JPS61136624A - Manufacture of high toughness steel material having thick section and yield point of 42-<90kgf/mm2 - Google Patents

Manufacture of high toughness steel material having thick section and yield point of 42-<90kgf/mm2

Info

Publication number
JPS61136624A
JPS61136624A JP25977184A JP25977184A JPS61136624A JP S61136624 A JPS61136624 A JP S61136624A JP 25977184 A JP25977184 A JP 25977184A JP 25977184 A JP25977184 A JP 25977184A JP S61136624 A JPS61136624 A JP S61136624A
Authority
JP
Japan
Prior art keywords
steel
temperature
less
water cooling
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25977184A
Other languages
Japanese (ja)
Inventor
Yasushi Moriyama
康 森山
Yasumitsu Onoe
尾上 泰光
Atsuhiko Yoshie
吉江 淳彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP25977184A priority Critical patent/JPS61136624A/en
Publication of JPS61136624A publication Critical patent/JPS61136624A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain thick steel material having superior strength, toughness and a desired yield point, by casting a steel contg. specified quantities of Mn, Nb, Al, etc., cooling, reheating, soaking and rolling said ingot under controlled temp.s, water cooling, then heating and tempering said plate. CONSTITUTION:The steel contg. 0.04-0.18wt% C, <=0.35% Si, 0.6-1.8% Mn, 0.005-0.04% Nb, 0.01-0.08% total Al, <=0.005% N, if necessary 0.0005-0.0015% B, 0.1-1.5% Cu, 0.2-1.5% Ni, 0.10-0.5% Cr, 0.05-0.6% Mo, 0.01-0.05% V, and the others of Ti, Ca, REM, etc., is cast. The steel slab is cooled so that up to 1/4 of the thickness becomes to 400-850 deg.C, next, heated and soaked at 900-1,050 deg.C, rolled at 800-920 deg.C by >=20% draft. Next, water cooling is started at the time point when surface temp. is attained to T>=Tr-20, and is stopped at the time point when attained <=350 deg.C recuperating temp. Next. said plate is heated to <=700 deg.C and tempered. Tr is obtd. by a specified formula.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は−、強度と靭性にすぐれ、かつ溶接性のすぐれ
た降伏点42に#f廓2以上90 klf/、2未満の
厚手断面の高靭性鋼材の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention provides a thick section with a yield point of 42, which has excellent strength and toughness, and excellent weldability, and has a thickness of #f 2 or more and 90 klf/, and less than 2. Concerning the manufacturing method of high toughness steel materials.

(従来の技術) 近年、鉄鋼構造物の巨大化と高靭性化が進み、それに使
用する鋼材に対する要求は厚手断面化や、降伏点の向上
要求と同時に低温靭性や予熱なしで溶接可能のようにす
ぐれた耐溶接割れ性が要求される。
(Conventional technology) In recent years, steel structures have become larger and have higher toughness, and the demands for steel materials used in them are thicker cross-sections and higher yield points, as well as low-temperature toughness and weldability without preheating. Excellent weld cracking resistance is required.

又、一方では、コンクリートや他の材料との競合から、
出来るだけ経済性が要求される。
On the other hand, due to competition with concrete and other materials,
It is required to be as economical as possible.

これらの要求に対して、最近の各種の新しい夷造法が開
発され、品質改善が行われている。
In response to these demands, various new manufacturing methods have recently been developed to improve quality.

例えば、特公昭55−30047号公報に記載されてい
るように鋼片の加熱温度を従来より低温にすることによ
り、圧延前のオーステナイト粒度を細粒にし、その後の
圧延と水冷による靭性向上効果を助長させる方法、或い
Fi特開昭57−131320号公報に記載されている
ように連続鋳造後、鋼片の表面が1.100〜750℃
になった時点で粗圧延t−開始し、Ar、〜650℃で
圧延を終了し、その後650〜400℃の間の適温迄水
冷し、その後空冷以下の冷却速度で冷却する方法等多く
の方法が散見される。
For example, as described in Japanese Patent Publication No. 55-30047, by heating the steel billet at a lower temperature than before, the austenite grain size before rolling is made finer, and the toughness improvement effect of subsequent rolling and water cooling is improved. Alternatively, as described in JP-A-57-131320, after continuous casting, the surface of the steel slab is heated to 1.100 to 750°C.
There are many methods, such as starting rough rolling at t-, finishing the rolling at ~650°C in Ar, then cooling with water to an appropriate temperature between 650 and 400°C, and then cooling at a cooling rate lower than air cooling. are seen here and there.

これらは、−ずれも高靭性の高張力鋼を製造する方法で
あるが、特に厚手の鋼板を製造する場合、板厚方向の強
度差が著るしい、水素脆性の欠陥が出易いなどの欠点が
あり、これらを解消するために全く他の技術対策をとる
必要があった。
These methods are all methods for producing high-strength steel with high toughness, but they have disadvantages, especially when producing thick steel plates, such as significant strength differences in the thickness direction and easy occurrence of hydrogen embrittlement defects. In order to solve these problems, it was necessary to take completely other technical measures.

(発明が解決しようとする問題) 本発明の目的は前記した厚手断面の高靭性鋼材の製造に
際しての問題点を排除し得る魯遣方法を提供しようとす
るものである。
(Problems to be Solved by the Invention) An object of the present invention is to provide a method for removing the above-mentioned problems in manufacturing high-toughness steel materials with thick sections.

(問題点を解決するための手段) 本発明者らは、種々検討を重ねた結果、鋼中のNbの挙
動を制御し得るような各種製造条件を採用することによ
ってかかる問題点を解消することが可能になると言う結
論に達し念。
(Means for solving the problem) As a result of various studies, the present inventors have solved the problem by adopting various manufacturing conditions that can control the behavior of Nb in steel. I have come to the conclusion that this is possible.

即ち、鋼中のNbは、常温では主としてNbの炭・窒化
物としで存在するが、鋳造後の鋼片、分塊圧延後の鋼片
は高温状態にありNbは単体として地鉄中に固溶して込
る。
In other words, Nb in steel mainly exists as carbon and nitrides of Nb at room temperature, but the steel billet after casting and the billet after blooming are in a high temperature state, and Nb is solidified as a single element in the steel base. Melt it.

この固溶Nbは圧延の際、未再結晶域の上限温度を上昇
させ、細粒組織を得るための圧延を容易ならしめると言
う効果の他に、圧延後水冷してから焼戻し処理を行った
場合、水冷忙よって適冷状態のNbが焼戻しの際に炭・
窒化物として析出することが知られておシ、この析出硬
化作用忙よる強度向上が利用されている。
This solid solution Nb has the effect of increasing the upper limit temperature of the non-recrystallized region during rolling and making it easier to roll to obtain a fine grain structure. In this case, Nb, which is properly cooled due to water cooling, is charcoal and Nb during tempering.
It is known that it precipitates as a nitride, and this precipitation hardening effect is used to improve strength.

