JPS61137360A - Complementary mos integrated circuit device - Google Patents

Complementary mos integrated circuit device

Info

Publication number
JPS61137360A
JPS61137360A JP59260362A JP26036284A JPS61137360A JP S61137360 A JPS61137360 A JP S61137360A JP 59260362 A JP59260362 A JP 59260362A JP 26036284 A JP26036284 A JP 26036284A JP S61137360 A JPS61137360 A JP S61137360A
Authority
JP
Japan
Prior art keywords
substrate
wirings
region
film
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59260362A
Other languages
Japanese (ja)
Inventor
Isao Sasaki
佐々木 勇男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP59260362A priority Critical patent/JPS61137360A/en
Publication of JPS61137360A publication Critical patent/JPS61137360A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0921Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To increase a latchup withstand voltage by forming electrode wirings made of silicide or polycide for applying a potential to a reverse conductive type well region or a one conductive type semiconductor substrate near the well region when the well region is provided in the substrate to form a C- MOSIC. CONSTITUTION:A P type well region 2 is diffused in the surface layer of an N type Si substrate 1 to form a C-MOSIC substrate. Then, a thick field oxide film 9 is formed at the peripheral edge of the surface of the substrate 1, a thin gate oxide film 10 is coated on the surface surrounded by the film 9, approached to the region 2 or thereafter approached to a P-N junction formed in this region, and contacting holes 4 are opened at the film 10 and the surface of the substrate 1 disposed under the film 10. Then, tungsten silicide wirings 5 are mounted, P ions are implanted, an N type region 3 is generated under the wirings 5, P ions are implanted, an N type region 3 is simultaneously generated under the wirings 5, heat treated in oxidative atmosphere to surround the outer periphery of the wirings 5 by an SiO2 film. Then, polycrystalline gate electrode wirings 6 are coated over the films 10, 9.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は相補型MOS集積回路装置(CMOSTCに係
り、ラッチアップ耐圧強化構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a complementary MOS integrated circuit device (CMOSTC), and relates to a latch-up voltage enhanced structure.

〔従来の技術〕[Conventional technology]

近年微細化が進むにつれて、0M081Cではラッチア
ップ現象が、大きな問題となってきている。
As miniaturization progresses in recent years, the latch-up phenomenon has become a major problem in 0M081C.

ラッチアップ耐圧強化の九めには、高濃度エピタキシャ
ル基板を使用することにより基板抵抗を下げることが有
効であるが、Pチャンネル・トランジスタ領域とNチャ
ンネル・トランジスタ領域との距離を小さくするだけで
は効果がなく、PN境界領域近くのウェル表面、を九は
基板表面で、ウェル電位ま几は基板電位をとる九めの電
極を形成することが必要である。従来、この電極はソー
スドレインと同時に形成される拡散層配線により、作ら
れてい九〇シかしこの構造では、配線抵抗が大きく、ラ
ッチアップに対して、十分な効果がなかつ次。また、こ
の拡散層をソース・ドレインと同時に形成する九め、現
在主流となっているシリコン・ゲー1−M08ICでは
、ゲート電極となるポリシリコン配線が、ウェルま九は
基板の電位をおきえる拡散1配線の上を通ることができ
ず、Pチャンネル・トラ7ジスタのゲート電極と、Nチ
ヤンネル・トランジスタのゲート電極とを直接結ぶこと
ができず、レイアウト上不都合であった。
Ninth, it is effective to lower the substrate resistance by using a highly doped epitaxial substrate to strengthen the latch-up breakdown voltage, but it is not effective just to reduce the distance between the P-channel transistor region and the N-channel transistor region. It is necessary to form a ninth electrode that takes the well potential near the PN boundary region and the substrate surface, and the well potential or the substrate potential. Conventionally, this electrode was formed using a diffusion layer wiring formed at the same time as the source and drain, but this structure had high wiring resistance and was not sufficiently effective against latch-up. In addition, this diffusion layer is formed at the same time as the source and drain, and in the currently mainstream silicon gate 1-M08 IC, the polysilicon wiring that becomes the gate electrode is formed as a well layer, and the well layer is a diffusion layer that holds the potential of the substrate. The gate electrode of the P-channel transistor cannot be directly connected to the gate electrode of the N-channel transistor, which is inconvenient in terms of layout.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、ウェルま7t+は基板の電位をおさえ
るための電極配線の抵抗を小さくシ、かつこの配線の上
にもゲート電極を形成するポリシリコノなどの配線が通
れるようにして、ラッチアップ耐圧を強化し、かつレイ
アウト上の無駄をなくし、チップの縮小化を計っt相補
型MOS集積回路装置を提供することにある。
The purpose of the present invention is to reduce the resistance of the electrode wiring for suppressing the potential of the substrate in the well 7t+, and also to allow the wiring such as polysilicon to form the gate electrode to pass over this wiring, thereby reducing the latch-up withstand voltage. It is an object of the present invention to provide a complementary MOS integrated circuit device which is designed to strengthen the circuit, eliminate waste in layout, and reduce the size of the chip.

