JP2009016618A - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP2009016618A
JP2009016618A JP2007177618A JP2007177618A JP2009016618A JP 2009016618 A JP2009016618 A JP 2009016618A JP 2007177618 A JP2007177618 A JP 2007177618A JP 2007177618 A JP2007177618 A JP 2007177618A JP 2009016618 A JP2009016618 A JP 2009016618A
Authority
JP
Japan
Prior art keywords
region
conductivity type
concentration
concentration region
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007177618A
Other languages
Japanese (ja)
Other versions
JP5135920B2 (en
Inventor
Yukio Tsuzuki
幸夫 都築
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007177618A priority Critical patent/JP5135920B2/en
Publication of JP2009016618A publication Critical patent/JP2009016618A/en
Application granted granted Critical
Publication of JP5135920B2 publication Critical patent/JP5135920B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device which has high withstand voltage and can be manufactured at low cost, and a manufacturing method thereof. <P>SOLUTION: The semiconductor device 100 has a structure in which a trench insulting gate transistor 30 is formed on the inside of a semiconductor substrate 20, a LOCOS oxide film 40 is formed on the outside semiconductor substrate 20 so as to be separated from an outermost trench insulating gate TG1, a second conductivity-type semiconductor region 50 is formed from the lower part of the outermost trench insulating gate TG1 to the lower part of the LOCOS oxide film 40, the second conductivity-type semiconductor region 50 consists of a first concentration region 51 for covering a corner portion TG1c from the lower part of the outermost trench insulating gate TG1 and a second concentration region 52 for covering the lower part of the LOCOS oxide film 40, the second concentration region 52 has an impurity concentration set lower than the impurity concentration of the first concentration region 51, and the second concentration region 52 has a diffusion depth set shallower than the diffusion depth of the first concentration region 51. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、縦型のトレンチ絶縁ゲートトランジスタが、セルの集合体として、半導体基板の内側部分に形成されてなる半導体装置およびその製造方法に関する。   The present invention relates to a semiconductor device in which a vertical trench insulated gate transistor is formed as an assembly of cells on an inner portion of a semiconductor substrate, and a method for manufacturing the same.

縦型のトレンチ絶縁ゲートトランジスタがセルの集合体として半導体基板の内側部分に形成されてなる半導体装置およびその製造方法が、特開平6−45612号公報(特許文献1)に開示されている。   Japanese Laid-Open Patent Publication No. 6-45612 (Patent Document 1) discloses a semiconductor device in which a vertical trench insulated gate transistor is formed as an assembly of cells on an inner portion of a semiconductor substrate.

図13(a),(b)は、特許文献1に開示された半導体装置で、それぞれ、半導体装置91,92の模式的な断面図である。   13A and 13B are semiconductor devices disclosed in Patent Document 1, and are schematic cross-sectional views of the semiconductor devices 91 and 92, respectively.

図13(a),(b)に示す半導体装置91,92は、トレンチMOSゲート構造のIGBT(縦型のトレンチ絶縁ゲートトランジスタ)が、セルの集合体として、半導体基板1の内側部分に形成されてなる半導体装置である。同図に示すように、P+ 基板1の表面上にNエピタキシャル層2が形成され、Nエピタキシャル層2上にN−エピタキシャル層3が形成される。そして、N−エピタキシャル層3上に、ゲートポリシリコン7及びその周囲に形成された酸化膜7からなる複数のトレンチ分離層(トレンチ絶縁ゲート)10により、絶縁分離されて複数のPウェル領域4及びPウェル領域41,42が形成されている。これらのトレンチ分離層10は、所定間隔で規則性よく形成され、その形成深さも同一レベルに設定されている。各Pウェル領域4及び41,42の表面には、それぞれN+エミッタ領域5が形成される。そして、N+エミッタ領域5及びトレンチ分離層10を含むPウェル領域4及び41上の全面にエミッタ電極8が形成され、P+基板1の裏面上にコレクタ電極9が形成されている。 In semiconductor devices 91 and 92 shown in FIGS. 13A and 13B, a trench MOS gate structure IGBT (vertical trench insulated gate transistor) is formed as an assembly of cells on the inner portion of the semiconductor substrate 1. This is a semiconductor device. As shown in the figure, P + An N epitaxial layer 2 is formed on the surface of the substrate 1, and an N− epitaxial layer 3 is formed on the N epitaxial layer 2. On the N-epitaxial layer 3, a plurality of P well regions 4 and a plurality of P well regions 4 and a plurality of trench isolation layers (trench insulating gates) 10 made of gate polysilicon 7 and oxide films 7 formed around the gate polysilicon 7 are formed. P well regions 41 and 42 are formed. These trench isolation layers 10 are regularly formed at predetermined intervals, and the formation depths are also set to the same level. N + emitter regions 5 are formed on the surfaces of the P well regions 4 and 41 and 42, respectively. An emitter electrode 8 is formed on the entire surface of the P well regions 4 and 41 including the N + emitter region 5 and the trench isolation layer 10, and a collector electrode 9 is formed on the back surface of the P + substrate 1.

図13(a)の半導体装置91においては、最外のトレンチ分離層10Aに隣接して形成された最外のPウェル領域41の形成深さを、トレンチ分離層10の形成深さと同じにすることにより、最外Pウェル領域41以外のPウェル領域であるPウェル領域4の形成深さより深く設定している。図13(b)の半導体装置92においては、最外のPウェル領域42が、最外のトレンチ分離層10Aを覆って、所定の深さで形成されている。そして、Pウェル領域42は、最外のトレンチ分離層10Aから外部方向(トレンチ分離層10が形成されていない領域側の方向)の領域においても、その形成深さが前記所定の深さで、トレンチ分離層10の形成深さより深く一定に形成されている。図13(a),(b)に示す半導体装置91,92においては、最外のPウェル領域41,42を他のPウェル領域4より深く形成することで、最外のトレンチ分離層10Aのボトムエッジ近傍領域での電界集中を緩和して、耐圧を向上することができる。
特開平6−45612号公報
In the semiconductor device 91 of FIG. 13A, the formation depth of the outermost P well region 41 formed adjacent to the outermost trench isolation layer 10A is the same as the formation depth of the trench isolation layer 10. Thus, the depth is set deeper than the formation depth of the P well region 4 which is a P well region other than the outermost P well region 41. In the semiconductor device 92 of FIG. 13B, the outermost P well region 42 is formed with a predetermined depth so as to cover the outermost trench isolation layer 10A. In addition, the P well region 42 is formed at a predetermined depth in the region from the outermost trench isolation layer 10A to the outside direction (the region side where the trench isolation layer 10 is not formed). The trench isolation layer 10 is formed deeper than the formation depth. In the semiconductor devices 91 and 92 shown in FIGS. 13A and 13B, the outermost P well regions 41 and 42 are formed deeper than the other P well regions 4, thereby forming the outermost trench isolation layer 10 </ b> A. The electric field concentration in the region near the bottom edge can be relaxed and the breakdown voltage can be improved.
JP-A-6-45612

特許文献1では、図13(a),(b)の半導体装置91,92において、最外のトレンチ分離層10Aのボトムエッジ近傍領域での電界集中を緩和でき、それによって耐圧を向上できることが示されている。しかしながら、特許文献1では、その他の耐圧に影響する部位(例えば図右端の基板1の端部)については考慮されていない。また、最外のPウェル領域41,42を他のPウェル領域4より深く形成するためには、これらを別工程で形成する必要があり、コストアップの要因となる。   Patent Document 1 shows that in the semiconductor devices 91 and 92 of FIGS. 13A and 13B, the electric field concentration in the region near the bottom edge of the outermost trench isolation layer 10A can be relaxed, thereby improving the breakdown voltage. Has been. However, Patent Document 1 does not consider other portions that affect the breakdown voltage (for example, the end portion of the substrate 1 at the right end of the figure). Further, in order to form the outermost P-well regions 41 and 42 deeper than the other P-well regions 4, these need to be formed in a separate process, which causes an increase in cost.

そこで本発明は、縦型のトレンチ絶縁ゲートトランジスタが、セルの集合体として、半導体基板の内側部分に形成されてなる半導体装置およびその製造方法であって、高耐圧であり、かつ安価に製造することのできる半導体装置およびその製造方法を提供することを目的としている。   Accordingly, the present invention provides a semiconductor device in which a vertical trench insulated gate transistor is formed as an assembly of cells on an inner portion of a semiconductor substrate, and a method for manufacturing the semiconductor device, which has a high breakdown voltage and is inexpensively manufactured. An object of the present invention is to provide a semiconductor device and a manufacturing method thereof.

請求項1に記載の発明は、縦型のトレンチ絶縁ゲートトランジスタが、セルの集合体として、第1導電型半導体基板の内側部分に形成され、LOCOS酸化膜が、前記セルの集合体を取り囲む最外周トレンチ絶縁ゲートと分離して、該最外周トレンチ絶縁ゲートの外側の前記第1導電型半導体基板上に形成され、第2導電型半導体領域が、前記最外周トレンチ絶縁ゲートの下部から前記LOCOS酸化膜の下部に亘って、前記第1導電型半導体基板の表層部に形成されてなり、前記第2導電型半導体領域が、前記最外周トレンチ絶縁ゲートの下部から角部を覆う第1濃度領域と、前記LOCOS酸化膜の下部を覆う第2濃度領域とからなり、前記第2濃度領域の不純物濃度が、前記第1濃度領域の不純物濃度より低く設定され、前記第2濃度領域の拡散深さが、前記第1濃度領域の拡散深さより浅く設定されてなることを特徴としている。   According to the first aspect of the present invention, a vertical trench insulated gate transistor is formed as an assembly of cells on an inner portion of the first conductivity type semiconductor substrate, and a LOCOS oxide film surrounds the assembly of cells. Separated from the outer peripheral trench insulating gate, formed on the first conductive type semiconductor substrate outside the outermost peripheral trench insulating gate, and a second conductive type semiconductor region is formed from the lower portion of the outermost peripheral trench insulating gate from the LOCOS oxidation gate. A first concentration region formed on a surface layer portion of the first conductivity type semiconductor substrate over a lower portion of the film, wherein the second conductivity type semiconductor region covers a corner portion from a lower portion of the outermost trench insulating gate; And a second concentration region covering a lower portion of the LOCOS oxide film, wherein the impurity concentration of the second concentration region is set lower than the impurity concentration of the first concentration region, and the second concentration Diffusion depth of pass has been characterized by comprising set shallower than the diffusion depth of the first doped region.