従って、従来の如く、鋼片を一旦常温迄冷却させ几場合
、鋼中のNbは炭・窒化物として析出している之め、再
度加熱して圧延する場合、このNbの炭・窒化物を再び
地鉄中に溶解する必要があシ、このため実際には110
0℃〜1300℃と言う高温での加熱が行われる。そこ
で本発明者らは、前記の固溶Nbi直接使用することに
よシ、鋼片の高温加熱工程を省略することを試み念。即
ち鋼片を冷却する際、それらの抜熱社表面から行われる
から当然鋼片の表面側から内部にかけて温度勾配が生じ
るが、表面から1/4 t (t :鋼片厚み)迄の部
位が400〜850℃の間の温度に達した時点で冷却を
中止し、加熱炉に装入して、再び900℃から1050
℃の間に加熱後均熱することによって引続き行われる圧
延、水冷、焼戻しを行った鋼材の厚み方向の強度の差を
解消させることが可能であることを見出した。
Therefore, when a steel billet is once cooled to room temperature as in the past, Nb in the steel is precipitated as carbon and nitrides, so when it is heated and rolled again, this Nb carbon and nitrides are It is necessary to dissolve it into the base steel again, so in reality it is 110
Heating is performed at a high temperature of 0°C to 1300°C. Therefore, the present inventors attempted to omit the high-temperature heating process of the steel billet by directly using the solid solution Nbi. In other words, when cooling a steel billet, heat is removed from the surface of the billet, so naturally a temperature gradient occurs from the surface side to the inside of the billet. When the temperature reaches between 400 and 850°C, cooling is stopped, the heating furnace is charged, and the temperature is heated again from 900°C to 1050°C.
It has been found that it is possible to eliminate the difference in strength in the thickness direction of steel materials that have been subsequently rolled, water-cooled, and tempered by soaking the steel materials after heating them to a temperature of .degree.

即ち、前述したように、水冷後のNbは、焼戻し時K 
Nb炭・窒化物として析出し、析出硬化の作用を提供せ
しめる。−万、厚手断面鋼材を水冷する際、抜熱は鋼材
の表面から行われるため、断面方向の水冷冷却速度は異
なり、表面附近は冷却速度が大きく、中心付近のそれは
小さい。従って水冷後の断面硬さは大きく異なって鋼材
表面と中心では強度的に大きな差異を生ずる。焼戻し後
、この差異は或糧度解消はするものの依然として残存し
、結果的に断面方向に強度差のついた鋼材となる。
That is, as mentioned above, Nb after water cooling is K during tempering.
Nb precipitates as carbon/nitride and provides precipitation hardening action. - When water-cooling a thick cross-section steel material, heat is removed from the surface of the steel material, so the water-cooling rate in the cross-sectional direction is different, with the cooling rate being high near the surface and low near the center. Therefore, the cross-sectional hardness after water cooling differs greatly, resulting in a large difference in strength between the surface and center of the steel material. After tempering, this difference disappears to some extent, but it still remains, resulting in a steel material with a difference in strength in the cross-sectional direction.

これに対し、前述したように鋼片の冷却を一旦中止した
後、再加熱するのは、この断面方向の強度差を解消させ
る次めの手段である。つまり、鋼片の表面側/fi40
0〜850℃の温度に冷却し、鋼中の冶がNbの炭・窒
化物として析出するが、その中央部は温度が高−念めに
未だ固溶状態にある。
On the other hand, as mentioned above, reheating the steel billet after once cooling it is the next means to eliminate this difference in strength in the cross-sectional direction. In other words, the surface side of the steel piece/fi40
When cooled to a temperature of 0 to 850°C, the metal in the steel precipitates as Nb carbon/nitride, but the central part is still in a solid solution state due to the high temperature.

この状態で冷却を一旦中止させ再び900〜1050℃
に加熱すると、鋼片中央部のNbは固溶状態が継続され
、その後の圧延時未再結晶域圧延を有効にならしめる効
果があり、引続く水冷時に含有合金元素量に応じて細粒
フェライト、細粒ベイナイト、細粒マルテンサイト等の
組織になるが殆んどのNb Fi固溶したまま常温に達
する。
In this state, stop cooling once and return to 900-1050℃.
When heated to a temperature of The structure becomes fine-grained bainite, fine-grained martensite, etc., but it reaches room temperature with most of the Nb-Fi remaining in solid solution.

一方、鋼片表面側に析出し念Nb炭・窒化物は900〜
1050℃での再加熱でも殆んど溶解せず大部分が溶は
残ってしまう。従って引続く圧延に際して未再結晶域圧
延に対する効果41#4材中央部よυ少く、水冷後、N
b炭・窒化物は析出し之ままの状態であるため、その後
焼戻しを行った際の析出硬化現象も鋼材中央部より著る
しく小さいものとなる。
On the other hand, the amount of Nb carbon/nitride precipitated on the surface side of the steel piece is 900~
Even when reheated at 1050°C, almost no dissolution occurs and most of the solution remains. Therefore, during subsequent rolling, the effect on rolling in the non-recrystallized area is less υ than in the center of #4 material, and after water cooling, N
Since the carbon and nitrides remain in the precipitated state, the precipitation hardening phenomenon during subsequent tempering is also significantly smaller than in the central part of the steel material.

この鋼材断面方向の析出硬化現象の量的差異が前述した
水冷後の断面方向の焼入まま状態における強度差を相殺
する形となり、結果的に鋼材断面方向の強度差の小さい
鋼材を製造することが可能となる。
This quantitative difference in the precipitation hardening phenomenon in the cross-sectional direction of the steel material offsets the above-mentioned strength difference in the as-quenched state in the cross-sectional direction after water cooling, and as a result, steel materials with small strength differences in the cross-sectional direction of the steel material can be manufactured. becomes possible.

(発明の構成・作用) 本発明は、以上の如き知見に基込てなされ九ものであっ
て、その要旨とする所は重Jl[でC0.04〜0.1
81 、810.351i以下、Mn 0.6〜1.8
 % 。
(Structure and operation of the invention) The present invention has been made based on the above knowledge, and its gist is that
81, 810.351i or less, Mn 0.6-1.8
%.