〔問題点を解決するtめの手段〕[The tth way to solve the problem]

本発明の構成は、第1導電型の半導体基板とその表面に
形成された第2導電型のウェルとからなる相補型MOS
集積回路装置において、その表面のPN境界領域近傍に
前記ウェルまたは基板電位をとる几めのシリサイドま九
はポリサイドからなる電極配線を走らせ、特にその上に
ゲート電極配線を通し九ことを特徴とする。
The structure of the present invention is a complementary MOS comprising a semiconductor substrate of a first conductivity type and a well of a second conductivity type formed on the surface of the semiconductor substrate.
In the integrated circuit device, an electrode wiring made of polycide is run over the well or substrate potential near the PN boundary region on the surface of the integrated circuit device, and in particular, a gate electrode wiring is passed over the silicide layer. .

〔実施例〕〔Example〕

次に図面を参照しながら本発明の詳細な説明する。第1
図(alld本発明の実施例の半導体基板の平面図、第
1図(blは第1図(a)の八−A′線に沿って切断し
た断面図である。同図において、本実施例は、便宜上N
型基板にP型ウェルを形成した0MOSICで、PN境
界近くのN型基板表面に、基板電位を形成するシリサイ
ド配線を形成するものとする。まず、Nff1半導体基
板1の表面にP型りエル2を形成し、窒化膜をマスクと
する通常のLOGO8工程で、フィールド酸化膜9とゲ
ート酸化膜10とを形成する。ゲート酸化膜10の上に
マスク窒化膜を残した状態で、基板電位をとるためコン
タクト孔4t−開孔し、その上にタングステン・シリサ
イド配線5t−形成する。前記配線5にす/l−イオノ
注入でドーグし、同時にN型拡散層3を形成する。次に
前記配#i15を酸化性雰囲気で熱酸化し、配線表面に
シリコン酸化膜を形成する。
Next, the present invention will be described in detail with reference to the drawings. 1st
Figure (alld) is a plan view of a semiconductor substrate according to an embodiment of the present invention. is N for convenience.
It is assumed that this is an OMOSIC in which a P-type well is formed on a type substrate, and a silicide wiring for forming a substrate potential is formed on the surface of the N-type substrate near the PN boundary. First, a P-type trench 2 is formed on the surface of the Nff1 semiconductor substrate 1, and a field oxide film 9 and a gate oxide film 10 are formed in a normal LOGO8 process using a nitride film as a mask. With the mask nitride film remaining on the gate oxide film 10, a contact hole 4t is opened to obtain a substrate potential, and a tungsten silicide wiring 5t is formed thereon. The wiring 5 is doped with S/l- ion implantation, and at the same time an N-type diffusion layer 3 is formed. Next, the wiring #i15 is thermally oxidized in an oxidizing atmosphere to form a silicon oxide film on the wiring surface.