上記半導体装置においては、最外周トレンチ絶縁ゲートの下部からLOCOS酸化膜の下部に亘って、第2導電型半導体領域が形成されており、該第2導電型半導体領域の第1濃度領域によって、前記最外周トレンチ絶縁ゲートの下部から角部が覆われることとなる。従って、上記半導体装置では、最外周トレンチ絶縁ゲートの角部近傍における電界集中が緩和され、これによって耐圧を向上することができる。また、最外周トレンチ絶縁ゲートの外側に分離して配置されたLOCOS酸化膜の下部を覆う第2導電型半導体領域の第2濃度領域は、前記最外周トレンチ絶縁ゲートの角部を覆う第1濃度領域に較べて、低い不純物濃度に設定されている。このため、第2濃度領域の周りは、第1濃度領域の周りに較べて、空乏層が広がり易い構造となっている。これを利用して、上記半導体装置においては、最外周トレンチ絶縁ゲートの外側部分の耐圧を、内側部分(セル形成部分)に較べて、高く設定することができる。   In the semiconductor device, a second conductivity type semiconductor region is formed from the lower part of the outermost trench insulating gate to the lower part of the LOCOS oxide film, and the first concentration region of the second conductivity type semiconductor region causes the The corners are covered from the lower part of the outermost trench insulating gate. Therefore, in the semiconductor device, the electric field concentration in the vicinity of the corner of the outermost peripheral trench insulating gate is alleviated, thereby improving the breakdown voltage. The second concentration region of the second conductivity type semiconductor region covering the lower portion of the LOCOS oxide film disposed separately from the outermost trench insulating gate is the first concentration covering the corner of the outermost trench insulating gate. The impurity concentration is set lower than that in the region. For this reason, the depletion layer is easily spread around the second concentration region as compared with the first concentration region. By utilizing this, in the semiconductor device, the breakdown voltage of the outer part of the outermost peripheral trench insulating gate can be set higher than that of the inner part (cell forming part).

また、上記半導体装置においては、前記第2濃度領域の拡散深さが、前記第1濃度領域の拡散深さより浅く、前記第2濃度領域の不純物濃度が、前記第1濃度領域の不純物濃度に較べて低く設定されている。この不純物濃度と拡散深さの異なる第1濃度領域と第2濃度領域とからなる構造は、後述する製造方法によって一工程で形成することができるため、当該半導体装置を安価な半導体装置とすることができる。   In the semiconductor device, the diffusion depth of the second concentration region is shallower than the diffusion depth of the first concentration region, and the impurity concentration of the second concentration region is compared with the impurity concentration of the first concentration region. Is set low. Since the structure including the first concentration region and the second concentration region having different impurity concentrations and diffusion depths can be formed in one step by a manufacturing method described later, the semiconductor device is made an inexpensive semiconductor device. Can do.

以上のようにして、上記半導体装置は、縦型のトレンチ絶縁ゲートトランジスタが、セルの集合体として、半導体基板の内側部分に形成されてなる半導体装置であって、高耐圧であり、かつ安価に製造することのできる半導体装置となっている。   As described above, the semiconductor device is a semiconductor device in which a vertical trench insulated gate transistor is formed as an assembly of cells on an inner portion of a semiconductor substrate, and has a high breakdown voltage and is inexpensive. It is a semiconductor device that can be manufactured.

上記半導体装置においては、特に請求項2に記載のように、前記第2濃度領域の不純物濃度を前記第1導電型半導体基板に対応させて適宜低く設定し、LOCOS酸化膜の下部において、前記第1導電型半導体基板と前記第2濃度領域により、いわゆるRESURF(Reduced Surface electric field)構造が構成されてなることが好ましい。これによって、逆電圧の印加時にLOCOS酸化膜の下部の第1導電型半導体基板と第2濃度領域を所定の範囲において完全空乏化することで、当該半導体装置の耐圧をより高めることができる。   In the semiconductor device, as described in claim 2, the impurity concentration of the second concentration region is suitably set corresponding to the first conductivity type semiconductor substrate, and the first concentration region is formed below the LOCOS oxide film. It is preferable that a so-called RESURF (Reduced Surface Electric Field) structure is constituted by the one-conductivity-type semiconductor substrate and the second concentration region. As a result, when the reverse voltage is applied, the first conductive semiconductor substrate and the second concentration region below the LOCOS oxide film are completely depleted within a predetermined range, whereby the breakdown voltage of the semiconductor device can be further increased.

上記半導体装置においては、請求項3に記載のように、前記最外周トレンチ絶縁ゲートの角部から前記第1濃度領域と第2濃度領域の境界面までの最短間隔が、前記第1濃度領域の拡散深さより大きく設定されてなることが好ましい。   In the semiconductor device, as described in claim 3, a shortest distance from a corner portion of the outermost peripheral trench insulating gate to a boundary surface between the first concentration region and the second concentration region is equal to that of the first concentration region. It is preferable that the depth is set larger than the diffusion depth.

これによれば、第2導電型半導体領域における第2濃度領域が最外周トレンチ絶縁ゲートの角部から十分に離れて、該角部が不純物濃度の高い第1濃度領域により十分に覆われることとなる。このため、不純物濃度の低い第2濃度領域の影響を排除した状態で、前述した第1濃度領域による最外周トレンチ絶縁ゲートの角部近傍における電界集中の緩和効果を発揮させることができる。   According to this, the second concentration region in the second conductivity type semiconductor region is sufficiently separated from the corner portion of the outermost peripheral trench insulating gate, and the corner portion is sufficiently covered with the first concentration region having a high impurity concentration. Become. For this reason, in the state which excluded the influence of the 2nd concentration area | region with low impurity concentration, the relaxation effect of the electric field concentration in the corner | angular part vicinity of the outermost periphery trench insulated gate by the 1st concentration area | region mentioned above can be exhibited.

請求項4に記載の発明は、上記半導体装置の製造方法に関する発明である。   A fourth aspect of the present invention relates to a method for manufacturing the semiconductor device.

請求項4に記載の発明は、縦型のトレンチ絶縁ゲートトランジスタが、セルの集合体として、第1導電型半導体基板の内側部分に形成され、LOCOS酸化膜が、前記セルの集合体を取り囲む最外周トレンチ絶縁ゲートと分離して、該最外周トレンチ絶縁ゲートの外側の前記第1導電型半導体基板上に形成され、第2導電型半導体領域が、前記最外周トレンチ絶縁ゲートの下部から前記LOCOS酸化膜の下部に亘って、前記第1導電型半導体基板の表層部に形成されてなり、前記第2導電型半導体領域が、前記最外周トレンチ絶縁ゲートの下部から角部を覆う第1濃度領域と、前記LOCOS酸化膜の下部を覆う第2濃度領域とからなり、前記第2濃度領域の不純物濃度が、前記第1濃度領域の不純物濃度より低く設定され、前記第2濃度領域の拡散深さが、前記第1濃度領域の拡散深さより浅く設定されてなる半導体装置の製造方法であって、前記第1導電型半導体基板における前記第2導電型半導体領域の形成予定領域に、第2導電型不純物をイオン注入するイオン注入工程と、前記イオン注入工程後、前記LOCOS酸化膜を形成するLOCOS酸化膜形成工程と、前記LOCOS酸化膜形成工程後、前記イオン注入した第2導電型不純物を熱拡散させて、前記第1濃度領域と第2濃度領域とからなる第2導電型半導体領域を形成する熱拡散工程とを有してなることを特徴としている。   According to a fourth aspect of the present invention, a vertical trench insulated gate transistor is formed as an assembly of cells on an inner portion of the first conductivity type semiconductor substrate, and a LOCOS oxide film surrounds the assembly of cells. Separated from the outer peripheral trench insulating gate, formed on the first conductive type semiconductor substrate outside the outermost peripheral trench insulating gate, and a second conductive type semiconductor region is formed from the lower portion of the outermost peripheral trench insulating gate from the LOCOS oxidation gate. A first concentration region formed on a surface layer portion of the first conductivity type semiconductor substrate over a lower portion of the film, wherein the second conductivity type semiconductor region covers a corner portion from a lower portion of the outermost trench insulating gate; And a second concentration region covering a lower portion of the LOCOS oxide film, wherein the impurity concentration of the second concentration region is set lower than the impurity concentration of the first concentration region, and the second concentration A method for manufacturing a semiconductor device, wherein a diffusion depth of a region is set to be shallower than a diffusion depth of the first concentration region, wherein the second conductivity type semiconductor region is formed in the first conductivity type semiconductor substrate. , An ion implantation step of ion-implanting a second conductivity type impurity; a LOCOS oxide film formation step for forming the LOCOS oxide film after the ion implantation step; and a second conductivity after the ion implantation after the LOCOS oxide film formation step. And a thermal diffusion step of forming a second conductivity type semiconductor region composed of the first concentration region and the second concentration region by thermally diffusing the type impurities.