Nb 0.OO5〜0.04憾、 Total At0
.01〜0.081 、 N 0.0054以下を夫々
含有し、さらに必要によりB 0.0005〜0.01
5 俤、 Cu0.1〜1.5係、 N1 0.2〜1
.5 4  、  Cr  0.1 0〜0.5 96
  、  MO0.0 5〜0.6%  、  V0.
0 1〜0.0 54  、 7i  0.005〜0
.024 、 Ca0.0054以下、RIM 0.0
24以下の1種又は2種以上を含み残部がF’sおよび
不可避的不純物から成る鋼を鋳造又は分塊圧延後、得ら
れた鋼片をその表面から鋼片厚みの1/4迄の部位が4
00〜850℃の温度になる迄冷却し、次いで900〜
1050℃に加熱、均熱し念のち800〜920℃間で
の圧下量が204以上になる迄圧延し、次いで得られ念
鋼材の表面温度T(6)がT≧Tr−20になる時点で
水冷を開始し、鋼材表面の水冷後復熱温度が350℃以
下になる時点で水冷を停止し、鋼全体が常温となっtの
ち700℃以下の温度に加熱して焼戻すことt−特徴と
する降伏点42 kpfAm以上90 kgf/m2未
満の厚手断面の高靭性鋼材の製造法にある。
Nb0. OO5~0.04, Total At0
.. 01 to 0.081, N 0.0054 or less, and further contains B 0.0005 to 0.01 if necessary.
5, Cu0.1-1.5, N1 0.2-1
.. 5 4, Cr 0.1 0-0.5 96
, MO0.0 5-0.6%, V0.
0 1~0.0 54, 7i 0.005~0
.. 024, Ca 0.0054 or less, RIM 0.0
After casting or blooming a steel containing one or more of the following 24 or less and the remainder consisting of F's and unavoidable impurities, the obtained steel slab is cast from the surface to 1/4 of the thickness of the steel slab. is 4
Cool to a temperature of 00 to 850°C, then 900 to 850°C.
Heating to 1050℃, soaking, and then rolling at 800 to 920℃ until the reduction amount is 204 or more, and then water cooling when the surface temperature T (6) of the obtained steel material becomes T≧Tr-20. The water cooling is started, and the water cooling is stopped when the reheating temperature after water cooling on the steel surface becomes 350°C or less, and after the entire steel reaches room temperature, it is heated to a temperature of 700°C or less and tempered. The present invention relates to a method for producing a high toughness steel material with a thick cross section having a yield point of 42 kpfAm or more and less than 90 kgf/m2.

但しTr=910−310XC(@−80XMn(19
−20XCu(d−15XCr(d−55xNl(99
−80xMo(←35(t−80)+30t:鋼材の厚
み(朋)である。
However, Tr=910-310XC(@-80XMn(19
-20XCu(d-15XCr(d-55xNl(99
-80xMo(←35(t-80)+30t: Thickness of steel material.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

まず最初に本発明においては降伏点42ゆfA*2Ae
90 kgt/1paa未満の*t一対象とするもので
あるが、降伏点の下限t 42 kllfAal と定
め念のは本発明ではその対象鋼種の1つとして一般に水
冷後焼戻し処理を行うて製造する高張力鋼を含むからで
ある。即ち、前述したように構造用鋼として汎用性を持
たせるには靭性と同時に溶接性を保有することが必要で
あり、その念めには水冷して硬化組織とした後、Ae、
以下の温度で焼戻す所謂焼入焼戻し処理が一般に使用さ
れる。この場合降伏点の低い鋼はそれを構成する化学成
分も一般に低いから厚手断面の鋼でも水冷後硬化組織は
あまり生成せず従って断面方向の強度差は一般的に小さ
い。
First of all, in the present invention, the yield point is 42yufA*2Ae
*t of less than 90 kgt/1 paa, but the lower limit of yield point t 42 kllfAal is the target steel type in the present invention, which is generally produced by tempering after water cooling. This is because it includes tension steel. That is, as mentioned above, in order to have versatility as a structural steel, it is necessary to have both toughness and weldability.
A so-called quenching and tempering process is generally used, in which tempering is performed at the following temperatures: In this case, steel with a low yield point generally has a low chemical composition, so even in steel with a thick cross section, hardened structures do not form much after water cooling, so the difference in strength in the cross-sectional direction is generally small.

又、焼入焼戻しを行わなくても容易に強度を得ることは
可能である。降伏点f 421C17f/g以上と設定
したのはこの之めである。
Further, it is possible to easily obtain strength without quenching and tempering. This is why the yield point f was set at 421C17f/g or higher.

一方、降伏点の上限については、降伏点が高い場合厚手
断面の鋼材では、その強度確保上多くの合金元素の添加
量を必要とし、焼入後の硬化組織の生成は水冷冷却速度
による依存性が小さくなるような成分系を選択するため
むしろ断面方向の強度差は小さくなる。つまシ、本発明
による裏遣方法を特別に採用する必要はない。降伏点t
−90kl?f/m未満と設定したのはこのためである
On the other hand, regarding the upper limit of the yield point, if the yield point is high, steel with a thick cross section requires the addition of a large amount of alloying elements to ensure its strength, and the formation of a hardened structure after quenching depends on the water cooling rate. Since a component system is selected such that . However, it is not necessary to specifically adopt the lining method according to the present invention. yield point t
-90kl? This is why it is set to less than f/m.

又本発明においては厚手断面の鋼材を対象とするもので
あるが、これは前述の如く特に高靭性高張力tI4t−
製造するに際し、厚手断面の鋼材においては断面方向の
強度差が著るしく、又、水素に起因する内部欠陥が出易
いなどの欠点があることから、かかる問題点を解消する
ために特に厚手断面の鋼の改良を目的としたものである
。なお、厚みくついては特に規定するものではないが本
発明の対象となる降伏点を有する鋼材では通常断面方向
の強度差に現れ易いほぼ25fi以上の厚みのものが対
象となる。
In addition, the present invention is directed to steel materials with thick cross sections, and as mentioned above, this is particularly applicable to high toughness and high tensile strength tI4t-
When manufacturing steel materials with thick sections, there is a significant difference in strength in the cross-sectional direction, and internal defects due to hydrogen are likely to occur. The purpose is to improve steel. Although the thickness is not particularly specified, the steel materials having a yield point that are the object of the present invention are usually those with a thickness of about 25 fi or more, which tends to appear in the strength difference in the cross-sectional direction.

