JPH04297522A - Production of ultrahigh tensile strength steel for construction use - Google Patents

Production of ultrahigh tensile strength steel for construction use

Info

Publication number
JPH04297522A
JPH04297522A JP14598291A JP14598291A JPH04297522A JP H04297522 A JPH04297522 A JP H04297522A JP 14598291 A JP14598291 A JP 14598291A JP 14598291 A JP14598291 A JP 14598291A JP H04297522 A JPH04297522 A JP H04297522A
Authority
JP
Japan
Prior art keywords
steel
tensile strength
temperature
present
strength steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14598291A
Other languages
Japanese (ja)
Inventor
Mitsuo Akasaka
赤坂 光男
Ryuji Ogata
緒方 龍二
Hiroshi Iki
壱岐 浩
Akira Tamoto
田元 明
Kazushi Onishi
一志 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP14598291A priority Critical patent/JPH04297522A/en
Publication of JPH04297522A publication Critical patent/JPH04297522A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce an ultrahigh tensile strength steel for construction use in which a yield stress of >=95kgf/mm<2> is secured and which has <=95% yield ratio and >=15% uniform elongation. CONSTITUTION:A slab of a steel having a composition consisting of, by weight, 0.07-0.20% C, <=0.25% Si, 0.25-1.00% Mn, 0.20-0.40% Cu, 0.5-1.5% Ni, 0.40-0.70% Cr, 0.30-0.60% Mo, 0.010-0.030% Nb, 0.010-0.050% V, 0.015-0.060% sol.Al, <=0.0070% N, and the balance Fe with inevitable impurities is heated up to 1000-1150 deg.C, hot-rolled at 700-800 deg.C finishing temp., and then subjected, after hot rolling, to hardening at 840-900 deg.C and to tempering treatment at a temp. not higher than the Ac1 temp.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、高張力鋼、特に構造物
の耐震構造を考慮した建築用超高張力鋼の製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing high-strength steel, particularly ultra-high-strength steel for construction in consideration of earthquake-resistant structures.

【0002】0002

【従来の技術】従来より例えば降伏応力95kgf/m
m2 以上の超高張力鋼としては、幾つか既に提案され
ている。
[Prior Art] Conventionally, for example, the yield stress is 95 kgf/m.
Several ultra-high tensile strength steels with a tensile strength of m2 or more have already been proposed.

【0003】例えば、特開昭56−9358号公報には
、C+Mo/8+V>0.26でCr>0.8 Moを
特徴とするNi−Cr−Mo−V系の降伏応力110k
gf/mm2以上の高強度高靱性鋼が開示されている。
For example, Japanese Patent Application Laid-Open No. 56-9358 discloses a yield stress of 110 k for a Ni-Cr-Mo-V system characterized by C+Mo/8+V>0.26 and Cr>0.8 Mo.
A high-strength, high-toughness steel with a gf/mm2 or higher is disclosed.

【0004】特開昭57−188655号公報には焼入
れ処理において広い範囲の冷却速度域で高強度高靱性が
得られるNi−Cr−Mo−V系の降伏応力110kg
f/mm2以上の超高張力鋼が開示されている。
JP-A-57-188655 discloses a Ni-Cr-Mo-V system with a yield stress of 110 kg, which can provide high strength and high toughness over a wide cooling rate range during quenching treatment.
Ultra-high tensile strength steels with f/mm2 or higher are disclosed.

【0005】さらに極低P、極低硫処理した高靱性の焼
入れ、焼戻し型含Ni鋼の製造法など多くの種類の製造
法が既に提案されている。
[0005] Furthermore, many types of manufacturing methods have already been proposed, including methods for manufacturing highly tough quenched and tempered Ni-containing steels treated with extremely low P and extremely low sulfur.

【0006】これらはいずれの製造法も靱性向上には効
果的である。しかしながら、建築用構造部材を考えた検
討はなされておらず、使用上問題である。
[0006] Any of these manufacturing methods is effective in improving toughness. However, no study has been conducted considering structural members for buildings, and this poses a problem in use.