上記半導体装置の製造方法においては、第2導電型半導体領域の形成予定領域にイオン注入した後、LOCOS酸化膜を形成し、その後にイオン注入した第2導電型不純物を熱拡散させている。上記イオン注入後においては、最外周トレンチ絶縁ゲートの形成予定領域からLOCOS酸化膜の形成予定領域に亘って、第1導電型半導体基板の極浅い表面近くに、第2導電型不純物のイオン注入層が形成される。この第1導電型半導体基板の表面近くに形成されたイオン注入層は、次のLOCOS酸化膜形成後において、濃度分布の異なる2つの領域に分割されることとなる。すなわち、LOCOS酸化膜の形成時にイオン注入層から第2導電型不純物がLOCOS酸化膜中に取り込まれる。このため、LOCOS酸化膜の下部領域においては、第2導電型不純物が減少して濃度が低いイオン注入領域となり、LOCOS酸化膜が形成されない最外周トレンチ絶縁ゲートの形成予定領域においては、第2導電型不純物の量に変化がなくイオン注入時の状態が維持されて濃度が高いイオン注入領域となる。これによって、次の熱拡散工程により、最外周トレンチ絶縁ゲートの形成予定領域において、不純物濃度が高くて拡散深さが深い第1濃度領域が形成され、LOCOS酸化膜の下部において、不純物濃度が低くて拡散深さが浅い第2濃度領域が形成される。   In the semiconductor device manufacturing method, ions are implanted into a region where the second conductivity type semiconductor region is to be formed, then a LOCOS oxide film is formed, and then the ion implanted second conductivity type impurities are thermally diffused. After the ion implantation, the ion implantation layer of the second conductivity type impurity is formed near the extremely shallow surface of the first conductivity type semiconductor substrate from the region where the outermost trench insulating gate is to be formed to the region where the LOCOS oxide film is to be formed. Is formed. The ion implantation layer formed near the surface of the first conductivity type semiconductor substrate is divided into two regions having different concentration distributions after the next LOCOS oxide film formation. That is, the second conductivity type impurity is taken into the LOCOS oxide film from the ion implantation layer when the LOCOS oxide film is formed. For this reason, in the lower region of the LOCOS oxide film, the second conductivity type impurity is reduced to form an ion implantation region having a low concentration, and in the region where the outermost trench insulating gate is not formed, the second conductivity type impurity is formed. There is no change in the amount of type impurities, and the state during ion implantation is maintained, so that an ion implantation region having a high concentration is obtained. As a result, in the next thermal diffusion step, a first concentration region having a high impurity concentration and a deep diffusion depth is formed in the region where the outermost trench insulating gate is to be formed, and the impurity concentration is low below the LOCOS oxide film. Thus, the second concentration region having a shallow diffusion depth is formed.

上記した第2導電型半導体領域の形成は、第1濃度領域と第2濃度領域の不純物濃度と拡散深さが異なるにもかかわらず、第1濃度領域と第2濃度領域を一工程で形成することが可能である。従って、不純物濃度と拡散深さが異なる第1濃度領域と第2濃度領域をそれぞれ別工程で形成する場合に較べて、当該半導体装置を安価に製造することができる。   In the formation of the second conductivity type semiconductor region described above, the first concentration region and the second concentration region are formed in one step even though the impurity concentration and the diffusion depth of the first concentration region and the second concentration region are different. It is possible. Therefore, the semiconductor device can be manufactured at a lower cost than when the first concentration region and the second concentration region having different impurity concentrations and diffusion depths are formed in separate steps.

以下、本発明を実施するための最良の形態を、図に基づいて説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1は、本発明の半導体装置の一例で、半導体装置100の模式的な断面図である。また、図2は、図1の半導体装置100における要部の寸法関係を示す図である。   FIG. 1 is a schematic cross-sectional view of a semiconductor device 100 as an example of the semiconductor device of the present invention. FIG. 2 is a diagram showing a dimensional relationship of main parts of the semiconductor device 100 of FIG.

図1に示す半導体装置100においては、縦型のトレンチ絶縁ゲートトランジスタ30が、セルの集合体として、第1N導電型(N−)層21と第2N導電型(N+)層22とからなるN導電型半導体基板20の内側部分に形成されている。トレンチ絶縁ゲートトランジスタ30は、側壁酸化膜31と多結晶シリコン32とからなるトレンチ絶縁ゲートTGを有しており、キャリアがN導電型半導体基板20の縦方向に流れる、縦型のMOSトランジスタである。N導電型半導体基板20における裏面側の第2N導電型(N+)層22は、トレンチ絶縁ゲートトランジスタ30のドレイン領域として機能し、第1N導電型(N−)層21は、キャリアのドリフト領域として機能する。尚、符号33の部分は、トレンチ絶縁ゲートトランジスタ30のソース領域であり、符号34の部分は、チャネル形成領域である。N導電型半導体基板20の端部における符号35の部分は、主面側のソース領域33と同時に形成されるN導電型(N+)領域で、裏面側の第2N導電型(N+)層22と接続される。また、符号23の部分は、層間絶縁膜であり、符号24の部分は、アルミニウム(Al)電極層である。   In the semiconductor device 100 shown in FIG. 1, a vertical trench insulated gate transistor 30 includes an N-type N (N−) layer 21 and a second N-type (N +) layer 22 as an aggregate of cells. It is formed in the inner part of the conductive semiconductor substrate 20. The trench insulated gate transistor 30 has a trench insulated gate TG made of a sidewall oxide film 31 and polycrystalline silicon 32, and is a vertical MOS transistor in which carriers flow in the vertical direction of the N-conductivity type semiconductor substrate 20. . The second N conductivity type (N +) layer 22 on the back surface side of the N conductivity type semiconductor substrate 20 functions as a drain region of the trench insulated gate transistor 30, and the first N conductivity type (N−) layer 21 serves as a carrier drift region. Function. Note that the reference numeral 33 represents a source region of the trench insulated gate transistor 30, and the reference numeral 34 represents a channel formation region. The portion 35 at the end of the N conductivity type semiconductor substrate 20 is an N conductivity type (N +) region formed simultaneously with the source region 33 on the main surface side, and the second N conductivity type (N +) layer 22 on the back surface side. Connected. Reference numeral 23 denotes an interlayer insulating film, and reference numeral 24 denotes an aluminum (Al) electrode layer.

図1の半導体装置100においては、LOCOS酸化膜40が、トレンチ絶縁ゲートトランジスタ30のセルの集合体を取り囲む最外周トレンチ絶縁ゲートTG1と分離して、該最外周トレンチ絶縁ゲートTG1の外側のN導電型半導体基板20上に形成されている。また、P導電型半導体領域50が、最外周トレンチ絶縁ゲートTG1の下部からLOCOS酸化膜40の下部に亘って、N導電型半導体基板20の表層部に形成されている。P導電型半導体領域50は、最外周トレンチ絶縁ゲートTG1の下部から角部TG1cを覆う第1濃度(P)領域51と、LOCOS酸化膜40の下部を覆う第2濃度(P−)領域52とからなる。   In the semiconductor device 100 of FIG. 1, the LOCOS oxide film 40 is separated from the outermost trench insulating gate TG1 surrounding the aggregate of cells of the trench insulated gate transistor 30, and the N conductivity outside the outermost trench insulating gate TG1. It is formed on the type semiconductor substrate 20. Further, the P conductivity type semiconductor region 50 is formed in the surface layer portion of the N conductivity type semiconductor substrate 20 from the lower part of the outermost peripheral trench insulating gate TG1 to the lower part of the LOCOS oxide film 40. The P conductivity type semiconductor region 50 includes a first concentration (P) region 51 covering the corner portion TG1c from the lower part of the outermost peripheral trench insulating gate TG1, and a second concentration (P−) region 52 covering the lower part of the LOCOS oxide film 40. Consists of.

図2に示すように、P導電型半導体領域50における第2濃度領域52の拡散深さd2は、第1濃度領域51の拡散深さより浅く設定されている。また、第2濃度領域52の不純物濃度(P−)は、第1濃度領域51の不純物濃度(P)に較べて低く設定されている。   As shown in FIG. 2, the diffusion depth d <b> 2 of the second concentration region 52 in the P conductivity type semiconductor region 50 is set to be shallower than the diffusion depth of the first concentration region 51. Further, the impurity concentration (P−) of the second concentration region 52 is set to be lower than the impurity concentration (P) of the first concentration region 51.

図1の半導体装置100においては、最外周トレンチ絶縁ゲートTG1の下部からLOCOS酸化膜40の下部に亘って、P導電型半導体領域50が形成されており、該P導電型半導体領域50における不純物濃度(P)が高い第1濃度領域51によって、最外周トレンチ絶縁ゲートTG1の下部から角部TG1cが覆われることとなる。従って、半導体装置100では、図13(b)に示した半導体装置92と同様にして、最外周トレンチ絶縁ゲートTG1の角部TG1c近傍における電界集中が緩和され、これによって耐圧を向上することができる。   In the semiconductor device 100 of FIG. 1, a P-conductivity type semiconductor region 50 is formed from a lower part of the outermost peripheral trench insulating gate TG1 to a lower part of the LOCOS oxide film 40, and the impurity concentration in the P-conductivity type semiconductor region 50 The corner portion TG1c is covered from the lower part of the outermost peripheral trench insulating gate TG1 by the first concentration region 51 having a high (P). Therefore, in the semiconductor device 100, similarly to the semiconductor device 92 shown in FIG. 13B, the electric field concentration in the vicinity of the corner portion TG1c of the outermost peripheral trench insulating gate TG1 is alleviated, whereby the breakdown voltage can be improved. .