さらに、本発明の製造法においては、後述するように特
定の成分範囲に規定された鋼を溶製後、鋳造又は分塊圧
延全行なった後、後述する特定条件の製造手段により鋼
材とするものであるが、この場合の鋳造又は分塊圧延と
は、連続鋳造成いは目的とする鋼材の形状に応じて作ら
れたスラブ状又はプルーム状等の鋳型による単独鋳造、
又は普通造塊により得られた鋼塊を分塊圧延により鋼片
上製造する手段を意味し、これら連続鋳造により得られ
た鋳込みままの鋼片或いは必要に応じて減厚圧延した後
の鋼片、上記単独鋳造によシ得られた鋳込みままの鋳片
、或いは必要に応じて成る程度減厚圧延した後の鋼片又
は普通造塊によシ得られた鋼塊の分塊後の鋼片を高温ま
まで冷却することなく後述の製造手段により冷却の途中
で圧延を実施するものである。
Furthermore, in the manufacturing method of the present invention, after melting steel with a specific composition range as described below, casting or blooming is performed, and then steel material is produced by a manufacturing method under specific conditions as described below. However, casting or blooming in this case refers to continuous casting, individual casting using a slab-shaped or plume-shaped mold made according to the shape of the target steel material,
Or it means a means of manufacturing a steel ingot obtained by normal ingot making into a steel billet by blooming rolling, and the as-cast steel billet obtained by these continuous castings or the steel billet after being rolled to reduce the thickness as necessary, The as-cast slabs obtained by the above-mentioned single casting, or the slabs after rolling to reduce the thickness as required, or the slabs after blooming of the steel ingots obtained by normal ingot making. Rolling is carried out in the middle of cooling by the manufacturing means described later without cooling at a high temperature.

次に本発明の対象とする鋼の成分範囲の限定理由につい
て述べる。
Next, the reason for limiting the range of composition of steel targeted by the present invention will be described.

最初にCは焼入性および強度を確保するために必要な元
素であるが・0.041未満では含有量が低過ぎ、断面
厚みが比較的小さいものでも所期の強度を確保すること
が出来ない。一方、C含有量が0.is*’e超えると
耐溶接割れ性の劣化、溶接熱影響部の硬化が著るしくな
プ、靭性゛および耐応力腐食割れ性等の用途上必要とな
る特性の劣化を招く。し念がってCの含有量は0.04
〜0.181とする。
First, C is an element necessary to ensure hardenability and strength. If the content is less than 0.041, the content is too low, making it impossible to secure the desired strength even with a relatively small cross-sectional thickness. do not have. On the other hand, the C content is 0. Exceeding is*'e results in deterioration of weld cracking resistance, significant reduction in hardening of the weld heat affected zone, and deterioration of properties necessary for use such as toughness and stress corrosion cracking resistance. As a precaution, the C content is 0.04.
~0.181.

次にSiは高強度化に効果があるが、Slが多いと高張
力鋼の場合焼戻脆化感受性が大きくなり、切欠靭性が損
われる。したがって成程度の強度を確保し切欠靭性を低
下させないtめには上限全0.35俤とする・ またMnは焼入性の確保、および熱間加工時の割れ防止
、等のために必要であるが、1.8憾を超えると変態点
を下げ溶接時低温割れを生じ易くする。
Next, Si is effective in increasing the strength, but if the Si content is large, high tensile strength steel becomes susceptible to temper embrittlement, and notch toughness is impaired. Therefore, in order to ensure sufficient strength and not reduce notch toughness, the upper limit is set at 0.35 mm. Mn is also necessary to ensure hardenability and prevent cracking during hot working. However, if it exceeds 1.8, the transformation point will be lowered and cold cracking will easily occur during welding.

又0.64未満では焼入性の確保が困難であり、S含有
量との関係から熱間割れ防止上効果が少くなる。従って
0.6〜1.8係とする。
Moreover, if it is less than 0.64, it is difficult to ensure hardenability, and the effect in preventing hot cracking is reduced due to the relationship with the S content. Therefore, the ratio is set at 0.6 to 1.8.

さらにNbは前述の如く圧延に際しての細粒化効果と焼
戻し中の析出硬化のための主要元素 であるが、0.0
0!15’j未満の少量であると所期の効果が得られず
本発明の主旨にそわ毫い。一方、0.04鴫金超えても
上記効果は飽和的になり反面、溶接熱影響部や溶着鋼の
切欠靭性を低下させる要因になる。したがって適正Nb
量は0.005〜0.04係である。
Furthermore, as mentioned above, Nb is a main element for grain refining effect during rolling and precipitation hardening during tempering, but 0.0
If the amount is less than 0!15'j, the desired effect will not be obtained and the gist of the present invention will be violated. On the other hand, if it exceeds 0.04%, the above effect becomes saturated, but on the other hand, it becomes a factor that reduces the weld heat affected zone and the notch toughness of the welded steel. Therefore, appropriate Nb
The amount is between 0.005 and 0.04.

次にktは鋼中の酸素と結びついて精錬脱酸時At20
3として酸素の除去の他鋼中のNと結びついてAtNと
なシ組織の微細化に寄与するのでTotal 0.01
幅以上必要であるが、添加量がTotal 0.084
を超えると却って粒の粗大化とAt203等の介在物の
量の増大を招き、特に高張力鋼では靭性を阻害する。し
たがってkA含有11 f Total Atとして0
,01〜0.08壬とした。
Next, kt combines with oxygen in the steel and becomes At20 during refining and deoxidation.
3, in addition to removing oxygen, it combines with N in the steel to form AtN and contributes to the refinement of the structure, so the total is 0.01
It is necessary to exceed the width, but the total amount added is 0.084
Exceeding this results in coarsening of grains and an increase in the amount of inclusions such as At203, which impairs toughness, especially in high-strength steels. Therefore, kA containing 11 f Total At is 0
,01 to 0.08 mm.

また、Nは本発明による輿造法の場合、高温状態での鋼
片では、それぞれ単独に固溶しているBとNが鋼片の冷
却、冷却途中停止、再加熱、圧延と言う過程を通る間に
RNとなりBの焼入性を損わしめ、又一般的に溶接熱影
響部の靭性を劣化せしめるために0.005係以下とし
た。
In addition, in the case of the steel making method according to the present invention, B and N, which are individually dissolved in solid solution in the steel billet at high temperature, undergo the processes of cooling the billet, stopping mid-cooling, reheating, and rolling. The coefficient is set to 0.005 or less because it becomes RN during passing and impairs the hardenability of B, and generally deteriorates the toughness of the weld heat affected zone.

以上が基本的な元素であるが、さらに本発明の対象とす
る鋼には前記以外の元素としてB r Cu INi 
l Cr l lil[o l V I Tl # C
a l REMt−添加させることによシ、さらに鋼材
の断面厚みに応じ焼入性全確保して強度、靭性を向上せ
しめることが出来る。
The above are the basic elements, but the steel that is the object of the present invention further contains B r Cu INi as an element other than the above.
l Cr l lil[o l V I Tl #C
By adding REMt-, it is possible to further ensure complete hardenability and improve strength and toughness depending on the cross-sectional thickness of the steel material.