【0007】建築構造物への適用では、耐震設計を考慮
する必要がある。特に日本のような地震国ではその点が
重要である。
[0007] When applied to building structures, it is necessary to consider seismic design. This is especially important in earthquake-prone countries like Japan.

【0008】通常一般的に、焼入れ焼戻しで製造される
鋼材は、降伏比が高く、応力勾配のある部材では塑性変
形能が劣り、耐震設計上問題がある。
Generally, steel materials manufactured by quenching and tempering have a high yield ratio and have poor plastic deformability in members with stress gradients, which poses problems in terms of seismic design.

【0009】応力勾配のある部材の塑性変形能を増大さ
せるには、図1に示すように応力−歪曲線の補エネルギ
ーAを大きくすることが重要である。補エネルギーAを
増大させるには、降伏比を小さくし一様伸びを大きくす
ることが重要である。
In order to increase the plastic deformability of a member with a stress gradient, it is important to increase the supplementary energy A of the stress-strain curve, as shown in FIG. In order to increase the supplementary energy A, it is important to reduce the yield ratio and increase the uniform elongation.

【0010】近年、建築構造物の大型化に伴い、使用鋼
材の高張力化が進んでいる。高張力鋼を使用するメリッ
トは、使用する鋼材の使用量の低減などが挙げられる。
[0010] In recent years, as building structures have become larger, the tensile strength of steel materials used has been increasing. The advantages of using high-strength steel include reducing the amount of steel used.

【0011】高張力鋼においては、降伏比が高いため、
軟鋼に比較して塑性変形能が劣る。このため、耐震設計
に不向きであると言われている。
[0011] High tensile strength steel has a high yield ratio, so
Plastic deformability is inferior to mild steel. For this reason, it is said to be unsuitable for earthquake-resistant design.

【0012】また、建築構造物では溶接施工が一般的で
あるため、溶接品質にも問題のないことが要求される。
[0012] Furthermore, since welding is common in building structures, it is required that there be no problems in welding quality.

【0013】[0013]

【発明が解決しようとする課題】本発明の一般的目的は
建築構造用超高張力鋼の製造方法を提供することである
SUMMARY OF THE INVENTION It is a general object of the present invention to provide a method of manufacturing ultra-high strength steel for architectural structures.

【0014】本発明の具体的な目的は、焼入れ焼戻し状
態で降伏応力95kgf/mm2以上を確保し、かつ降
伏比が95%以下、一様伸びが15%以上の性能を有す
る建築用超高張力鋼の製造方法、さらには前記諸性能を
具備し、溶接部靱性にも優れた建築用超高張力鋼の製造
方法を提供することである。
A specific object of the present invention is to provide an ultra-high tensile strength for construction that has a yield stress of 95 kgf/mm2 or more in a quenched and tempered state, a yield ratio of 95% or less, and a uniform elongation of 15% or more. The object of the present invention is to provide a method for producing steel, and furthermore, a method for producing ultra-high tensile strength steel for construction, which has the above-mentioned properties and has excellent welded part toughness.

【0015】[0015]

【課題を解決するための手段】本発明者らは、かかる目
的を達成すべく、超高強度でかつ、YRが95%以下、
一様伸びが15%以上の性能を確保することを目標に検
討した結果、Ni含有鋼で、かつ特定の焼入れ焼戻し処
理を施すことにより、所定の性能を満足できることを見
い出し、本発明を完成した。
[Means for Solving the Problems] In order to achieve the above object, the present inventors have developed a method that has ultra-high strength and has a YR content of 95% or less.
As a result of our study with the goal of securing uniform elongation of 15% or more, we discovered that the specified performance could be satisfied by using Ni-containing steel and applying a specific quenching and tempering treatment, and thus completed the present invention. .