図3〜図5は、上記した第1濃度領域51によって最外周トレンチ絶縁ゲートTG1の下部から角部TG1cが覆われた場合の効果を検証するためにおこなった、シミュレーション結果を示す図である。図3は、角部TG1c周りの拡大断面において、不純物濃度分布を示した図である。図4は、電界強度分布を示した図であり、図5は、降伏(ブレークダウン)時の電流密度分布を示した図である。また、図3〜図5の(a)は、図13(a)に示した半導体装置91と同様で、第1濃度(P)領域51sの先端が最外周トレンチ絶縁ゲートTG1の角部TG1cにある半導体装置100sについてのものである。図3〜図5の(b)は、図13(b)に示した半導体装置92と同様で、第1濃度(P)領域51dの先端が最外周トレンチ絶縁ゲートTG1の下部まで回り込んだ半導体装置100dについてのものである。   3 to 5 are diagrams showing simulation results performed to verify the effect when the corner portion TG1c is covered from the lower portion of the outermost peripheral trench insulating gate TG1 by the first concentration region 51 described above. FIG. 3 is a diagram showing an impurity concentration distribution in an enlarged cross section around the corner portion TG1c. FIG. 4 is a diagram showing the electric field strength distribution, and FIG. 5 is a diagram showing the current density distribution during breakdown (breakdown). 3A to 5A are the same as the semiconductor device 91 shown in FIG. 13A, and the tip of the first concentration (P) region 51s is formed at the corner portion TG1c of the outermost peripheral trench insulating gate TG1. This is for a certain semiconductor device 100s. 3B to 5B are the same as the semiconductor device 92 shown in FIG. 13B, and the semiconductor in which the tip of the first concentration (P) region 51d wraps around to the lower part of the outermost trench insulating gate TG1. For the device 100d.

図4(a)に示すように、半導体装置100sにおいては、第1濃度領域51sにある等電界強度線だけでなく第1N導電型層21にある等電界強度線も最外周トレンチ絶縁ゲートTG1の角部TG1cに収斂し、角部TG1cにおける電界集中が大きい。これに伴って、図5(a)に示すように、降伏時の電流密度最大部も角部TG1cの下方に形成されるが、耐圧が256.7Vと小さく、降伏時にトレンチ角部TG1cに電流集中するために、最大電流密度は小さな値となる。   As shown in FIG. 4A, in the semiconductor device 100s, not only the equal electric field strength lines in the first concentration region 51s but also the equal electric field strength lines in the first N conductivity type layer 21 are formed in the outermost trench insulating gate TG1. Converging at the corner TG1c, the electric field concentration at the corner TG1c is large. Accordingly, as shown in FIG. 5A, the maximum current density portion at the time of breakdown is also formed below the corner portion TG1c, but the breakdown voltage is as small as 256.7V, and the current at the trench corner portion TG1c at the time of breakdown. In order to concentrate, the maximum current density is a small value.

これに対して、図4(b)に示すように、半導体装置100dにおいては、第1濃度領域51dにある等電界強度線の一部が最外周トレンチ絶縁ゲートTG1の角部TG1cに収斂し、角部TG1cにおける電界集中が小さい。これに伴って、図5(b)に示すように、降伏時の電流密度最大部は角部TG1cと異なる最外周トレンチ絶縁ゲートTG1底部の下方に形成され、耐圧が287.8Vと大きく、降伏時に電流が分散され、最大電流密度を大きくできる。   On the other hand, as shown in FIG. 4B, in the semiconductor device 100d, a part of the equal electric field strength line in the first concentration region 51d converges to the corner portion TG1c of the outermost peripheral trench insulating gate TG1, Electric field concentration at the corner portion TG1c is small. Accordingly, as shown in FIG. 5B, the maximum current density portion at the time of breakdown is formed below the bottom of the outermost peripheral trench insulating gate TG1 different from the corner portion TG1c, and the breakdown voltage is as large as 287.8V, yielding. Sometimes the current is distributed and the maximum current density can be increased.

このように、図3(b)〜図5(b)に示す半導体装置100dでは、最外周トレンチ絶縁ゲートTG1の下部から角部TG1cが第1濃度領域51dで覆われることによって、最外周トレンチ絶縁ゲートTG1の角部TG1c近傍における電界集中が緩和される。これによって、図3(b)〜図5(b)に示す半導体装置100dでは、図3(a)〜図5(a)に示す半導体装置100sに較べて、耐圧を向上することができる。   As described above, in the semiconductor device 100d shown in FIGS. 3B to 5B, the corner portion TG1c is covered with the first concentration region 51d from the lower part of the outermost trench insulating gate TG1, so that the outermost trench insulation is performed. Electric field concentration in the vicinity of the corner portion TG1c of the gate TG1 is alleviated. Thereby, in the semiconductor device 100d shown in FIGS. 3B to 5B, the breakdown voltage can be improved as compared with the semiconductor device 100s shown in FIGS. 3A to 5A.

また、図1の半導体装置100において、最外周トレンチ絶縁ゲートTG1の外側に分離して配置されたLOCOS酸化膜40の下部を覆うP導電型半導体領域50の第2濃度(P−)領域52は、最外周トレンチ絶縁ゲートTG1の角部TG1cを覆う第1濃度(P)領域51に較べて、低い不純物濃度に設定されている。このため、第2濃度領域の周りは、第1濃度領域の周りに較べて、空乏層が広がり易い構造となっている。これを利用して、半導体装置100においては、最外周トレンチ絶縁ゲートTG1の外側部分の耐圧を、内側部分(セル形成部分)に較べて、高く設定することができる。   Further, in the semiconductor device 100 of FIG. 1, the second concentration (P−) region 52 of the P conductivity type semiconductor region 50 covering the lower portion of the LOCOS oxide film 40 disposed separately from the outermost trench insulating gate TG1 is The impurity concentration is set lower than that of the first concentration (P) region 51 that covers the corner portion TG1c of the outermost peripheral trench insulating gate TG1. For this reason, the depletion layer is easily spread around the second concentration region as compared with the first concentration region. By utilizing this, in the semiconductor device 100, the breakdown voltage of the outer portion of the outermost peripheral trench insulating gate TG1 can be set higher than that of the inner portion (cell forming portion).

図1の半導体装置100においては、特に、第2濃度領域52の不純物濃度をN導電型半導体基板20(第1N導電型層21)に対応させて適宜低く設定し、LOCOS酸化膜40の下部において、N導電型半導体基板20(第1N導電型層21)と第2濃度領域52により、いわゆるRESURF(Reduced Surface electric field)構造が構成されてなることが好ましい。これによって、逆電圧の印加時にLOCOS酸化膜40の下部のN導電型半導体基板20(第1N導電型層21)と第2濃度領域52を所定の範囲で完全空乏化することで、当該半導体装置100の耐圧をより高めることができる。   In the semiconductor device 100 of FIG. 1, particularly, the impurity concentration of the second concentration region 52 is set appropriately low corresponding to the N conductivity type semiconductor substrate 20 (first N conductivity type layer 21), and below the LOCOS oxide film 40. The N conductivity type semiconductor substrate 20 (first N conductivity type layer 21) and the second concentration region 52 preferably constitute a so-called RESURF (Reduced Surface electric field) structure. Thus, the N-conductivity-type semiconductor substrate 20 (first N-conductivity-type layer 21) and the second concentration region 52 below the LOCOS oxide film 40 are completely depleted within a predetermined range when a reverse voltage is applied. The breakdown voltage of 100 can be further increased.

半導体装置100においは、図2の最外周トレンチ絶縁ゲートTG1の角部TG1cから第1濃度領域51と第2濃度領域52の点線で示した境界面までの最短間隔wが、第1濃度領域51の拡散深さd1より大きく設定されてなることが好ましい。これによれば、P導電型半導体領域50における第2濃度領域52が最外周トレンチ絶縁ゲートTG1の角部TG1cから十分に離れて、該角部TG1cが不純物濃度の高い第1濃度領域51により十分に覆われることとなる。このため、不純物濃度の低い第2濃度領域52の影響を排除した状態で、前述した第1濃度領域51による最外周トレンチ絶縁ゲートTG1の角部TG1c近傍における電界集中の緩和効果を発揮させることができる。   In the semiconductor device 100, the shortest distance w from the corner portion TG1c of the outermost peripheral trench insulating gate TG1 in FIG. 2 to the boundary surface indicated by the dotted line between the first concentration region 51 and the second concentration region 52 is the first concentration region 51. The diffusion depth is preferably set to be greater than the diffusion depth d1. According to this, the second concentration region 52 in the P-conductivity type semiconductor region 50 is sufficiently separated from the corner portion TG1c of the outermost peripheral trench insulating gate TG1, and the corner portion TG1c is more sufficient than the first concentration region 51 having a high impurity concentration. It will be covered with. For this reason, the effect of reducing the electric field concentration in the vicinity of the corner portion TG1c of the outermost peripheral trench insulating gate TG1 by the first concentration region 51 can be exhibited in a state where the influence of the second concentration region 52 having a low impurity concentration is eliminated. it can.

また、半導体装置100においては、図2に示すように、第2濃度領域52の不純物濃度(P−)が、第1濃度領域51の不純物濃度(P)より低く設定され、第2濃度領域52の拡散深さd2が、第1濃度領域51の拡散深さd1より浅く設定されている。この不純物濃度と拡散深さの異なる第1濃度領域51と第2濃度領域52とからなる構造は、以下に示す製造方法によって一工程で形成することができる。このため、当該半導体装置100を安価な半導体装置とすることができる。   Further, in the semiconductor device 100, as shown in FIG. 2, the impurity concentration (P−) of the second concentration region 52 is set lower than the impurity concentration (P) of the first concentration region 51, and the second concentration region 52. Is set to be shallower than the diffusion depth d 1 of the first concentration region 51. The structure including the first concentration region 51 and the second concentration region 52 having different impurity concentrations and diffusion depths can be formed in one step by the manufacturing method described below. Therefore, the semiconductor device 100 can be an inexpensive semiconductor device.

次に、図1の半導体装置100の製造方法について説明する。   Next, a method for manufacturing the semiconductor device 100 of FIG. 1 will be described.

図6〜図9は、半導体装置100の製造方法に関する工程別の断面図である。   6 to 9 are cross-sectional views for each process relating to the method for manufacturing the semiconductor device 100.