先ずBは焼入性向上効果があるが0.0005 ’1未
満ではその効果が少(0,OO15%超では溶接熱影響
部等にB化合物が生じ靭性を著るしく劣化させる。しか
しB量が0.0005〜0.0015憾の範囲内であれ
ばNbとの相乗効果を発揮し、靭性劣化を伴わない焼入
性向上効果がある。
First of all, B has the effect of improving hardenability, but if it is less than 0.0005'1, the effect is small (if it exceeds 0.000015%, B compounds will form in the weld heat affected zone, etc., and the toughness will deteriorate significantly. However, the amount of B If it is within the range of 0.0005 to 0.0015, it exhibits a synergistic effect with Nb and has the effect of improving hardenability without deteriorating toughness.

Cuは靭性を劣化させずに強度を上昇させ、0.1憾以
上特に1憾以上の添加により焼戻し時にCuの析出硬化
も加わり【強度上昇に著るしく効果的である。しかし1
.51 t−超える添加量になれば溶接する際溶接部に
熱間割れを出易くする。
Cu increases strength without deteriorating toughness, and addition of 0.1 or more, especially 1 or more, also adds precipitation hardening of Cu during tempering [remarkably effective in increasing strength]. But 1
.. If the amount added exceeds 51 t-, hot cracking will easily occur in the welded part during welding.

Nlは圧延後の焼入処理により下部ベイナイトやマルテ
ンサイト組織を得やすくし又靭性向上に効果があり、特
に断面厚みの大きい鋼材の場合断面中央部の焼入後の強
度全確保する上で重要なので0.21以上含有せしめ石
ことか有効である。しかしながらNlヲ多量に添加して
もその効果が飽和するので上限k 1.5 %にとどめ
た。
Nl makes it easier to obtain lower bainite and martensitic structures during post-rolling quenching treatment, and is effective in improving toughness, and is particularly important for ensuring full strength after quenching in the center of the cross-section in the case of steel materials with large cross-sectional thicknesses. Therefore, stones containing 0.21 or more are effective. However, even if a large amount of Nl is added, the effect will be saturated, so the upper limit of k was kept at 1.5%.

Crは焼入性および強度を確保する上で0.11以上含
有せしめることが有効である。一方0.54を超えると
炭化物が増加し靭性を劣化させる。したがって0.1〜
0.51とする。
It is effective to contain 0.11 or more Cr in order to ensure hardenability and strength. On the other hand, when it exceeds 0.54, carbides increase and toughness deteriorates. Therefore 0.1~
It is set to 0.51.

Mo1l−i降伏点全確保し、また焼戻脆化を防止する
ために添加することが有効で、あるが0.051未満で
はその効果が少(,0,6俤’i超えると熱影響部の低
温靭性を劣化させる。
It is effective to add Mo1l-i to ensure the full yield point and to prevent temper embrittlement, but if it is less than 0.051, the effect is small (if it exceeds 0.6'i, the heat affected zone deteriorates the low-temperature toughness of

■はその析出硬化作用のため焼戻軟化を抑制し強度上昇
に有効であるが0.014未満ではその効果が少(0,
054’i超えると靭性を劣化させ、さらに溶接割れの
発生を助長する。
■ is effective in suppressing temper softening and increasing strength due to its precipitation hardening effect, but if it is less than 0.014, the effect is small (0,
Exceeding 054'i deteriorates toughness and further promotes the occurrence of weld cracks.

T1はNt−固定しBft有効化させる性質を持つため
0. o o s s以上添加することが有効である。
Since T1 has the property of fixing Nt and activating Bft, it is set to 0. It is effective to add ooss or more.

しかしながらTIが0.01%を超えると地鉄中に固溶
することがらυ著るしく靭性を劣化させる。
However, if TI exceeds 0.01%, it will form a solid solution in the steel base, resulting in a significant deterioration of toughness.

C&又はREVは硫化物の形態制御を行い、圧延方向に
直角な方向の切欠靭性を向上させるため添加されること
が有効であるがそれぞれQ、 005 %、および0.
021を超えると表面および内部欠陥が多発する。なお
、本発明においてREMとは原子番号57〜71の希土
類元素およびYt指す。
It is effective to add C& or REV to control the morphology of sulfides and improve notch toughness in the direction perpendicular to the rolling direction.
When it exceeds 021, surface and internal defects occur frequently. In the present invention, REM refers to rare earth elements having an atomic number of 57 to 71 and Yt.

次に本発明における製造条件の限定についてその理由全
説明する。
Next, the reasons for limiting the manufacturing conditions in the present invention will be fully explained.

先ず発明明和おいては鋼片を常温迄冷却することなく、
その表面から鋼片厚みの174迄の部位が400〜85
0℃の温°度となる迄冷却するものであるが冷却部位金
鋼片表面から鋼片厚みの1/4迄とし念のは、通常渠造
後の鋼材断面で表面か゛ら1/4迄の強度分布が異常に
大きいからである。この場合の冷却は自然放冷のままか
或いは鋼片の周辺から均等く水冷を行ってもよいが鋼片
厚みが大きい場合は鋼片表面側と中央部の温度差をつけ
るため水冷による強制冷却が好ましす。
First, the invention Meiwa developed without cooling the steel billet to room temperature.
The area from the surface to the thickness of the steel slab, 174, is 400 to 85
The cooling part is to be cooled until the temperature reaches 0℃, but the cooled area is from the surface of the steel piece to 1/4 of the thickness of the steel piece. This is because the intensity distribution is abnormally large. In this case, cooling may be done naturally or by water cooling evenly from the periphery of the steel billet, but if the billet is thick, forced cooling by water cooling may be used to create a temperature difference between the surface side and the center of the billet. is preferred.

また温度範囲1400〜850℃の間としたのは、この
温度範囲において、鋼中に溶解していたNbがNb炭・
窒化物として析出するからで6りて850℃超ではその
析出度合が小さく適正な水冷前の断面方向のNb炭・窒
化物の温度分布にならず目的とする断面方向の強度の均
等な鋼材が製造出来ない。また400℃未満に冷却され
れば一片全体の温度が低下して鋼片中央部にもNb炭・
窒化物の過度の析出が起シ目的とする高強度が得られな
いためである。
The reason why the temperature range is between 1400 and 850°C is that in this temperature range, the Nb dissolved in the steel becomes Nb charcoal.
Because it precipitates as nitrides, the degree of precipitation is small at temperatures above 850°C, and the temperature distribution of Nb carbon and nitrides in the cross-sectional direction before water cooling does not result in the desired temperature distribution, resulting in a steel material with uniform strength in the cross-sectional direction. It cannot be manufactured. Furthermore, if the steel piece is cooled to less than 400°C, the temperature of the whole piece will drop and Nb charcoal will be formed in the center of the piece.
This is because the desired high strength cannot be obtained due to excessive precipitation of nitrides.

なお、前述の部位がかかる温度範囲に達しているか否か
については鋼片表面および鋼片厚みの174の位置迄穿
孔した鋼片の熱電対による測温或いは熱伝達係数による
計算結果により判定される。
In addition, whether or not the above-mentioned part has reached the above temperature range is determined by temperature measurement using a thermocouple on the surface of the steel piece and the steel piece drilled up to position 174 of the thickness of the steel piece, or by calculation results based on the heat transfer coefficient. .

次に鋼片の再加熱均熱温度を900〜1050℃にした
のu、900℃未満では未析出Nbの析出が引続いて起
り、後の焼戻時の析出硬化が減少し強度向上効果が失わ
れるからであり、1050℃超では一旦析出したNb炭
・窒化物が再び溶解して目的とする鋼材が得られないた
めである。
Next, the reheating and soaking temperature of the steel slab was set to 900 to 1050°C.If the temperature is lower than 900°C, precipitation of unprecipitated Nb will continue to occur, reducing precipitation hardening during subsequent tempering and reducing the strength improvement effect. This is because, if the temperature exceeds 1050°C, the once precipitated Nb carbon/nitride will melt again, making it impossible to obtain the desired steel material.

次に本発明におい【は800〜920℃間の温度におけ
る圧下量が20俤以上になる迄圧延を行うものでおるが
、これはNbを含有する鋼の未再結晶域での圧下全充分
に行うためで920℃超の温度又は201未満の圧下量
では制御圧延としての効果が少く靭性の良好な鋼材が得
られないからである。
Next, in the present invention, rolling is carried out at a temperature between 800 and 920°C until the reduction amount is 20 or more, which means that the reduction in the non-recrystallized region of the Nb-containing steel is sufficient. This is because if the temperature exceeds 920° C. or the reduction amount is less than 201°C, the effect of controlled rolling will be small and a steel material with good toughness will not be obtained.

一方800℃未満では成分によって4一部Ar5点を下
根ることがあシ引続いて水冷する水冷開始温度の下限界
を切る可能性を生ずるからである。
On the other hand, if the temperature is lower than 800° C., some of the Ar points may be lowered depending on the components, and there is a possibility that the lower limit of the water cooling starting temperature for subsequent water cooling may be exceeded.

なお圧下量の上限は特に定めないが本発明の目的とする
鋼材の所期の靭性を得るためにはほぼ70憾程度迄が適
当である。
There is no particular upper limit to the amount of reduction, but in order to obtain the desired toughness of the steel material, which is the object of the present invention, an upper limit of approximately 70 degrees is appropriate.

さらに水冷開始温度を鋼材表面温度T (GがT≧Tr
−211 但しTr =910−310 XC(’#−80XMn
(’1−20 XCu(la−15XCr(41−55
XNI(@80XMo(4)+35(t−8)+30t
:鋼材厚み(m幻 になる時点と定めたのは、この温度未満の温度からの水
冷では、鋼材内部迄オーステナイト→フェライト変態開
始温度、つまり真のA r 3点よりも低い温度になる
可能性があシ、水冷による硬化組織を有効に得ることが
出来なくなるからである。
Furthermore, the water cooling start temperature is changed to the steel surface temperature T (G is T≧Tr
-211 However, Tr =910-310 XC('#-80XMn
('1-20XCu(la-15XCr(41-55
XNI(@80XMo(4)+35(t-8)+30t
: Steel material thickness (m) The point at which the illusion occurs is determined because water cooling from a temperature below this temperature may result in a temperature lower than the austenite → ferrite transformation start temperature to the inside of the steel, that is, the true A r 3 point. This is because it becomes impossible to effectively obtain a hardened structure by water cooling.

なお、ここでTrとはオーステナイト→7エライト変態
開始温度をやや上根る温度を表わすものであって鋼材の
化学組成、板厚の大きさによって変化する冷却速度など
により異なる値をとるものである。即ち、前記のTrt
−表わす式に見られる如く、Tr値はCe Mn + 
Cu t Cr + Nl bよびM(Iの重量係含有
量および鋼材厚みt(am)に関する各項をMするもの
であって、大内氏らが先に鉄と領Vot。
Note that Tr here represents a temperature slightly above the austenite → 7-elite transformation start temperature, and takes a different value depending on the chemical composition of the steel material, the cooling rate that changes depending on the plate thickness, etc. . That is, the above Trt
-As seen in the formula, the Tr value is Ce Mn +
The terms related to the weight content of Cu t Cr + Nl b and M (I and the steel thickness t (am)) were calculated by Mr. Ouchi and others first.

67(1981) A 1の143頁において提示した
Ar sの計算式に30℃を和したものである。この3
0’Cの意味するところは計算式に含まれてhない制御
圧延時のB等の影響によるA r s点の上昇や工場に
おける生産時の余裕代を含めたもので水冷開始温度が鋼
材の中心で充分真のAr、点上上の温度を確保するため
のものである。
67 (1981) A1, page 143, by adding 30°C to the calculation formula for Ars. This 3
0'C means an increase in the A r s point due to the influence of B during controlled rolling, which is not included in the calculation formula, and allowances during production at the factory, and the water cooling start temperature is the temperature of the steel material. This is to ensure a sufficiently true Ar at the center and a temperature above the point.

また、水冷後復熱した後の鋼材表面温度が350℃以下
になる時点で水冷を停止するのは本発明のように鋳造後
常温に冷却することなく再加熱、圧延後水冷を行う場合
は水素による内部欠陥が生じることがあるために比較的
高い温度で水冷を止める必要があるからである。この場
合の水冷停止温度は350℃を超えると焼入変態に影s
rおよぼし強度低下につながる。かかる理由によ113
50℃以下に設定した。なお、復熱温度が350℃以下
であるか否か忙ついては鋼材の厚みと水冷する場合の水
冷開始温度、水量密度、等の画数として水冷時間の設定
が可能であり、測温は水冷後の表(2)の時間経過によ
る変化をとればよい口最後和発明明くおいては、前述の
如く冷却を行う念後700℃以下の温度に焼戻すことで
あるが、これは硬化組織の軟化とそれに付随する高靭化
および特に鋼中央部のNb炭・窒化物の析出による強化
を目的とするものであシ、工場における生産時の管理限
界上焼戻し温度がA e 4点を部分的にでも超えない
ようにするためく余裕をみて700℃以下とした。
In addition, water cooling is stopped when the surface temperature of the steel material after water cooling and reheating becomes 350°C or less, as in the present invention, when reheating is performed without cooling to room temperature after casting, and water cooling is performed after rolling. This is because water cooling must be stopped at a relatively high temperature because internal defects may occur. In this case, if the water cooling stop temperature exceeds 350℃, it will affect the quenching transformation.
r and leads to a decrease in strength. For such reasons, 113
The temperature was set at 50°C or lower. In addition, when determining whether the recuperation temperature is below 350℃, the water cooling time can be set based on the thickness of the steel material, the water cooling start temperature, water volume density, etc., and the temperature can be measured after water cooling. In the present invention, it is necessary to take the changes over time shown in Table (2).In the present invention, tempering is performed to a temperature of 700°C or less after cooling as described above, but this is because the hardened structure is softened. The purpose is to increase the toughness associated with this, and to strengthen the steel by the precipitation of Nb carbon and nitrides in the central part of the steel. However, we set the temperature below 700 degrees Celsius to ensure that it did not exceed that temperature.

次に本発明の効果を実施例につきさらに具体的に説明す
る。
Next, the effects of the present invention will be explained in more detail with reference to Examples.

実施例 第1表に示す化学成分を有する鋼を溶製し、同表に示す
鋳造条件で連続鋳造、単独鋼片鋳造、又は普通造塊−分
塊圧延を行い、連続鋳造の場合は鋳造11又は減厚圧延
徒歩くとも1100℃に加熱されたままの状態から又鋼
塊−分塊法の場合は分塊圧延後の状態からそれぞれ冷却
し、第2表に示す製造条件に沿った製造を行い、各稽の
厚手断面の鋼材からその断面中心と表層部から引張試験
片と20Vノ、チ衝撃試験片を採取し試験を行った。こ
れらの試験結果をlK2表く示す。又第3表は水冷開始
温度設定の74ラメータTrt参考に示す。
Example Steel having the chemical composition shown in Table 1 is melted and subjected to continuous casting, single billet casting, or normal ingot-blowing rolling under the casting conditions shown in Table 1. In the case of continuous casting, casting 11 is performed. Or, in the case of the steel ingot-blooming method, the steel is cooled from the state heated to at least 1,100°C during thinning rolling, or from the state after blooming, and manufactured according to the manufacturing conditions shown in Table 2. A tensile test piece and a 20V and 20V impact test piece were taken from the center of the cross section and the surface layer of each thick cross-section steel material and tested. The results of these tests are shown in the lK2 table. Also, Table 3 shows 74 lameter Trt for water cooling start temperature setting for reference.

これらによると、本発明による鋼材Al〜24はいずれ
も断面方向の強度差が小さく、強度、靭性も満足すべき
ものとなっていることがわかる。
According to these results, it can be seen that the steel materials Al to 24 according to the present invention all have small differences in strength in the cross-sectional direction, and have satisfactory strength and toughness.

これに対し、化学成分或いは鋳造条件の外れた鋼種扁3
0〜43は断面方向の強度差が大であシ、また本発明に
規定する化学成分を外れたもののうち鋼種l625〜2
7及び厘29は強度不足、鋼種A28は靭性が劣ってお
シ、さらに本発明に規定する製造条件を外れたもののう
ち鋼種墓42゜44は強度不足、屋45は靭性が劣るも
のとなっており鋼片の冷却途中で冷却を一旦停止する効
果や、Nbの炭・窒化物の析出硬化を充gK利用し念効
来が発揮された本発明との差が明瞭に現れている。
On the other hand, steel type 3 with different chemical composition or casting conditions
0 to 43 has a large difference in strength in the cross-sectional direction, and steel types 1625 to 2 are those that do not meet the chemical composition specified in the present invention.
Steel grades 7 and 29 lack strength, steel grade A28 has poor toughness, and among those that deviate from the manufacturing conditions stipulated in the present invention, steel grade 42 and 44 lack strength, and steel grade 45 has poor toughness. There is a clear difference from the present invention, which utilizes the effect of temporarily stopping cooling during the cooling of the steel slab and the precipitation hardening of Nb carbon and nitride to achieve the desired effect.

又、本発明の限定条件を一部逸脱した条件を採用した場
合、同一の成分の鋼片を限定条件内で鋳造した場合に比
していずれも所期の目的を達成した鋼材になっていない
。又、本発明に規定する化学成分を逸脱する化学成分を
有する鋼について限定条件で製造した場合も同様である
Furthermore, if conditions that partially deviate from the limiting conditions of the present invention are adopted, the resulting steel material will not achieve the intended purpose compared to when steel pieces with the same composition are cast within the limiting conditions. . Further, the same applies when steel having a chemical composition that deviates from the chemical composition specified in the present invention is manufactured under limited conditions.

即ち本発明において対象としている鋼は、本発明で規定
する条件に適合する場合にのみ鋳造し得ることが明らか
である。
That is, it is clear that the steel targeted by the present invention can be cast only if it meets the conditions specified by the present invention.

(発明の効果) 以上の実施例からも明らかな如く、本発明によれば従来
法により得られた鋼と比べて靭性および溶接性忙すぐれ
しかも断面方向を含む強度の差が小さい厚手断面の鋼材
を従来法よシも省略した工程によシ得ることが可能とな
るものであり、産業上の効果は極めて顕著なものがある
(Effects of the Invention) As is clear from the above examples, according to the present invention, the steel material has a thick cross section, which has superior toughness and weldability, and has a smaller difference in strength including the cross-sectional direction, compared to steel obtained by conventional methods. can be obtained by a process omitted from conventional methods, and the industrial effects are extremely significant.

Claims (1)

【特許請求の範囲】 重量%でC0.04〜0.18%、Si0.35%以下
、Mn0.6〜1.8%、Nb0.005〜0.04%
、Total Al0.01〜0.08%、N0.00
5%以下を夫夫含有し、さらに必要によりB0.000
5〜0.0015%、Cu0.1〜1.5%、Ni0.
2〜1.5%、Cr0.10〜0.5%、Mo0.05
〜0.6%、V0.01〜0.05%、Ti0.005
〜0.02%、Ca0.005%以下、REM0.02
%以下の1種又は2種以上を含み、残部がFeおよび不
可避的不純物から成る鋼を鋳造又は分塊圧延後、得られ
た鋼片をその表面から鋼片厚の1/4迄の部位が400
〜850℃の温度になる迄冷却し、次いで900〜10
50℃に加熱、均熱したのち、800〜920℃間での
圧下量が20%以上になる迄圧延し、次いで得られた鋼
材の表面温度T(℃)がT≧Tr−20になる時点で水
冷を開始し鋼材表面の水冷後復熱温度が350℃以下に
なる時点で水冷を停止し、その後700℃以下の温度に
加熱して焼戻すことを特徴とする降伏点42kgf/m
m^2以上90kgf/mm^2未満の厚手断面の高靭
性鋼材の製造法。 但しTr=910−310×C(%)−80×Mn(%
)−20×Cu(%)−15×Cr(%)−55×Ni
(%)−80×Mo(%)+35(t−8)+30t;
鋼材厚み(mm)
[Claims] C0.04 to 0.18%, Si 0.35% or less, Mn 0.6 to 1.8%, Nb 0.005 to 0.04% by weight
, Total Al0.01-0.08%, N0.00
Contains 5% or less, and if necessary, B0.000
5-0.0015%, Cu0.1-1.5%, Ni0.
2-1.5%, Cr0.10-0.5%, Mo0.05
~0.6%, V0.01~0.05%, Ti0.005
~0.02%, Ca0.005% or less, REM0.02
After casting or blooming steel containing one or more of the following % or less, with the remainder consisting of Fe and unavoidable impurities, the obtained steel slab is treated so that the area from the surface to 1/4 of the thickness of the slab is 400
Cool to a temperature of ~850°C, then cool to a temperature of 900-10°C.
After heating to 50°C and soaking, rolling at 800 to 920°C until the reduction amount is 20% or more, and then the point at which the surface temperature T (°C) of the obtained steel material becomes T≧Tr-20. A yield point of 42 kgf/m characterized by starting water cooling at , stopping water cooling when the recuperation temperature of the steel surface after water cooling becomes 350°C or less, and then heating and tempering to a temperature of 700°C or less.
A method for manufacturing a high toughness steel material with a thick cross section of m^2 or more and less than 90 kgf/mm^2. However, Tr=910-310×C(%)-80×Mn(%
)-20xCu(%)-15xCr(%)-55xNi
(%)-80×Mo(%)+35(t-8)+30t;
Steel thickness (mm)
JP25977184A 1984-12-08 1984-12-08 Manufacture of high toughness steel material having thick section and yield point of 42-<90kgf/mm2 Pending JPS61136624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25977184A JPS61136624A (en) 1984-12-08 1984-12-08 Manufacture of high toughness steel material having thick section and yield point of 42-<90kgf/mm2

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25977184A JPS61136624A (en) 1984-12-08 1984-12-08 Manufacture of high toughness steel material having thick section and yield point of 42-<90kgf/mm2

Publications (1)

Publication Number Publication Date
JPS61136624A true JPS61136624A (en) 1986-06-24

Family

ID=17338738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25977184A Pending JPS61136624A (en) 1984-12-08 1984-12-08 Manufacture of high toughness steel material having thick section and yield point of 42-<90kgf/mm2

Country Status (1)

Country Link
JP (1) JPS61136624A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04297522A (en) * 1990-10-01 1992-10-21 Sumitomo Metal Ind Ltd Production of ultrahigh tensile strength steel for construction use
US5458704A (en) * 1992-07-21 1995-10-17 Thyssen Stahl Ag Process for the production of thick armour plates
CN103602891A (en) * 2013-10-22 2014-02-26 内蒙古包钢钢联股份有限公司 High-toughness steel plate with yield strength at 460 MPa grade and production method thereof
CN104018089A (en) * 2014-05-23 2014-09-03 内蒙古包钢钢联股份有限公司 High-strength high-toughness steel plate with yield strength 890Mpa grade and method for producing same
CN111926234A (en) * 2020-08-12 2020-11-13 宝武集团鄂城钢铁有限公司 Production method for producing super-thick high-strength steel plate for building with excellent thickness directivity based on continuous casting billet single frame

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04297522A (en) * 1990-10-01 1992-10-21 Sumitomo Metal Ind Ltd Production of ultrahigh tensile strength steel for construction use
US5458704A (en) * 1992-07-21 1995-10-17 Thyssen Stahl Ag Process for the production of thick armour plates
CN103602891A (en) * 2013-10-22 2014-02-26 内蒙古包钢钢联股份有限公司 High-toughness steel plate with yield strength at 460 MPa grade and production method thereof
CN104018089A (en) * 2014-05-23 2014-09-03 内蒙古包钢钢联股份有限公司 High-strength high-toughness steel plate with yield strength 890Mpa grade and method for producing same
CN111926234A (en) * 2020-08-12 2020-11-13 宝武集团鄂城钢铁有限公司 Production method for producing super-thick high-strength steel plate for building with excellent thickness directivity based on continuous casting billet single frame

Similar Documents

Publication Publication Date Title
EP1777315B1 (en) Steel for welded structure excellent in low temperature toughness of heat affected zone of welded part, and method for production thereof
KR101222724B1 (en) Method of producing high-strength steel plates with excellent ductility and plates thus produced
EP2360283B1 (en) PROCESS FOR PRODUCTION OF 780MPa-GRADE HIGH-TENSILE-STRENGTH STEEL PLATES EXCELLENT IN LOW-TEMPERATURE TOUGHNESS
KR101848876B1 (en) Multi-phase steel, cold-rolled flat product which is produced from a multi-phase steel of this type, and method for producing it
JP6700400B2 (en) Steel plate for low temperature pressure vessel having excellent PWHT resistance and method for producing the same
JPH10509768A (en) High strength secondary hardened steel with excellent toughness and weldability
KR20140129365A (en) Low density steel with good stamping capability
JP7411072B2 (en) High-strength, extra-thick steel material with excellent low-temperature impact toughness and method for producing the same
JP4207334B2 (en) High-strength steel sheet with excellent weldability and stress corrosion cracking resistance and method for producing the same
CN1989265A (en) Steel for welded structures excellent in low temperature toughness of weld heat affected zone and method of production of same
JP4507669B2 (en) Manufacturing method of low yield ratio steel for low temperature with excellent weld toughness
JP3879440B2 (en) Manufacturing method of high strength cold-rolled steel sheet
JP2003129134A (en) Method for manufacturing high-strength steel sheet superior in low-temperature toughness
JPS61136624A (en) Manufacture of high toughness steel material having thick section and yield point of 42-&lt;90kgf/mm2
JPS6167717A (en) Manufacture of high tension steel plate having superior strength and toughness in its weld heat-affected zone
KR101149184B1 (en) METHOD OF MANUFACTURING THE HIGH STRENGTH STRUCTURAL STEEL OF TENSILE STRENGTH OF 750MPa GRADE AND HIGH STRENGTH AND THE STEEL USING THEREOF
JP7439241B2 (en) Steel material with excellent strength and low-temperature impact toughness and its manufacturing method
JPS6156268A (en) High toughness and high tensile steel and its manufacture
KR970009089B1 (en) Method for manufacturing a hot rolled steel sheet
JPH04358026A (en) Production of seamless low alloy steel tube having fine-grained structure
JPS62158817A (en) Manufacture of thick steel plate having high strength and high toughness
JPH03223420A (en) Production of high strength steel
JPH06145787A (en) Production of high tensile strength steel excellent in weldability
JPS6196030A (en) Manufacture of high strength and high toughness hot rolled steel plate having superior resistance to hydrogen induced cracking and stress corrosion cracking
JP2626421B2 (en) Manufacturing method of high strength steel with excellent weldability