【0016】ここに、本発明は、重量%で、C:0.0
7 〜0.20%、Si≦0.25%、Mn:0.25
 〜1.00%、Cu:0.20 〜0.40%、Ni
:0.5〜1.5 %、Cr:0.40 〜0.70%
、Mo:0.30 〜0.60%、Nb:0.010〜
0.030 %、V:0.010〜0.050 %、 
sol.Al:0.015 〜0.060 %、N≦0
.0070%、必要に応じてTi:0.005〜0.0
25 %、残部Feおよび不可避的不純物から成る組成
を有する鋼片を1000〜1150℃に加熱し、仕上げ
温度700 〜800 ℃で熱間圧延を行い、熱間圧延
後、840 〜900 ℃の範囲で焼入後、 Ac1温
度以下の温度で焼戻し処理を行うことを特徴とする建築
用超高張力鋼の製造方法である。
[0016] Here, in the present invention, in weight%, C: 0.0
7 ~0.20%, Si≦0.25%, Mn:0.25
~1.00%, Cu:0.20 ~0.40%, Ni
:0.5~1.5%, Cr:0.40~0.70%
, Mo: 0.30 to 0.60%, Nb: 0.010 to
0.030%, V: 0.010-0.050%,
sol. Al: 0.015 to 0.060%, N≦0
.. 0070%, Ti: 0.005-0.0 as necessary
A steel billet having a composition of 25% Fe, the balance being Fe and unavoidable impurities is heated to 1000-1150°C, hot rolled at a finishing temperature of 700-800°C, and after hot rolling, it is rolled at a temperature of 840-900°C. This is a method for producing ultra-high tensile strength steel for construction, which is characterized in that, after quenching, a tempering treatment is performed at a temperature of Ac1 temperature or lower.

【0017】上記の本発明において、Ti:0.005
〜0.025 %を含有することにより、溶接継手部靱
性にも優れた建築用超高張力鋼を製造することができる
[0017] In the above invention, Ti: 0.005
By containing up to 0.025%, it is possible to produce ultra-high tensile strength steel for construction with excellent weld joint toughness.

【0018】[0018]

【作用】本発明において成分範囲を上述のように限定す
る理由は次のとおりである。なお、本明細書においては
、特にことわりがない限り、「%」は「重量%」を意味
するものとする。
[Operation] The reason why the range of components is limited as described above in the present invention is as follows. In this specification, "%" means "% by weight" unless otherwise specified.

【0019】Cは必要強度の面から最低0.07%を要
し、また、0.20%を超えると、その効果がそれほど
顕著でないため、上限を0.20%とする。そこで、本
発明においては、C含有量は0.07%以上0.20%
以下と限定する。
[0019] C requires a minimum content of 0.07% from the viewpoint of required strength, and if it exceeds 0.20%, the effect is not so pronounced, so the upper limit is set at 0.20%. Therefore, in the present invention, the C content is 0.07% or more and 0.20%
Limited to the following.

【0020】Siは脱酸の目的をもって添加するが、安
定した強化元素としても効果はあるが、0.25%を超
えると、それほど認められないため、上限を0.25%
とする。 そこで、本発明においては、Si含有量は0.25%以
下と限定する。
[0020]Si is added for the purpose of deoxidizing, but it is also effective as a stable reinforcing element, but if it exceeds 0.25%, it is not so noticeable, so the upper limit is set at 0.25%.
shall be. Therefore, in the present invention, the Si content is limited to 0.25% or less.

【0021】Mnは強度上昇に必須の元素であり最低0
.25%は必要である。しかし、1.00%を超えると
その効果が少ないため、上限を1.00%とした。そこ
で、本発明においては、Mn含有量は0.25%以上1
.00%以下と限定する。
[0021] Mn is an essential element for increasing strength, and at least 0
.. 25% is necessary. However, if it exceeds 1.00%, the effect is small, so the upper limit was set at 1.00%. Therefore, in the present invention, the Mn content is 0.25% or more.
.. 00% or less.

【0022】Cuは時効処理時に析出硬化をもたらす。 本発明では0.20〜0.40%の間でその効果が顕著
である。そこで、本発明においては、0.20%以上0
.40%以下と限定する。
[0022] Cu causes precipitation hardening during aging treatment. In the present invention, the effect is significant between 0.20 and 0.40%. Therefore, in the present invention, 0.20% or more
.. Limited to 40% or less.

【0023】Niは靱性のよい基地組織を作り、しかも
一部Alと結合することにより析出硬化作用を示す。そ
の効果は0.5 %未満では不十分であり、1.5 %
を超えると時効時の強度が低下するため、上限を1.5
 %とした。そこで、本発明においては、Ni含有量は
0.5 %以上1.5 %以下と限定する。
[0023] Ni forms a matrix structure with good toughness, and exhibits a precipitation hardening effect by partially combining with Al. The effect is insufficient below 0.5%, and 1.5%
If it exceeds 1.5, the strength during aging will decrease, so the upper limit is set at 1.5.
%. Therefore, in the present invention, the Ni content is limited to 0.5% or more and 1.5% or less.

【0024】CrはNiと同様の作用効果を奏するが、
さらにCuは冷却速度に依存せず安定なマルテンサイト
と下方ベーナイト組織を形成させる。この効果は0.4
0%未満では不十分であり、0.70%を超えると飽和
する。そこで、本発明においては、Cr含有量は0.4
0%以上0.70%以下と限定する。
[0024] Cr has the same effects as Ni, but
Furthermore, Cu forms stable martensite and lower bainite structures independent of the cooling rate. This effect is 0.4
If it is less than 0%, it is insufficient, and if it exceeds 0.70%, it is saturated. Therefore, in the present invention, the Cr content is 0.4
Limited to 0% or more and 0.70% or less.

【0025】Moは0.30%以上で時効性の硬化が認
められるが、0.60%を超えるとその効果が飽和する
。そこで、本発明においては、Mo含有量は0.30%
以上0.60%以下と限定する。
[0025] When Mo is 0.30% or more, aging hardening is observed, but when it exceeds 0.60%, the effect is saturated. Therefore, in the present invention, the Mo content is 0.30%
It is limited to 0.60% or less.

【0026】Nbは焼戻し処理において炭窒化物を形成
し、析出硬化により強度確保に有効である。0.010
 %以上でその効果が認められ、0.030 %を超え
ると顕著ではない。そこで、本発明においては、Nb含
有量は、0.010 %以上0.030 %以下と限定
する。
[0026] Nb forms carbonitrides during the tempering treatment, and is effective in securing strength through precipitation hardening. 0.010
The effect is recognized above 0.030%, and is not noticeable above 0.030%. Therefore, in the present invention, the Nb content is limited to 0.010% or more and 0.030% or less.

【0027】Vは、Nb同様、焼戻し処理において炭窒
化物を形成し析出硬化により、強度確保に有効である。 その効果は0.010 〜0.050 %の間で認めら
れる。そこで、本発明においては、0.010 %以上
0.050 %以下と限定する。
Like Nb, V is effective in securing strength by forming carbonitrides during tempering treatment and precipitation hardening. The effect is observed between 0.010 and 0.050%. Therefore, in the present invention, the content is limited to 0.010% or more and 0.050% or less.

【0028】sol.Alは、Niと結合して析出硬化
作用を示す。0.015 %以上で効果が認められ、0
.060 %を超えるとその効果は飽和する。そこで、
sol.Alは0.015 %以上0.060 %以下
と限定する。
[0028] sol. Al combines with Ni and exhibits a precipitation hardening effect. The effect was recognized at 0.015% or more, and 0.
.. If it exceeds 0.060%, the effect is saturated. Therefore,
sol. Al is limited to 0.015% or more and 0.060% or less.

【0029】Nはオーステナイト粒を微細化するため必
要であるが、0.0070%を超えるとその効果が認め
られないため、上限を0.0070%とした。そこで、
Nは0.0070%以下と限定する。
[0029]N is necessary to refine the austenite grains, but if it exceeds 0.0070%, no effect will be observed, so the upper limit was set at 0.0070%. Therefore,
N is limited to 0.0070% or less.

【0030】以上は、本発明における鋼の基本成分であ
るが、さらに本発明は、溶接継手部の靱性を改善するた
めに、Tiを適量添加してもよい。
The above are the basic components of the steel in the present invention, but in the present invention, an appropriate amount of Ti may be added in order to improve the toughness of the welded joint.

【0031】Tiは溶接熱影響部の粗粒化を防止するた
め、靱性向上に効果がある。そのため、0.005 %
以上の添加が必要であるが、0.025 %を超えると
、却って母材の靱性まで劣化するため、上限を0.02
5%とする。そこで、Ti含有量は、0.005 %以
上0.025%以下と限定することが望ましい。
[0031]Ti is effective in improving toughness because it prevents coarsening of the weld heat affected zone. Therefore, 0.005%
It is necessary to add more than 0.02%, but if it exceeds 0.025%, the toughness of the base material will deteriorate, so the upper limit should be set at 0.02%.
5%. Therefore, it is desirable to limit the Ti content to 0.005% or more and 0.025% or less.

【0032】さらに、製造条件の限定理由について示す
Furthermore, the reasons for limiting the manufacturing conditions will be explained.

【0033】まず、上記のような成分組成に溶製したN
i含有鋼の溶解を連続鋳造もしくは造塊分塊法によって
鋼片としたのち、直接あるいは必要によって偏析成分の
拡散を目的に、加熱と冷却を繰り返す。
First, N melted to the above component composition
After the i-containing steel is melted into a steel billet by continuous casting or agglomeration and blooming, heating and cooling are repeated directly or as necessary for the purpose of diffusing the segregated components.

【0034】かかる前処理を施した後、1000℃以上
1150℃以下に加熱し、熱間圧延を行う。この加熱は
、熱間圧延に先立って、NをAlで固定し、AlN の
微細析出をはかり、焼入性を高める処理である。
[0034] After performing such pretreatment, it is heated to a temperature of 1000°C or more and 1150°C or less, and hot rolled. This heating is a process that fixes N with Al, causes fine precipitation of AlN, and improves hardenability prior to hot rolling.

【0035】さらに焼戻し処理時にMo、V等の微細炭
窒化物の析出による強化を利用するために、鋼片に存在
するMo、V等の炭窒化物を十分に固溶化させる処理で
もある。
Furthermore, in order to utilize the strengthening caused by the precipitation of fine carbonitrides such as Mo and V during the tempering process, it is also a process in which carbonitrides such as Mo and V present in the steel slab are sufficiently converted into a solid solution.

【0036】加熱温度が1000℃未満ではこの効果が
不十分である。逆に1150℃超の加熱ではAlN の
微細析出物が再分解し、焼入時の焼入性が低下する。こ
のため、加熱条件を1000℃以上1150℃以下、好
ましくは1000℃以上1100℃以下とする。
[0036] If the heating temperature is less than 1000°C, this effect is insufficient. On the other hand, heating above 1150°C re-decomposes the fine precipitates of AlN, reducing the hardenability during hardening. For this reason, the heating conditions are set to 1000°C or more and 1150°C or less, preferably 1000°C or more and 1100°C or less.

【0037】熱間圧延の仕上温度を700 ℃以上80
0 ℃以下に限定した理由は、板厚方向全位置のオース
テナイト粒の微細化と板厚中心部の焼入性確保のためで
ある。800 ℃を超えるとオーステナイト粒の微細化
が不十分である。また、700 ℃未満ではオーステナ
イト粒内の変形帯の形成が増大し、焼入性が低下するた
めである。
[0037] The finishing temperature of hot rolling is set to 700°C or higher and 80°C.
The reason for limiting the temperature to 0° C. or below is to make the austenite grains finer at all positions in the thickness direction and to ensure hardenability at the center of the thickness. If the temperature exceeds 800°C, the austenite grains will not be sufficiently refined. Furthermore, if the temperature is lower than 700°C, the formation of deformation bands within the austenite grains increases, resulting in a decrease in hardenability.