最初に、図6(a)に示すように、第1N導電型(N−)層21と第2N導電型(N+)層22とからなるN導電型半導体基板20を準備する。次に、半導体基板20を表面酸化して、酸化シリコン(SiO)膜61を形成する。次に、酸化シリコン膜61上に、窒化シリコン(SiN)膜62を堆積する。 First, as shown in FIG. 6A, an N-conductivity type semiconductor substrate 20 composed of a first N-conductivity type (N−) layer 21 and a second N-conductivity type (N +) layer 22 is prepared. Next, the surface of the semiconductor substrate 20 is oxidized to form a silicon oxide (SiO 2 ) film 61. Next, a silicon nitride (SiN) film 62 is deposited on the silicon oxide film 61.

次に、図1のLOCOS酸化膜40を形成するため、図6(b)に示すように、所定の開口部K1を有する第1レジストマスクM1を形成し、酸化シリコン膜61をストッパとして、開口部K1を介して窒化シリコン膜62をエッチングする。これによって、窒化シリコン膜62に、予め開口部K1を形成しておく。   Next, in order to form the LOCOS oxide film 40 of FIG. 1, as shown in FIG. 6B, a first resist mask M1 having a predetermined opening K1 is formed, and the silicon oxide film 61 is used as a stopper. The silicon nitride film 62 is etched through the part K1. As a result, an opening K1 is formed in the silicon nitride film 62 in advance.

次に、第1レジストマスクM1を除去した後、図1のP導電型半導体領域50を形成するため、図6(c)に示すように、所定の開口部K2を有する第2レジストマスクM2を形成する。   Next, after removing the first resist mask M1, a second resist mask M2 having a predetermined opening K2 is formed as shown in FIG. 6C in order to form the P-conductivity type semiconductor region 50 of FIG. Form.

次に、図6(d)に示すイオン注入工程において、ホウ素(B)等のP導電型不純物を、第2レジストマスクM2の開口部K2を介してイオン注入する。これによって、N導電型半導体基板20(第1N導電型層21)における図1のP導電型半導体領域50の形成予定領域に、P導電型不純物のイオン注入層50aを形成する。このP導電型不純物のイオン注入層50aは、図1に示す最外周トレンチ絶縁ゲートTG1の形成予定領域からLOCOS酸化膜40の形成予定領域に亘って、N導電型半導体基板20(第1N導電型層21)の極浅い表面近くに形成される。   Next, in the ion implantation step shown in FIG. 6D, a P-conductivity type impurity such as boron (B) is ion-implanted through the opening K2 of the second resist mask M2. Thus, a P conductivity type impurity ion implantation layer 50a is formed in a region where the P conductivity type semiconductor region 50 of FIG. 1 is to be formed in the N conductivity type semiconductor substrate 20 (first N conductivity type layer 21). The P conductivity type impurity ion implantation layer 50a extends from the region where the outermost peripheral trench insulating gate TG1 shown in FIG. 1 is formed to the region where the LOCOS oxide film 40 is to be formed (first N conductivity type). It is formed near the very shallow surface of layer 21).

次に、第2レジストマスクM2を除去した後、図7(a)に示すLOCOS酸化膜形成工程において、例えば1050℃、30分の条件で熱処理し、窒化シリコン(SiN)膜62の開口部K1に露出する半導体基板20(第1N導電型層21)を酸化して、LOCOS酸化膜40を形成する。   Next, after removing the second resist mask M2, in the LOCOS oxide film forming step shown in FIG. 7A, heat treatment is performed under conditions of, for example, 1050 ° C. for 30 minutes, and the opening K1 of the silicon nitride (SiN) film 62 is obtained. The LOCOS oxide film 40 is formed by oxidizing the exposed semiconductor substrate 20 (first N conductivity type layer 21).

これに伴って、図6(d)のイオン注入工程においてN導電型半導体基板20(第1N導電型層21)の表面近くに形成されたイオン注入層52aは、LOCOS酸化膜40の形成後において、図7(a)に示す濃度分布の異なる2つの領域51a,52aに分割されることとなる。すなわち、図7(a)に示すLOCOS酸化膜40の形成時には、図6(d)に示すイオン注入層50aから、P導電型不純物がLOCOS酸化膜40中に取り込まれる。このため、LOCOS酸化膜40の下部領域においては、P導電型不純物の量が減少して濃度が低いイオン注入領域52aとなり、LOCOS酸化膜40が形成されない領域の下部においては、P導電型不純物の量に変化がなくイオン注入時の状態が維持されて濃度が高いイオン注入領域51aとなる。   Accordingly, the ion implantation layer 52a formed near the surface of the N conductivity type semiconductor substrate 20 (first N conductivity type layer 21) in the ion implantation step of FIG. 7A is divided into two regions 51a and 52a having different concentration distributions. That is, when the LOCOS oxide film 40 shown in FIG. 7A is formed, P conductivity type impurities are taken into the LOCOS oxide film 40 from the ion implantation layer 50a shown in FIG. Therefore, in the lower region of the LOCOS oxide film 40, the amount of P-conductivity type impurities is reduced to form a low concentration ion implantation region 52a. There is no change in the amount, and the state at the time of ion implantation is maintained, and the ion implantation region 51a having a high concentration is obtained.

次に、図7(b)に示す熱拡散工程において、例えば1170℃、240分の条件で熱処理し、イオン注入したP導電型不純物を、図7(a)のイオン注入領域51a,52aからそれぞれ熱拡散させる。この時、P導電型不純物の濃度が高いイオン注入領域51aから、図1の不純物濃度が高くて拡散深さが深い第1濃度領域51が形成され、LOCOS酸化膜40下のP導電型不純物の濃度が低いイオン注入領域52aから、不純物濃度が低くて拡散深さが浅い図1の第2濃度領域52が形成される。これによって、図1に示す第1濃度領域51と第2濃度領域52とからなるP導電型半導体領域50が形成される。   Next, in the thermal diffusion step shown in FIG. 7B, for example, P conductivity type impurities implanted by heat treatment under conditions of 1170 ° C. for 240 minutes are respectively transferred from the ion implantation regions 51a and 52a in FIG. 7A. Heat diffuse. At this time, the first concentration region 51 having a high impurity concentration and a deep diffusion depth shown in FIG. 1 is formed from the ion implantation region 51 a having a high concentration of the P conductivity type impurity, and the P conductivity type impurity under the LOCOS oxide film 40 is formed. From the ion implantation region 52a having a low concentration, the second concentration region 52 of FIG. 1 having a low impurity concentration and a shallow diffusion depth is formed. As a result, the P-conductivity type semiconductor region 50 composed of the first concentration region 51 and the second concentration region 52 shown in FIG. 1 is formed.

次に、図7(c)に示すように、窒化シリコン膜62を除去して、トレンチ絶縁ゲートトランジスタ形成前のN導電型半導体基板20の準備が完了する。   Next, as shown in FIG. 7C, the silicon nitride film 62 is removed, and preparation of the N-conductivity type semiconductor substrate 20 before forming the trench insulated gate transistor is completed.

次に、図8(a)に示すように、図1の層間絶縁膜(下層)23および次のトレンチT,T1形成のためマスクとなる、酸化シリコン膜23を形成する。次に、所定の開口部を有するレジストマスク(図示省略)を酸化シリコン膜23上に形成し、該開口部を介して酸化シリコン膜23、酸化シリコン膜61およびN導電型半導体基板20(第1N導電型層21)を続けてエッチングして、図8(b)に示すトレンチT,T1を所定の位置に形成する。次に、図8(c)に示すように、熱酸化してトレンチT,T1に側壁酸化膜31を形成した後、多結晶シリコン32を堆積してトレンチTを埋め込みパターニングする。これによって、図1の側壁酸化膜31と多結晶シリコン32からなるトレンチ絶縁ゲートTGおよび最外周トレンチ絶縁ゲートTG1が形成される。次に、図8(d)に示すように、多結晶シリコン32の表面に熱酸化膜63を形成する。次に、トレンチT,T1形成のためマスクとして使われた酸化シリコン膜23を除去するため、所定の開口部を有するレジストマスクM3を形成する。   Next, as shown in FIG. 8A, a silicon oxide film 23 serving as a mask for forming the interlayer insulating film (lower layer) 23 and the next trenches T and T1 in FIG. 1 is formed. Next, a resist mask (not shown) having a predetermined opening is formed on the silicon oxide film 23, and the silicon oxide film 23, the silicon oxide film 61, and the N-conductivity type semiconductor substrate 20 (first N) are formed through the opening. The conductive layer 21) is continuously etched to form trenches T and T1 shown in FIG. 8B at predetermined positions. Next, as shown in FIG. 8C, after the side wall oxide film 31 is formed in the trenches T and T1 by thermal oxidation, polycrystalline silicon 32 is deposited and the trench T is embedded and patterned. Thereby, trench insulating gate TG and outermost peripheral trench insulating gate TG1 made of sidewall oxide film 31 and polycrystalline silicon 32 in FIG. 1 are formed. Next, as shown in FIG. 8D, a thermal oxide film 63 is formed on the surface of the polycrystalline silicon 32. Next, in order to remove the silicon oxide film 23 used as a mask for forming the trenches T and T1, a resist mask M3 having a predetermined opening is formed.

次に、図9(a)に示すように、図8(d)のレジストマスクM3を介してエッチングし、LOCOS酸化膜40および酸化シリコン膜23と熱酸化膜63の一部を残して、N導電型半導体基板20(第1N導電型層21)の表面に形成されている酸化膜を除去する。次に、図9(b)に示すように、イオン注入を実施して、図1のチャネル形成領域34およびソース領域33と主面側のN導電型(N+)領域35を順次形成する。次に、図9(c)に示すように、図1の層間絶縁膜(上層)23を形成し、電極接続のための開口部を設ける。次に、図9(d)に示すように、図1のアルミニウム(Al)電極層24を形成して、所定のパターンに加工する。   Next, as shown in FIG. 9A, etching is performed through the resist mask M3 of FIG. 8D, and the LOCOS oxide film 40, the silicon oxide film 23, and a part of the thermal oxide film 63 are left, and N The oxide film formed on the surface of the conductive semiconductor substrate 20 (first N conductive type layer 21) is removed. Next, as shown in FIG. 9B, ion implantation is performed to sequentially form the channel formation region 34 and the source region 33 of FIG. 1 and the N conductivity type (N +) region 35 on the main surface side. Next, as shown in FIG. 9C, the interlayer insulating film (upper layer) 23 of FIG. 1 is formed, and an opening for electrode connection is provided. Next, as shown in FIG. 9D, the aluminum (Al) electrode layer 24 of FIG. 1 is formed and processed into a predetermined pattern.