次に、マスクの窒化膜を除去し、ゲートポリ7リコノ電
極6を形成する。この後は通常のシリコンゲートCMO
S工程で、0MOSICt−形成する。
Next, the nitride film of the mask is removed, and the gate polygon electrode 6 is formed. After this, normal silicon gate CMO
In step S, 0MOSICt- is formed.

本実施例によれば、Pチャンネル・トランジスタ領域と
Nチャ/ネル・トラ7ジスタ領域との関のN型基板表面
に、低抵抗の基板電極配線が形成され、ラッチアップ防
止に大きな効果を発揮するまた、ゲート・ポリシリコン
電極6配線が、基板電極配線の上を走り、レイアウト上
の自由度が大きく、基板電極をとるためのN型拡散層3
がソース・ドレイノ拡散層とは別に形成されるので、ソ
ース・ドシイノ領域との目合せマージンが最小にでき、
テップの縮小化にも役立つ。
According to this embodiment, a low-resistance substrate electrode wiring is formed on the surface of the N-type substrate between the P-channel transistor region and the N-channel transistor region, which is highly effective in preventing latch-up. In addition, the gate polysilicon electrode 6 wiring runs over the substrate electrode wiring, giving a large degree of freedom in layout, and the N-type diffusion layer 3 for taking the substrate electrode.
is formed separately from the source/drain diffusion layer, so the alignment margin with the source/drain region can be minimized.
It is also useful for reducing the size of the step.

本発明としては、本実施例以外多くの構造が考えらnる
。基板電極配線だけでなく、ウェル電極配線も同様に冥
現できる。両者を同時に形成することもまた有効である
Many structures other than this embodiment are conceivable for the present invention. Not only substrate electrode wiring but also well electrode wiring can be realized in the same way. It is also effective to form both at the same time.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、ウェルまたは基
板電極配線がシリサイド、またはポリサイドからなるた
め、従来の拡散層配線と比べ、抵抗が1桁以上下がり、
ラッチアップ耐量が約10倍大きくなり、またウェル、
または基板電極配線の上を、ゲート・ポリシリコン電極
配線を走らすことができるので、レイアウト上の自由度
が太きくなり、テップの縮小にも役立つという効果が得
られる。
As explained above, according to the present invention, since the well or substrate electrode wiring is made of silicide or polycide, the resistance is reduced by more than one order of magnitude compared to conventional diffusion layer wiring.
The latch-up resistance is approximately 10 times greater, and the well and
Alternatively, since the gate/polysilicon electrode wiring can be run over the substrate electrode wiring, the degree of freedom in terms of layout is increased and the effect of helping to reduce the step size can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明の実施例の相補型MOS集積回路
装置を示す平面図、第1図(b)は第1図(a)の八−
A′線に沿って切断して見た断面図である。 同図において、l・・・・・・N型シリコ/基板、2・
・・・・・P型ウェル、3・・・・・・N型拡散層、4
・・・・・・基板電極用コンタクト、5・・・・・・タ
ングステン・クリサイド基板電極配線、6・・・・・・
ポリシリコン・ゲート電極配線、7・・・・・・Pチャ
ノネル・トランジスタ・ソース・ドレイ7P型拡散層、
8・・・・・・Nテヤノネルトランジスタ・ソース・ド
レインN型E散/if、  9・・・・・・フィールド
・シリコ7酸化1[%lO・・・・・・ゲート・シリコ
ン酸化膜。
FIG. 1(a) is a plan view showing a complementary MOS integrated circuit device according to an embodiment of the present invention, and FIG. 1(b) is a plan view showing a complementary MOS integrated circuit device according to an embodiment of the present invention.
FIG. 3 is a cross-sectional view taken along line A'. In the same figure, l...N-type silicon/substrate, 2.
...P type well, 3...N type diffusion layer, 4
...Contact for substrate electrode, 5...Tungsten/crystalline substrate electrode wiring, 6...
Polysilicon gate electrode wiring, 7...P channel transistor source/drain 7P type diffusion layer,
8...N Teyanonel transistor source/drain N type E dispersion/if, 9...Field silicon 7 oxide 1[%lO...Gate silicon oxide film.

