carbide devices incorporating multiple floating guard ring edge terminations
JP2012084910A (en) * 2003-01-15 2012-04-26 Cree Inc Edge termination structure for silicon carbide semiconductor device and method for fabricating the same
US9515135B2 (en) 2003-01-15 2016-12-06 Cree, Inc. Edge termination structures for silicon carbide devices
JP2009016618A (en) * 2007-07-05 2009-01-22 Denso Corp Semiconductor device and manufacturing method thereof
WO2018207712A1 (en) * 2017-05-08 2018-11-15 ローム株式会社 Semiconductor device
JPWO2018207712A1 (en) * 2017-05-08 2020-03-26 ローム株式会社 Semiconductor device
US11101345B2 (en) 2017-05-08 2021-08-24 Rohm Co., Ltd. Semiconductor device

Similar Documents

Publication Publication Date Title
JP3039967B2 (en) Semiconductor device
JP3291957B2 (en) Vertical trench MISFET and method of manufacturing the same
JP5540026B2 (en) High breakdown voltage transistor and manufacturing method thereof
JPH04107877A (en) Semiconductor device and its production
JPH04127480A (en) High breakdown strength low resistance semiconductor device
US6448588B2 (en) Insulated gate bipolar transistor having high breakdown voltage in reverse blocking mode
JPS61137368A (en) Semiconductor device
JPS6097661A (en) Semiconductor integrated circuit device
US7859063B2 (en) Semiconductor device using SOI-substrate
JPH04212467A (en) Semiconductor device and manufacture thereof
JPH04125972A (en) Mos semiconductor element and manufacture thereof
JP2004039982A (en) Semiconductor device
JPH03203377A (en) Semiconductor device
JPS63263767A (en) Semiconductor device
JPS6241428B2 (en)
KR910003275B1 (en) Semiconductor device and its manufacture method
JPS5916379A (en) Mos field-effect transistor and manufacture thereof
JP2785792B2 (en) Power semiconductor device
JPH1098183A (en) Semiconductor device and manufacture thereof
JPH0314273A (en) Electrostatic induction transistor
JPS61214575A (en) Semiconductor integrated circuit device
JP2001313392A (en) Power mosfet
JPH05299437A (en) Soi-type substrate and its manufacture
JPH088359B2 (en) Semiconductor device
JPH039573A (en) Electrostatic induction transistor