これによって、図1に示す半導体装置100が完成する。   Thereby, the semiconductor device 100 shown in FIG. 1 is completed.

以上の図6〜図9に示した半導体装置100の製造工程は、図6(d)に示したイオン注入工程後に図7(a)に示したLOCOS酸化膜形成工程を実施し、該LOCOS酸化膜形成工程後に図7(b)に示した熱拡散工程を実施する点に特徴がある。すなわち、上記半導体装置100の製造方法においては、図6(d)に示したイオン注入工程においてP導電型半導体領域50の形成予定領域にイオン注入した後、図7(a)に示したLOCOS酸化膜形成工程においてLOCOS酸化膜40を形成し、その後に図7(b)に示した熱拡散工程においてイオン注入したP導電型不純物を熱拡散させている。図6(d)のイオン注入後においては、最外周トレンチ絶縁ゲートTG1の形成予定領域からLOCOS酸化膜40の形成予定領域に亘って、N導電型半導体基板20(第1N導電型層21)の極浅い表面近くに、P導電型不純物のイオン注入層50aが形成される。このN導電型半導体基板20(第1N導電型層21)の表面近くに形成されたイオン注入層50aは、次の図7(a)に示すLOCOS酸化膜40の形成後において、濃度分布の異なる2つの領域51a,52aに分割されることとなる。このため、次の図7(b)に示す熱拡散工程により、最外周トレンチ絶縁ゲートTG1の形成予定領域において、不純物濃度が高く拡散深さが深い第1濃度領域51が形成され、LOCOS酸化膜40の下部において、不純物濃度が低く拡散深さが浅い第2濃度領域52が形成される。   The manufacturing process of the semiconductor device 100 shown in FIGS. 6 to 9 includes the LOCOS oxide film forming step shown in FIG. 7A after the ion implantation step shown in FIG. A feature is that the thermal diffusion step shown in FIG. 7B is performed after the film formation step. That is, in the method of manufacturing the semiconductor device 100, after the ion implantation process shown in FIG. 6D, ions are implanted into the region where the P-conductivity type semiconductor region 50 is to be formed, and then the LOCOS oxidation shown in FIG. The LOCOS oxide film 40 is formed in the film formation process, and then the P-conductivity type impurities ion-implanted in the thermal diffusion process shown in FIG. 7B are thermally diffused. After the ion implantation of FIG. 6D, the N conductive type semiconductor substrate 20 (first N conductive type layer 21) extends from the region where the outermost periphery trench insulating gate TG1 is to be formed to the region where the LOCOS oxide film 40 is to be formed. Near the extremely shallow surface, an ion-implanted layer 50a of P conductivity type impurities is formed. The ion implantation layer 50a formed near the surface of the N conductivity type semiconductor substrate 20 (first N conductivity type layer 21) has a different concentration distribution after the formation of the LOCOS oxide film 40 shown in FIG. It will be divided into two regions 51a and 52a. Therefore, the first concentration region 51 having a high impurity concentration and a deep diffusion depth is formed in the region where the outermost trench insulating gate TG1 is to be formed by the thermal diffusion step shown in FIG. 7B, and the LOCOS oxide film is formed. In the lower portion of 40, a second concentration region 52 having a low impurity concentration and a shallow diffusion depth is formed.

上記したP導電型半導体領域50の形成は、第1濃度領域51と第2濃度領域52の不純物濃度と拡散深さが異なるにもかかわらず、第1濃度領域51と第2濃度領域52を一工程で形成することが可能である。従って、不純物濃度と拡散深さが異なる第1第1濃度領域51と第2濃度領域52をそれぞれ別工程で形成する場合に較べて、上記した製造方法によれば図1の半導体装置100を安価に製造することができる。   The P-conductivity-type semiconductor region 50 is formed by combining the first concentration region 51 and the second concentration region 52 in spite of the difference in impurity concentration and diffusion depth between the first concentration region 51 and the second concentration region 52. It can be formed in a process. Therefore, compared with the case where the first concentration region 51 and the second concentration region 52 having different impurity concentrations and diffusion depths are formed in separate processes, the manufacturing method described above makes the semiconductor device 100 of FIG. 1 inexpensive. Can be manufactured.

以上のようにして、図6〜図9に示した半導体装置100の製造工程によれば、一工程で形成した不純物濃度の高い第1濃度領域51を最外周トレンチ絶縁ゲートTG1の角部TG1cを覆うために用い、不純物濃度の低い第2濃度領域52をRESURF構造の構成のために用いることができる。   As described above, according to the manufacturing process of the semiconductor device 100 shown in FIGS. 6 to 9, the corner portion TG1c of the outermost peripheral trench insulating gate TG1 is formed in the first concentration region 51 having a high impurity concentration formed in one process. The second concentration region 52 having a low impurity concentration can be used for covering the RESURF structure.

一方、従来の半導体装置では、最外周トレンチ絶縁ゲートの外側に形成するP導電型半導体領域の濃度分布を一定としている。このため、従来の半導体装置の製造工程は、図6(a)から図7(b)に示した工程順序と異なり、通常、イオン注入工程後に、例えば1170℃、480分の長い熱処理条件で熱拡散工程を実施し、その後にLOCOS酸化膜形成工程を実施する。   On the other hand, in the conventional semiconductor device, the concentration distribution of the P-conductivity type semiconductor region formed outside the outermost trench insulating gate is constant. For this reason, the manufacturing process of the conventional semiconductor device is different from the process sequence shown in FIGS. 6A to 7B. Usually, after the ion implantation process, for example, heat treatment is performed under a long heat treatment condition at 1170 ° C. for 480 minutes. A diffusion process is performed, and then a LOCOS oxide film formation process is performed.

図10は、上記従来の工程順序と熱処理条件によって試作した半導体装置について、イオン注入のドーズ量をパラメータとし、トレンチ絶縁ゲート深さと耐圧の関係を調べた結果である。尚、図中の菱形で示したデータは、いずれもP導電型半導体領域の不純物濃度が9.6×1014cm−3で拡散深さが26μmであり、四角形で示したデータは、いずれもP導電型半導体領域の不純物濃度が9.4×1014cm−3で拡散深さが25μmである。これら、菱形で示したデータと四角形で示したデータは、ほぼ同じ不純物濃度と拡散深さのデータであり、上記P導電型半導体領域の不純物濃度はRESURF条件を満足できる値となっているが、拡散深さはトレンチ絶縁ゲート深さより浅くなっている。 FIG. 10 shows the result of examining the relationship between the trench insulating gate depth and the breakdown voltage, using the ion implantation dose as a parameter for the semiconductor device prototyped according to the above-described conventional process sequence and heat treatment conditions. The data indicated by rhombuses in the figure all have an impurity concentration of 9.6 × 10 14 cm −3 and a diffusion depth of 26 μm, and the data indicated by squares are all The impurity concentration of the P conductivity type semiconductor region is 9.4 × 10 14 cm −3 and the diffusion depth is 25 μm. The data indicated by the diamonds and the data indicated by the squares are substantially the same impurity concentration and diffusion depth data, and the impurity concentration of the P-conductivity type semiconductor region is a value that can satisfy the RESURF condition. The diffusion depth is shallower than the trench insulating gate depth.

図10に示すように、従来の工程順序で製造した半導体装置は、ドーズ量の低い3×1012doseのデータでばらつきがあるものの、大部分が220V付近の低い耐圧となった。これは、図3(a)〜図5(a)で示したように、P導電型半導体領域の不純物濃度が低く拡散深さが最外周トレンチ絶縁ゲートより浅いため、最外周トレンチ絶縁ゲートの角部がP導電型半導体領域で覆われず、角部で電界集中が起きここで耐圧が決まるためである。 As shown in FIG. 10, the semiconductor device manufactured in the conventional process sequence has a low breakdown voltage of about 220 V, although there are variations in 3 × 10 12 dose data with a low dose. As shown in FIGS. 3A to 5A, the impurity concentration of the P-conductivity type semiconductor region is low and the diffusion depth is shallower than that of the outermost trench insulating gate. This is because the portion is not covered with the P-conductivity type semiconductor region, and electric field concentration occurs at the corner portion, and the breakdown voltage is determined here.

一方、図11は、図6〜図9に示した製造工程によって試作した半導体装置100について、LOCOS形成後の熱処理条件をパラメータとし、トレンチ絶縁ゲート深さと耐圧の関係を調べた結果である。尚、図中の菱形で示したデータは、いずれも第2濃度領域52の不純物濃度が9.6×1014cm−3で拡散深さが26μmであり、四角形で示したデータは、いずれも第2濃度領域52の不純物濃度が9.4×1014cm−3で拡散深さが25μmである。また、比較のため、LOCOS形成後に熱処理を行わなかった場合のデータを、白抜きの丸印で示した。尚、この場合も、菱形で示したデータと四角形で示したデータは、ほぼ同じ不純物濃度と拡散深さのデータであり、上記第2濃度領域52の不純物濃度はRESURF条件を満足できる値となっているが、拡散深さはトレンチ絶縁ゲート深さより浅くなっている。 On the other hand, FIG. 11 shows the result of investigating the relationship between the trench insulating gate depth and the breakdown voltage, using the heat treatment conditions after the LOCOS formation as parameters for the semiconductor device 100 prototyped by the manufacturing steps shown in FIGS. The data indicated by rhombuses in the figure all have the impurity concentration of the second concentration region 52 of 9.6 × 10 14 cm −3 and the diffusion depth of 26 μm. The impurity concentration of the second concentration region 52 is 9.4 × 10 14 cm −3 and the diffusion depth is 25 μm. For comparison, data when heat treatment was not performed after LOCOS formation is shown by white circles. Also in this case, the data indicated by diamonds and the data indicated by squares are data of substantially the same impurity concentration and diffusion depth, and the impurity concentration of the second concentration region 52 is a value that can satisfy the RESURF condition. However, the diffusion depth is shallower than the trench insulating gate depth.