Claims (1)

【特許請求の範囲】[Claims]  第1導電型の半導体基板と、その表面に形成された第
2導電型のウェルとからなる相補型MOS集積回路装置
において、前記表面のPN境界の近傍に前記ウェルまた
は基板電位をとるためのシリサイドまたはポリサイドか
らなる電極配線が形成されていることを特徴とする相補
型MOS集積回路装置。
In a complementary MOS integrated circuit device comprising a semiconductor substrate of a first conductivity type and a well of a second conductivity type formed on the surface thereof, silicide is used to take the well or substrate potential near a PN boundary on the surface. Alternatively, a complementary MOS integrated circuit device characterized in that an electrode wiring made of polycide is formed.
JP59260362A 1984-12-10 1984-12-10 Complementary mos integrated circuit device Pending JPS61137360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59260362A JPS61137360A (en) 1984-12-10 1984-12-10 Complementary mos integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59260362A JPS61137360A (en) 1984-12-10 1984-12-10 Complementary mos integrated circuit device

Publications (1)

Publication Number Publication Date
JPS61137360A true JPS61137360A (en) 1986-06-25

Family

ID=17346880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59260362A Pending JPS61137360A (en) 1984-12-10 1984-12-10 Complementary mos integrated circuit device

Country Status (1)

Country Link
JP (1) JPS61137360A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01162350A (en) * 1987-11-25 1989-06-26 Marconi Electron Devices Ltd Semiconductor structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5723260A (en) * 1980-07-16 1982-02-06 Toshiba Corp Complementary mos semiconductor device
JPS5723259A (en) * 1980-07-16 1982-02-06 Toshiba Corp Complementary type mos semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5723260A (en) * 1980-07-16 1982-02-06 Toshiba Corp Complementary mos semiconductor device
JPS5723259A (en) * 1980-07-16 1982-02-06 Toshiba Corp Complementary type mos semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01162350A (en) * 1987-11-25 1989-06-26 Marconi Electron Devices Ltd Semiconductor structure

Similar Documents

Publication Publication Date Title
US5047358A (en) Process for forming high and low voltage CMOS transistors on a single integrated circuit chip
US5688722A (en) CMOS integrated circuit with reduced susceptibility to PMOS punchthrough
US4893164A (en) Complementary semiconductor device having high switching speed and latchup-free capability
JPS627701B2 (en)
US4547959A (en) Uses for buried contacts in integrated circuits
JP3378512B2 (en) Semiconductor device
JPH04259259A (en) Mis transistor for thin film soi structure
US4404579A (en) Semiconductor device having reduced capacitance and method of fabrication thereof
US6207996B1 (en) Semiconductor device and method for manufacturing the same
JPS61137360A (en) Complementary mos integrated circuit device
US4673965A (en) Uses for buried contacts in integrated circuits
JPH0241910B2 (en)
JPS5944784B2 (en) Complementary MOS semiconductor device
JPH0252463A (en) Semiconductor integrated circuit device
JPS628950B2 (en)
JPS61131476A (en) Semiconductor device
JPH05235290A (en) Semiconductor device and its manufacture
JPH0465160A (en) Semiconductor device
JPS61156830A (en) Semiconductor device and manufacture thereof
JP2596405B2 (en) Method for manufacturing semiconductor integrated circuit device
JPS60143658A (en) Complementary insulated gate field effect transistor integrated circuit
JPH0287567A (en) Manufacture of semiconductor device
JPS62112376A (en) Semiconductor device
JPH01248555A (en) Semiconductor device
JPH09260644A (en) Semiconductor device