【0038】熱間圧延後は必要により冷間圧延を行うが
、本発明において冷間圧延条件それ自体は特に制限され
ない。
[0038] After hot rolling, cold rolling is performed if necessary, but the cold rolling conditions themselves are not particularly limited in the present invention.

【0039】焼入温度を840 ℃以上900 ℃以下
と限定した理由は、十分オーステナイト化するためには
840 ℃以上必要であるが、900 ℃を超えるとオ
ーステナイト粒の粗大化を招くためである。
The reason why the quenching temperature is limited to 840° C. or higher and 900° C. or lower is that 840° C. or higher is necessary to sufficiently austenitize, but if it exceeds 900° C., the austenite grains become coarse.

【0040】焼入れ後はAc1 温度以下に加熱して焼
戻しを行う。
After quenching, tempering is performed by heating to a temperature below Ac1.

【0041】次に、本発明にかかる方法によって製造さ
れた鋼の機械的性質ならびに溶接継手部性質を実施例と
して示す。
Next, the mechanical properties and weld joint properties of steel produced by the method according to the present invention will be shown as examples.

【0042】[0042]

【実施例1】表1に示す化学成分の鋼を 990〜12
50℃に加熱して仕上温度 688〜825 ℃で熱間
圧延を行い、冷間圧延後再加熱して各温度から焼入れ後
、550 ℃焼戻した。
[Example 1] Steel with the chemical composition shown in Table 1 was prepared from 990 to 12
It was heated to 50°C and hot rolled at a finishing temperature of 688 to 825°C, and after cold rolling, it was reheated and quenched at each temperature, followed by tempering at 550°C.

【0043】得られた供試鋼の機械的性質を表2に示す
。なお、表1のA〜Dは本発明例の鋼組成を、E〜Kは
比較例の鋼組成を示す。
Table 2 shows the mechanical properties of the obtained test steel. In addition, A to D in Table 1 indicate the steel compositions of the examples of the present invention, and E to K indicate the steel compositions of the comparative examples.

【0044】本発明例による鋼はいずれも95 kgf
/mm2以上のYSが確保されている。また、一様伸び
、YRともいずれも比較例の鋼に比較して、良好な性能
を有していることがわかる。
[0044] All steels according to the present invention have a weight of 95 kgf.
YS of /mm2 or more is ensured. Furthermore, it can be seen that both uniform elongation and YR have better performance than the steel of the comparative example.

【0045】図2は、Run No.1、7の場合につ
いてYSに及ぼす焼戻し温度の影響を示すグラフであり
、Ni有無によって焼戻し温度いかんにかかわらずYS
が大幅に改善されることが分かる。特に高温焼戻しでそ
の傾向が顕著である。
FIG. 2 shows Run No. This is a graph showing the influence of tempering temperature on YS for cases 1 and 7.
It can be seen that this is significantly improved. This tendency is particularly noticeable in high-temperature tempering.

【0046】[0046]

【表1】[Table 1]

【0047】[0047]

【表2】[Table 2]

【0048】[0048]

【実施例2】表3に示す化学成分の鋼を1000〜12
50℃に加熱して仕上げ温度780 〜825 ℃で熱
間圧延を行い、冷間圧延後再加熱して各温度から焼入れ
後、550 ℃焼戻し処理を行った。
[Example 2] Steel with the chemical composition shown in Table 3 was
After heating to 50°C, hot rolling was performed at a finishing temperature of 780 to 825°C, and after cold rolling, the material was reheated and quenched at each temperature, followed by tempering at 550°C.

【0049】得られた供試鋼の機械的性質を表4に示す
Table 4 shows the mechanical properties of the obtained test steel.

【0050】本発明による鋼はいずれも95kgf/m
m2 以上のYSが確保されている。また一様伸び、Y
Rとも比較鋼の鋼に比較して、良好な性能を有している
ことがわかる。
[0050] All of the steels according to the present invention have a strength of 95 kgf/m
m2 or more YS is secured. Also, uniform elongation, Y
It can be seen that both R and R have better performance than the comparison steel.

【0051】また、Tiを添加することにより、溶接継
手部の靱性も本発明鋼では比較鋼より良好であることが
わかる。
Furthermore, it can be seen that by adding Ti, the toughness of the welded joint in the steel of the present invention is better than that of the comparative steel.

【0052】[0052]

【表3】[Table 3]

【0053】[0053]

【表4】[Table 4]

【0054】[0054]

【発明の効果】本発明によれば、下記の特徴を有してい
る超高張力鋼が得られ、その意義は大きい。
[Effects of the Invention] According to the present invention, an ultra-high tensile strength steel having the following characteristics can be obtained, which is of great significance.

【0055】■常温において、YSが95 kgf/m
m2以上確保され、一様伸びが15%以上で、YRが9
5%以下の超高張力鋼である。
■At room temperature, YS is 95 kgf/m
m2 or more, uniform elongation is 15% or more, and YR is 9
Ultra-high tensile strength steel with less than 5% strength.

【0056】■溶接部継手部の靱性が良好である。(2) The toughness of the weld joint is good.

【0057】■耐震構造において、通常の高張力鋼より
も変形能力の良好な鋼である。
[0057] In earthquake-resistant construction, this steel has better deformability than ordinary high-tensile steel.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】補エネルギーを説明する応力−歪曲線を表わす
グラフである。
FIG. 1 is a graph representing a stress-strain curve illustrating complementary energy.

【図2】焼戻し温度とYSとの相関を示すグラフである
FIG. 2 is a graph showing the correlation between tempering temperature and YS.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  重量%で、C:0.07 〜0.20
%、Si≦0.25%、Mn:0.25 〜1.00%
、Cu:0.20 〜0.40%、Ni:0.5〜1.
5 %、Cr:0.40 〜0.70%、Mo:0.3
0 〜0.60%、Nb:0.010〜0.030 %
、V:0.010〜0.050 %、 sol.Al:
0.015 〜0.060 %、N≦0.0070%、
残部Feおよび不可避不純物から成る組成を有する鋼片
を1000〜1150℃に加熱し、仕上げ温度700 
〜800 ℃で熱間圧延を行い、熱間圧延後、840 
〜900 ℃の範囲で焼入後、 Ac1温度以下の温度
で焼戻し処理を行うことを特徴とする建築用超高張力鋼
の製造方法。
[Claim 1] C: 0.07 to 0.20 in weight%
%, Si≦0.25%, Mn: 0.25 to 1.00%
, Cu: 0.20-0.40%, Ni: 0.5-1.
5%, Cr: 0.40 to 0.70%, Mo: 0.3
0 to 0.60%, Nb: 0.010 to 0.030%
, V: 0.010-0.050%, sol. Al:
0.015 to 0.060%, N≦0.0070%,
A steel piece having a composition consisting of the balance Fe and unavoidable impurities is heated to 1000 to 1150°C, and the finishing temperature is 700°C.
Hot rolling was performed at ~800°C, and after hot rolling, the temperature was 840°C.
A method for producing ultra-high tensile strength steel for construction, which comprises quenching at a temperature in the range of ~900°C and then tempering at a temperature below Ac1 temperature.
【請求項2】  請求項1記載の製造方法において、前
記鋼片がさらに重量%でTi:0.005〜0.025
 %を含有することを特徴とする溶接継手部靱性の優れ
た建築用超高張力鋼の製造方法。
2. The manufacturing method according to claim 1, wherein the steel piece further contains Ti: 0.005 to 0.025 in weight percent.
A method for producing ultra-high tensile strength steel for construction, which has excellent toughness at welded joints, characterized by containing %.
JP14598291A 1990-10-01 1991-06-18 Production of ultrahigh tensile strength steel for construction use Pending JPH04297522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14598291A JPH04297522A (en) 1990-10-01 1991-06-18 Production of ultrahigh tensile strength steel for construction use

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-263430 1990-10-01
JP26343090 1990-10-01
JP14598291A JPH04297522A (en) 1990-10-01 1991-06-18 Production of ultrahigh tensile strength steel for construction use

Publications (1)

Publication Number Publication Date
JPH04297522A true JPH04297522A (en) 1992-10-21

Family

ID=26476947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14598291A Pending JPH04297522A (en) 1990-10-01 1991-06-18 Production of ultrahigh tensile strength steel for construction use

Country Status (1)

Country Link
JP (1) JPH04297522A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633426A (en) * 1979-08-24 1981-04-03 Sumitomo Metal Ind Ltd Manufacture of tempered high tensile steel sheet having excellent low temperature toughness
JPS61136624A (en) * 1984-12-08 1986-06-24 Nippon Steel Corp Manufacture of high toughness steel material having thick section and yield point of 42-<90kgf/mm2
JPS63286517A (en) * 1987-05-19 1988-11-24 Nippon Steel Corp Manufacture of high-tensile steel with low yielding ratio

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633426A (en) * 1979-08-24 1981-04-03 Sumitomo Metal Ind Ltd Manufacture of tempered high tensile steel sheet having excellent low temperature toughness
JPS61136624A (en) * 1984-12-08 1986-06-24 Nippon Steel Corp Manufacture of high toughness steel material having thick section and yield point of 42-<90kgf/mm2
JPS63286517A (en) * 1987-05-19 1988-11-24 Nippon Steel Corp Manufacture of high-tensile steel with low yielding ratio

Similar Documents

Publication Publication Date Title
US6056833A (en) Thermomechanically controlled processed high strength weathering steel with low yield/tensile ratio
KR20010060760A (en) structural steel having High strength and method for menufactreing it
JPH05105957A (en) Production of heat resistant high strength bolt
JP3457498B2 (en) High-strength PC steel bar and method of manufacturing the same
JPH01116032A (en) Production of high-strength-high-toughness un-tempered steel
JPH0277521A (en) Production of ultra-high-tension steel sheet for welding having excellent homogeneity in thickness direction
JP2706159B2 (en) Method for producing low yield ratio high strength steel with good weldability
JPH0219175B2 (en)
JPH0813028A (en) Production of precipitation hardening steel material having high tensile strength and high toughness
KR910003883B1 (en) Making process for high tension steel
JPH05125481A (en) High tensile strength steel material having high toughness and low yield ratio and its production
JPH04297522A (en) Production of ultrahigh tensile strength steel for construction use
JPS63190117A (en) Production of high tension steel plate having high toughness and less than 90% low yield ratio by direct quenching method
KR102448753B1 (en) Non-heat treated steel with improved machinability and toughness and the method for manufacturing the same
JPH04110422A (en) Production of 70kgf/mm2 class steel plate having superior weldability and low yield ratio
KR100406365B1 (en) A METHOD OF MANUFACTURING 600MPa GRADE HIGH STRENGTH STEEL WITH LOW YIELD RATION
JPH04110423A (en) Production of 80kgf/mm2 class steel plate having superior weldability and low yield ratio
JPH01159316A (en) Production of low yielding ratio high tensile steel having softened surface layer
KR100419648B1 (en) A method for manufacturing ultra high tensile strenth steel
JP2022547760A (en) Ultra-high-strength reinforcing bars and method for manufacturing the same
JPS6021326A (en) Production of tempered high tensile steel having exellent toughness
JPH02270913A (en) Manufacture of high toughness and high tension steel plate having low yield ratio
JP2708540B2 (en) Method for producing high-strength steel sheet mainly composed of ferrite structure
KR100514813B1 (en) A METHOD FOR MANUFACTURING Cr-Mo STEEL FOR HIGH TEMPERATURE APPLICATIONS
JPH07207334A (en) Production of high tension steel having excellent weldability and plastic deformability

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970708