図11に示すように、図6(a)から図7(b)に示した工程順序で製造した半導体装置100は、LOCOS形成後に熱処理を行わなかった白抜きの丸印で示したデータを除いて、ばらつきなく、大部分が280V付近の高い耐圧となった。これは、図3(b)〜図5(b)で示したように、第2濃度領域52とN導電型半導体基板20(第1N導電型層21)でRESURF構造が構成されると共に、不純物濃度が高くて拡散深さが大きい第1濃度領域51が最外周トレンチ絶縁ゲートTG1の角部TG1cを覆って、角部での電界集中が緩和されるためである。   As shown in FIG. 11, the semiconductor device 100 manufactured in the process sequence shown in FIGS. 6A to 7B excludes data indicated by white circles that were not subjected to heat treatment after LOCOS formation. Thus, there was no variation, and most of them had a high breakdown voltage near 280V. As shown in FIGS. 3B to 5B, the RESURF structure is constituted by the second concentration region 52 and the N-conductivity type semiconductor substrate 20 (first N-conductivity type layer 21), as well as impurities. This is because the first concentration region 51 having a high concentration and a large diffusion depth covers the corner portion TG1c of the outermost peripheral trench insulating gate TG1, and the electric field concentration at the corner portion is alleviated.

図12は、120kV,1.1×1013doseの条件でP導電型不純物をイオン注入した後、各条件で熱処理した試料のP導電型不純物の分布を、SIMS(Secondary Ionization Mass Spectrometer)によって図の一点鎖線A,Bで評価した結果である。 FIG. 12 is a graph showing the distribution of P-conductivity type impurities in a sample heat-treated under each condition after ion-implanting P-conductivity type impurities under the conditions of 120 kV and 1.1 × 10 13 dose by SIMS (Secondary Ionization Mass Spectrometer). It is the result evaluated by the dashed-dotted lines A and B.

図12に示すように、LOCOS形成前に熱拡散工程を行った(b)の試料については、第1拡散領域51と第2拡散領域52の不純物濃度比が1.5倍程度で小さいのに対し、LOCOS形成後に熱拡散工程を行った(c),(d)の試料および熱拡散工程を行わない(a)の試料については、第1拡散領域51と第2拡散領域52の不純物濃度比が3〜4倍に大きくなっている。これに伴って、これらLOCOS形成後に熱拡散工程を行った(c),(d)の試料および熱拡散工程を行わない(a)の試料については、(LOCOS形成前に熱拡散工程を行った(b)の試料に較べて、耐圧が向上している。   As shown in FIG. 12, in the sample (b) in which the thermal diffusion process was performed before LOCOS formation, the impurity concentration ratio between the first diffusion region 51 and the second diffusion region 52 was as small as about 1.5 times. On the other hand, for the samples (c) and (d) in which the thermal diffusion process was performed after the LOCOS formation and the samples in (a) where the thermal diffusion process was not performed, the impurity concentration ratio between the first diffusion region 51 and the second diffusion region 52 Is 3-4 times larger. Accordingly, the samples (c) and (d) that were subjected to the thermal diffusion process after the LOCOS formation and the samples (a) that were not subjected to the thermal diffusion process (the thermal diffusion process was performed before the LOCOS formation). The breakdown voltage is improved as compared with the sample of (b).

以上のようにして、上記した本発明の半導体装置およびその製造方法は、縦型のトレンチ絶縁ゲートトランジスタが、セルの集合体として、半導体基板の内側部分に形成されてなる半導体装置およびその製造方法であって、高耐圧であり、かつ安価に製造することのできる半導体装置およびその製造方法となっている。   As described above, the semiconductor device and the manufacturing method thereof according to the present invention include a semiconductor device in which a vertical trench insulated gate transistor is formed as an assembly of cells in an inner portion of a semiconductor substrate, and a manufacturing method thereof. Thus, the semiconductor device has a high breakdown voltage and can be manufactured at low cost, and a manufacturing method thereof.

本発明の半導体装置の一例で、半導体装置100の模式的な断面図である。1 is a schematic cross-sectional view of a semiconductor device 100 as an example of the semiconductor device of the present invention. 図1の半導体装置100における要部の寸法関係を示す図である。FIG. 2 is a diagram illustrating a dimensional relationship of main parts in the semiconductor device 100 of FIG. 1. (a),(b)は、それぞれ半導体装置100s,100dのシミュレーション結果を示す図で、角部TG1c周りの拡大断面において、不純物濃度分布を示した図である。(A), (b) is a figure which shows the simulation result of semiconductor device 100s, 100d, respectively, and is a figure which showed impurity concentration distribution in the expanded cross section around corner | angular part TG1c. (a),(b)は、それぞれ半導体装置100s,100dのシミュレーション結果を示す図で、電界強度分布を示した図である。(A), (b) is a figure which shows the simulation result of semiconductor device 100s, 100d, respectively, and is a figure which showed electric field strength distribution. (a),(b)は、それぞれ半導体装置100s,100dのシミュレーション結果を示す図で、降伏(ブレークダウン)時の電流密度分布を示した図である。(A), (b) is a figure which shows the simulation result of semiconductor device 100s, 100d, respectively, and is the figure which showed the current density distribution at the time of a breakdown (breakdown). (a)〜(d)は、半導体装置100の製造方法に関する工程別の断面図である。FIGS. 5A to 5D are cross-sectional views for each process related to the method for manufacturing the semiconductor device 100. FIGS. (a)〜(c)は、半導体装置100の製造方法に関する工程別の断面図である。FIGS. 5A to 5C are cross-sectional views for each process related to the method for manufacturing the semiconductor device 100. FIGS. (a)〜(d)は、半導体装置100の製造方法に関する工程別の断面図である。FIGS. 5A to 5D are cross-sectional views for each process related to the method for manufacturing the semiconductor device 100. FIGS. (a)〜(d)は、半導体装置100の製造方法に関する工程別の断面図である。FIGS. 5A to 5D are cross-sectional views for each process related to the method for manufacturing the semiconductor device 100. FIGS. 従来の工程順序と熱処理条件によって試作した半導体装置について、イオン注入のドーズ量をパラメータとし、トレンチ絶縁ゲート深さと耐圧の関係を調べた結果である。It is the result of investigating the relationship between the trench insulating gate depth and the breakdown voltage, using the dose amount of ion implantation as a parameter for a semiconductor device prototyped according to the conventional process sequence and heat treatment conditions. 図6〜図9に示した製造工程によって試作した半導体装置100について、LOCOS形成後の熱処理条件をパラメータとし、トレンチ絶縁ゲート深さと耐圧の関係を調べた結果である。6 is a result of investigating the relationship between the trench insulating gate depth and the breakdown voltage using the heat treatment conditions after LOCOS formation as a parameter for the semiconductor device 100 prototyped by the manufacturing process shown in FIGS. P導電型不純物をイオン注入した後、各条件で熱処理した試料のP導電型不純物の分布を、SIMSによって図の一点鎖線A,Bで評価した結果である。It is the result of having evaluated the distribution of the P conductivity type impurity of the sample heat-processed on each condition after ion-implanting a P conductivity type impurity with the dashed-dotted lines A and B of a figure by SIMS. (a),(b)は、特許文献1に開示された半導体装置で、それぞれ、半導体装置91,92の模式的な断面図である。(A), (b) is a semiconductor device indicated by patent documents 1, and is a typical sectional view of semiconductor devices 91 and 92, respectively.

符号の説明Explanation of symbols

91,92,100,100s,100d 半導体装置
30 トレンチ絶縁ゲートトランジスタ
20 N導電型半導体基板
21 第1N導電型(N−)層
22 第2N導電型(N+)層
TG トレンチ絶縁ゲート
TG1 最外周トレンチ絶縁ゲート
TG1c 角部
40 LOCOS酸化膜
50 P導電型半導体領域
51,51s,51d 第1濃度(P)領域
52 第2濃度(P−)領域
91, 92, 100, 100s, 100d Semiconductor device 30 Trench insulated gate transistor 20 N conductivity type semiconductor substrate 21 1st N conductivity type (N−) layer 22 2nd N conductivity type (N +) layer TG Trench insulation gate TG1 Outermost trench isolation Gate TG1c Corner 40 LOCOS oxide film 50 P conductivity type semiconductor region 51, 51s, 51d First concentration (P) region 52 Second concentration (P−) region

Claims (4)

縦型のトレンチ絶縁ゲートトランジスタが、セルの集合体として、第1導電型半導体基板の内側部分に形成され、
LOCOS酸化膜が、
前記セルの集合体を取り囲む最外周トレンチ絶縁ゲートと分離して、該最外周トレンチ絶縁ゲートの外側の前記第1導電型半導体基板上に形成され、
第2導電型半導体領域が、前記最外周トレンチ絶縁ゲートの下部から前記LOCOS酸化膜の下部に亘って、前記第1導電型半導体基板の表層部に形成されてなり、
前記第2導電型半導体領域が、前記最外周トレンチ絶縁ゲートの下部から角部を覆う第1濃度領域と、前記LOCOS酸化膜の下部を覆う第2濃度領域とからなり、
前記第2濃度領域の不純物濃度が、前記第1濃度領域の不純物濃度より低く設定され、
前記第2濃度領域の拡散深さが、前記第1濃度領域の拡散深さより浅く設定されてなることを特徴とする半導体装置。
A vertical trench insulated gate transistor is formed as an assembly of cells on an inner portion of the first conductivity type semiconductor substrate,
LOCOS oxide film
Separated from the outermost trench insulating gate surrounding the cell assembly, the outermost trench insulating gate is formed on the first conductivity type semiconductor substrate outside the outermost trench insulating gate,
A second conductivity type semiconductor region is formed in a surface layer portion of the first conductivity type semiconductor substrate from a lower portion of the outermost peripheral trench insulating gate to a lower portion of the LOCOS oxide film;
The second conductivity type semiconductor region includes a first concentration region covering a corner portion from a lower portion of the outermost peripheral trench insulating gate and a second concentration region covering a lower portion of the LOCOS oxide film;
The impurity concentration of the second concentration region is set lower than the impurity concentration of the first concentration region;
A semiconductor device, wherein a diffusion depth of the second concentration region is set to be shallower than a diffusion depth of the first concentration region.
前記第1導電型半導体基板と前記第2濃度領域により、
RESURF構造が構成されてなることを特徴とする請求項1に記載の半導体装置。
By the first conductivity type semiconductor substrate and the second concentration region,
The semiconductor device according to claim 1, comprising a RESURF structure.
前記最外周トレンチ絶縁ゲートの角部から前記第1濃度領域と第2濃度領域の境界面までの最短間隔が、前記第1濃度領域の拡散深さより大きく設定されてなることを特徴とする請求項1または2に記載の半導体装置。   The shortest distance from a corner of the outermost peripheral trench insulating gate to a boundary surface between the first concentration region and the second concentration region is set larger than a diffusion depth of the first concentration region. 3. The semiconductor device according to 1 or 2. 縦型のトレンチ絶縁ゲートトランジスタが、セルの集合体として、第1導電型半導体基板の内側部分に形成され、
LOCOS酸化膜が、
前記セルの集合体を取り囲む最外周トレンチ絶縁ゲートと分離して、該最外周トレンチ絶縁ゲートの外側の前記第1導電型半導体基板上に形成され、
第2導電型半導体領域が、前記最外周トレンチ絶縁ゲートの下部から前記LOCOS酸化膜の下部に亘って、前記第1導電型半導体基板の表層部に形成されてなり、
前記第2導電型半導体領域が、前記最外周トレンチ絶縁ゲートの下部から角部を覆う第1濃度領域と、前記LOCOS酸化膜の下部を覆う第2濃度領域とからなり、
前記第2濃度領域の不純物濃度が、前記第1濃度領域の不純物濃度より低く設定され、
前記第2濃度領域の拡散深さが、前記第1濃度領域の拡散深さより浅く設定されてなる
半導体装置の製造方法であって、
前記第1導電型半導体基板における前記第2導電型半導体領域の形成予定領域に、第2導電型不純物をイオン注入するイオン注入工程と、
前記イオン注入工程後、前記LOCOS酸化膜を形成するLOCOS酸化膜形成工程と、
前記LOCOS酸化膜形成工程後、前記イオン注入した第2導電型不純物を熱拡散させて、前記第1濃度領域と第2濃度領域とからなる第2導電型半導体領域を形成する熱拡散工程とを有してなることを特徴とする半導体装置の製造方法。
A vertical trench insulated gate transistor is formed as an assembly of cells on an inner portion of the first conductivity type semiconductor substrate,
LOCOS oxide film
Separated from the outermost trench insulating gate surrounding the cell assembly, the outermost trench insulating gate is formed on the first conductivity type semiconductor substrate outside the outermost trench insulating gate,
A second conductivity type semiconductor region is formed in a surface layer portion of the first conductivity type semiconductor substrate from a lower portion of the outermost peripheral trench insulating gate to a lower portion of the LOCOS oxide film;
The second conductivity type semiconductor region includes a first concentration region covering a corner portion from a lower portion of the outermost peripheral trench insulating gate and a second concentration region covering a lower portion of the LOCOS oxide film;
The impurity concentration of the second concentration region is set lower than the impurity concentration of the first concentration region;
A method for manufacturing a semiconductor device, wherein a diffusion depth of the second concentration region is set to be shallower than a diffusion depth of the first concentration region,
An ion implantation step of ion-implanting a second conductivity type impurity into a region where the second conductivity type semiconductor region is to be formed in the first conductivity type semiconductor substrate;
A LOCOS oxide film forming step of forming the LOCOS oxide film after the ion implantation step;
After the LOCOS oxide film formation step, a thermal diffusion step of thermally diffusing the ion-implanted second conductivity type impurity to form a second conductivity type semiconductor region composed of the first concentration region and the second concentration region is performed. A method for manufacturing a semiconductor device, comprising:
JP2007177618A 2007-07-05 2007-07-05 Manufacturing method of semiconductor device Expired - Fee Related JP5135920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007177618A JP5135920B2 (en) 2007-07-05 2007-07-05 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007177618A JP5135920B2 (en) 2007-07-05 2007-07-05 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2009016618A true JP2009016618A (en) 2009-01-22
JP5135920B2 JP5135920B2 (en) 2013-02-06

Family

ID=40357156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007177618A Expired - Fee Related JP5135920B2 (en) 2007-07-05 2007-07-05 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP5135920B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8749017B2 (en) 2010-03-24 2014-06-10 Fuji Electric Co., Ltd Semiconductor device
US9293564B2 (en) 2014-06-16 2016-03-22 Fuji Electric Co., Ltd. Semiconductor device manufacturing method
JP2017183625A (en) * 2016-03-31 2017-10-05 ローム株式会社 Semiconductor device and method of manufacturing the same
JP2020170859A (en) * 2020-06-29 2020-10-15 ローム株式会社 Semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58192368A (en) * 1982-05-07 1983-11-09 Toshiba Corp High withstand voltage planar type semiconductor device
JPS61137368A (en) * 1984-12-10 1986-06-25 Hitachi Ltd Semiconductor device
JPH0878668A (en) * 1994-08-31 1996-03-22 Toshiba Corp Semiconductor device for power
JP2006173281A (en) * 2004-12-14 2006-06-29 Denso Corp Semiconductor device and method of manufacturing the same
JP2006229135A (en) * 2005-02-21 2006-08-31 Denso Corp Manufacturing method for semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58192368A (en) * 1982-05-07 1983-11-09 Toshiba Corp High withstand voltage planar type semiconductor device
JPS61137368A (en) * 1984-12-10 1986-06-25 Hitachi Ltd Semiconductor device
JPH0878668A (en) * 1994-08-31 1996-03-22 Toshiba Corp Semiconductor device for power
JP2006173281A (en) * 2004-12-14 2006-06-29 Denso Corp Semiconductor device and method of manufacturing the same
JP2006229135A (en) * 2005-02-21 2006-08-31 Denso Corp Manufacturing method for semiconductor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8749017B2 (en) 2010-03-24 2014-06-10 Fuji Electric Co., Ltd Semiconductor device
US9472660B2 (en) 2010-03-24 2016-10-18 Fuji Electric Co., Ltd. Semiconductor device
US9293564B2 (en) 2014-06-16 2016-03-22 Fuji Electric Co., Ltd. Semiconductor device manufacturing method
JP2017183625A (en) * 2016-03-31 2017-10-05 ローム株式会社 Semiconductor device and method of manufacturing the same
US10608087B2 (en) 2016-03-31 2020-03-31 Rohm Co., Ltd. Semiconductor device suppressing electric field concentration and method for manufacturing
US10923571B2 (en) 2016-03-31 2021-02-16 Rohm Co., Ltd. Semiconductor device suppressing electric field concentration and method for manufacturing
JP2020170859A (en) * 2020-06-29 2020-10-15 ローム株式会社 Semiconductor device
JP7034214B2 (en) 2020-06-29 2022-03-11 ローム株式会社 Semiconductor device

Also Published As

Publication number Publication date
JP5135920B2 (en) 2013-02-06

Similar Documents

Publication Publication Date Title
JP5298565B2 (en) Semiconductor device and manufacturing method thereof
TWI525811B (en) Semiconductor device and method for fabricating the same
JP2005026664A (en) Semiconductor device and manufacturing method therefor
JP2004064063A (en) High voltage vertical type dmos transistor, and method for producing the same
KR20100058055A (en) Semiconductor and manufacturing for the same
JP2003158178A (en) Semiconductor device and its fabricating method
JP5198760B2 (en) Semiconductor device and manufacturing method thereof
JP4308096B2 (en) Semiconductor device and manufacturing method thereof
JP5558243B2 (en) Semiconductor device
US8022475B2 (en) Semiconductor device optimized to increase withstand voltage and reduce on resistance
JP2009152580A (en) Semiconductor device and its manufacturing method
JP2008135474A (en) Semiconductor device
JP2007158188A (en) Semiconductor device, and method of manufacturing same
JP5135920B2 (en) Manufacturing method of semiconductor device
JP2004158680A (en) Semiconductor device and its fabricating process
JP2005116651A (en) Semiconductor device and its manufacturing method
WO2019109823A1 (en) Mosfet structure, and manufacturing method thereof
WO2019109829A1 (en) Insulated-gate bipolar transistor, and manufacturing method thereof
JP2004022769A (en) Lateral high breakdown voltage semiconductor device
US7723784B2 (en) Insulated gate semiconductor device and method for manufacturing the same
KR20100020688A (en) Ldmos semiconductor and method for fabricating the same
JP2010056216A (en) Semiconductor device, and method of manufacturing the same
JP2009088220A (en) Method of manufacturing semiconductor device, and semiconductor device
JP2006332232A (en) Semiconductor device and manufacturing method thereof
JP2006229182A (en) Semiconductor device and its fabrication process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121029

R151 Written notification of patent or utility model registration

Ref document number: 5135920

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees