JPS61133376A - Method and device for forming thin film - Google Patents

Method and device for forming thin film

Info

Publication number
JPS61133376A
JPS61133376A JP25633184A JP25633184A JPS61133376A JP S61133376 A JPS61133376 A JP S61133376A JP 25633184 A JP25633184 A JP 25633184A JP 25633184 A JP25633184 A JP 25633184A JP S61133376 A JPS61133376 A JP S61133376A
Authority
JP
Japan
Prior art keywords
sample
thin film
ions
energy
ion source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25633184A
Other languages
Japanese (ja)
Other versions
JPH0726197B2 (en
Inventor
Yasuo Suzuki
泰雄 鈴木
Yasunori Ando
靖典 安東
Kiyoshi Ogata
潔 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP25633184A priority Critical patent/JPH0726197B2/en
Publication of JPS61133376A publication Critical patent/JPS61133376A/en
Publication of JPH0726197B2 publication Critical patent/JPH0726197B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a thin film having excellent adhesiveness and a specified compsn. ratio by constituting a titled method and device of the 1st stage for depositing a vapor deposition material by evaporation on a sample, the 2nd stage for irradiating ions of high energy to the sample, the 3rd stage for depositing the vapor deposition material by evaporation on the sample and the 4th stage for irradiating ions of low energy to the sample. CONSTITUTION:The sample 4a is cleaned by a high energy ion source 8A and a rotary holder 10 is rotated to deposit an evaporating material by evaporation from a vapor source 6 on the sample to form the thin film F1 thereon in the 1st stage. The rotary holder 10 is rotated and the ions are irradiated to the sample from the high energy ion source 8A to form a mixing layer M on the sample in the 2nd stage. The rotary holder 10 is rotated and the vapor deposition material is deposited by evaporation from the vapor source 6 on the thin film F1 to form a thin film F2 thereon in the 3rd stage. The rotary holder 10 is rotated and the ions are irradiated from the low energy ion source 8B to the sample to form the thin film F2 having the desired element compsn. in the 4th stage.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この廃明は、真空中で試料に対して蒸発物質を蒸着させ
ると共に当該試料に対してイオンを照射する薄膜形成方
法及びその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to a thin film forming method and an apparatus therefor, in which an evaporated substance is deposited on a sample in vacuum and the sample is irradiated with ions.

〔従来の技術〕[Conventional technology]

第3図は、従来の薄膜形成方法に用いられる装置を示す
概略図である。固定したホルダ2に試料4を取り付け、
真空中において、下方の蒸発源6より蒸発物質(例えば
Ti(チタン))を試料4に蒸着させ、片やイオン源8
より試料4に所定のエネルギーのイオン(例えばN“(
窒素イオン))を蒸着と交互に又は同時に照射して、試
料4の表面に薄膜を形成している。
FIG. 3 is a schematic diagram showing an apparatus used in a conventional thin film forming method. Attach the sample 4 to the fixed holder 2,
In a vacuum, an evaporative substance (for example, Ti (titanium)) is deposited on the sample 4 from the evaporation source 6 below, and the ion source 8
ions of a predetermined energy (for example, N"(
A thin film is formed on the surface of the sample 4 by irradiating nitrogen ions) alternately or simultaneously with vapor deposition.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述のような薄膜形成方法においては、試料と蒸着物と
の界面を強固にするためにはイオンのエネルギーは高い
方が(例えば40KeV程度が)良いけれども、逆に、
薄膜の厚みを増す(デポジットする)ためにはイオンの
エネルギーは低い方が(例えばIKeV程度が)良いと
いう矛盾がある。その理由は、イオンのエネルギーが高
いと試料と蒸着物質とイオンとのミキシング層が厚く形
成されて界面が強固になるからであり、イオンのエネル
ギーが低いとスパッタリングが小さくなり、かつ試料表
面に元素組成比が一定の薄膜が形成されるからである。
In the thin film forming method described above, it is better to have a higher ion energy (for example, about 40 KeV) in order to strengthen the interface between the sample and the deposited material, but conversely,
There is a contradiction that in order to increase (deposit) a thin film, the lower the ion energy (for example, around IKeV), the better. The reason for this is that when the ion energy is high, a mixing layer between the sample, the deposited substance, and the ions is formed thickly, making the interface strong, while when the ion energy is low, sputtering is small and the elements on the sample surface are This is because a thin film having a constant composition ratio is formed.

もしエネルギーが高いと、表面ではなく表層(表面より
少し深さ方向に入った所)に薄膜が形成される。
If the energy is high, a thin film will be formed on the surface layer (a little deeper than the surface) rather than on the surface.

従ってこの発明は、上記矛盾を解決することができる薄
膜形成方法及びその装置を提供することを目的とする。
Therefore, an object of the present invention is to provide a thin film forming method and an apparatus therefor that can solve the above-mentioned contradiction.

〔問題点を解決するための手段〕[Means for solving problems]

この発明の薄膜形成方法は、試料に蒸発物質を蒸着させ
る第1の工程と、第1の工程の後に試料に高エネルギー
のイオンを照射する第2の工程と、第2の工程の後に試
料に蒸発物質を蒸着させる第3の工程と、第3の工程の
後に試料に低エネルギーのイオンを照射する第4の工程
とを備えている。
The thin film forming method of the present invention includes a first step of depositing an evaporation substance onto a sample, a second step of irradiating the sample with high-energy ions after the first step, and a second step of irradiating the sample with high-energy ions after the second step. The method includes a third step of depositing an evaporated substance, and a fourth step of irradiating the sample with low-energy ions after the third step.

又、この発明の薄膜形成装置は、複数の試料を外側に取
り付けて回転する回転ホルダと、第1の方向から回転ホ
ルダ上の試料に順次蒸発物質を蒸着させる蒸発源と、第
2の方向から回転ホルダ上の試料に順次高エネルギーの
イオンを照射する高エネルギーイオン源と、第3の方向
から回転ホルダ上の試料に順次低エネルギーのイオンを
照射する低エネルギーイオン源とを備えている。
Further, the thin film forming apparatus of the present invention includes a rotary holder that rotates with a plurality of samples attached to the outside, an evaporation source that sequentially evaporates an evaporation substance onto the samples on the rotary holder from a first direction, and a evaporation source that sequentially evaporates an evaporation substance onto the samples on the rotary holder from a first direction. The apparatus includes a high-energy ion source that sequentially irradiates the sample on the rotating holder with high-energy ions, and a low-energy ion source that sequentially irradiates the sample on the rotating holder with low-energy ions from a third direction.

〔作用〕[Effect]

この薄膜形成方法においては、第1の工程で試料の表面
に蒸着物質が蒸着され、第2の工程で試料と蒸着物質と
イオンとのミキシング層が厚く形成されて試料と蒸着物
質との界面が強固になり、第3の工程でその上に蒸着物
質が蒸着され、第4の工程で試料表面に所望の元素組成
の薄膜が厚く形成される。
In this thin film forming method, a deposition substance is deposited on the surface of the sample in the first step, and a thick mixing layer of the sample, deposition substance, and ions is formed in the second step, so that the interface between the sample and the deposition substance is formed. The material becomes strong, and in the third step, a deposition material is deposited thereon, and in the fourth step, a thick thin film having a desired elemental composition is formed on the sample surface.

又この薄膜形成装置においては、回転ホルダ上の各々の
試料に対して、蒸着物質の蒸着と、高エネルギーのイオ
ン照射と、低エネルギーのイオン照射とが交互にしかも
連続して行われる。
Further, in this thin film forming apparatus, the deposition of a vapor deposition substance, high-energy ion irradiation, and low-energy ion irradiation are performed alternately and continuously on each sample on the rotating holder.

〔実施例〕〔Example〕

第1図は、この発明の薄膜形成装置の一実施例。 FIG. 1 shows an embodiment of the thin film forming apparatus of the present invention.

を示す概略図である。回転ホルダ10は、例えば四角形
をしており、その外側の4面にはそれぞれ試料4a、4
b、4c、4dが取り付けられており、例えば図の矢印
Rの方向に回転する。又回転ホルダ10は冷却機構(図
示省略)を備えており、これによって試料4 a−4b
14 cs 4 dを冷却する。回転ホルダ10の下方
には蒸発源6が設けられており、これによって下方から
試料4a14b、4C14dに順次蒸発物質を蒸着させ
る。又回転ホルダ10の上方には例えば高エネルギーイ
オン源8Aが設けられており、これによって上方から試
料4a、4b、4C14dに順次高エネルギーのイオン
を照射する。更に回転ホルダ10の側方には例えば低エ
ネルギーイオン源8Bが設けられており、これによって
側方から試料4a54b、4c、4dに順次低エネルギ
ーのイオンを照射する。高エネルギーイオン源8Aより
引出されるイオンのエネルギーは例えば40KeV程度
であり、低エネルギーイオン源8Bより引出されるイオ
ンのエネルギーは例えばIKeV程度である。
FIG. The rotary holder 10 has a rectangular shape, for example, and has samples 4a and 4 on its four outer sides.
b, 4c, and 4d are attached, and rotate, for example, in the direction of arrow R in the figure. In addition, the rotating holder 10 is equipped with a cooling mechanism (not shown), which allows the samples 4a-4b
Cool 14 cs 4 d. An evaporation source 6 is provided below the rotary holder 10, and the evaporation source 6 is used to sequentially deposit an evaporation substance onto the samples 4a14b and 4C14d from below. For example, a high-energy ion source 8A is provided above the rotating holder 10, and the samples 4a, 4b, and 4C14d are sequentially irradiated with high-energy ions from above. Furthermore, a low-energy ion source 8B, for example, is provided on the side of the rotary holder 10, and the samples 4a54b, 4c, and 4d are sequentially irradiated with low-energy ions from the side. The energy of the ions extracted from the high-energy ion source 8A is, for example, about 40 KeV, and the energy of the ions extracted from the low-energy ion source 8B is, for example, about IKeV.

この発明において、イオン源として高エネルギーイオン
源8Aと低エネルギーイオン源8Bの2種類を設けるの
は次の理由による。即ち、1台のイオン源の電圧制御領
域には限界があり、せいぜい10〜100%(例えば4
〜40KV)程度で  ”ある。この理由は、引出し電
圧が小さ過ぎたり大き過ぎたりすると、イオンビームの
発散が大きくなり引出し部の電極等に当たる割合が多く
なりビーム量が大幅に減少するからである。又、そのよ
うなことがなくてもビーム量は電圧に比例するので、単
に電圧を下げるだけではビーム量(即ち照耐量)が電圧
に比例して減り、照射に時間がかかってしまう、そこで
この発明は、高エネルギーイオン8Aと低エネルギーイ
オン源8Bとを設けて薄膜形成の能率を上げている。
In this invention, the reason why two types of ion sources, high energy ion source 8A and low energy ion source 8B, are provided is as follows. In other words, there is a limit to the voltage control range of one ion source, which is at most 10% to 100% (for example, 4%
The reason for this is that if the extraction voltage is too small or too large, the divergence of the ion beam will increase and the proportion of the ion beam hitting the electrodes in the extraction section will increase, resulting in a significant decrease in the beam amount. .Also, even if this is not the case, the beam amount is proportional to the voltage, so if you simply lower the voltage, the beam amount (i.e., the irradiation capacity) will decrease in proportion to the voltage, and irradiation will take longer. This invention improves the efficiency of thin film formation by providing a high energy ion source 8A and a low energy ion source 8B.

次に第2図を参照しながら、第1図の装置を用いて薄膜
形成を行う方法を説明する。ただし第2図において薄膜
部分は拡大して示しである。
Next, with reference to FIG. 2, a method for forming a thin film using the apparatus shown in FIG. 1 will be explained. However, in FIG. 2, the thin film portion is shown enlarged.

■まず、高エネルギーイオン源8Aで試料(例えば試料
4a)をクリーニングする(第2図の工程(a))。た
だし、この工程は省略してもよい。
(1) First, a sample (for example, sample 4a) is cleaned using the high-energy ion source 8A (step (a) in FIG. 2). However, this step may be omitted.

■次に、回転ホルダ10を回転させて蒸発源6で試料4
aに300A程度蒸発物を蒸着させる(第2図の工程(
b))。これによって試料4aの表面に薄膜Flが形成
される。
■Next, rotate the rotary holder 10 and use the evaporation source 6 to
Deposit about 300A of evaporated material on a (step shown in Figure 2)
b)). As a result, a thin film Fl is formed on the surface of the sample 4a.

0次に、回転ホルダ10を回転させて高エネルギーイオ
ン源8Aで40K13V程度のイオンを試料4aに照射
する(第2図の工程(C))。これによって試料4aの
表面付近に、試料と蒸着物質とイオンとのミキシング層
Mが厚く形成されて試料と蒸着物質との界面が強固にさ
れる。尚、第2図の工程(c)を示す図における点線は
試料の元の表面を示す。
Next, the rotary holder 10 is rotated and the sample 4a is irradiated with ions of about 40K13V from the high-energy ion source 8A (step (C) in FIG. 2). As a result, a thick mixing layer M of the sample, vapor deposited substance, and ions is formed near the surface of the sample 4a, and the interface between the sample and the vapor deposited substance is strengthened. Note that the dotted line in the diagram showing step (c) in FIG. 2 indicates the original surface of the sample.

■次に、回転ホルダ10を回転させて蒸発[6で試料4
aに適当な厚みだけ蒸発物質を蒸着させる(第2図の工
程(d))、これによって薄膜F1の上に薄膜F2を形
成する。
■Next, rotate the rotary holder 10 to evaporate [sample 4 at 6].
An evaporation material is deposited to a suitable thickness on the film F1 (step (d) in FIG. 2), thereby forming a thin film F2 on the thin film F1.

0次に、回転ホルダ10を回転させて低エネルギーイオ
ン源8BでIKeV程度のイオンを試料4aに照射する
(第2図の工程(e))。これによって試料4aの表面
に所望の元素組成の薄膜F2が形成される。
Next, the rotary holder 10 is rotated and the sample 4a is irradiated with ions of approximately IKeV using the low energy ion source 8B (step (e) in FIG. 2). As a result, a thin film F2 having a desired elemental composition is formed on the surface of the sample 4a.

0以上で薄膜形成を終了してもよいが、必要に応じて、
回転ホルダ10を連続回転させ、蒸発源6と低エネルギ
ーイオン源8Bとを連続的に運転し、試料4aに対して
Miと低エネルギーのイすン照射とを交互に適当な回数
だけ行ってもよい。
Thin film formation may be completed at 0 or more, but if necessary,
Even if the rotary holder 10 is continuously rotated, the evaporation source 6 and the low-energy ion source 8B are continuously operated, and the sample 4a is alternately irradiated with Mi and low-energy ion irradiation an appropriate number of times. good.

この時高エネルギーイオン源8Aは休止している。At this time, the high energy ion source 8A is inactive.

以上のようにこの発明においては、試料に初期    
  、(薄膜を形成する際には蒸発源6及び高エネルギ
ーイオン源8Aを併用し、これによってミキシング層を
形成して試料と薄膜との界面を強固にしている。そして
その後試料に薄膜を形成してその厚みを増していく際に
は蒸発源6と低エネルギーイオン源8Bとを併用してい
る。この場合、薄膜形成は低エネルギーで行うので、試
料の温度上昇を低く抑えることができ、又試料の極表面
に元素組成比が一定な(例えば蒸発物をTi、イオンを
N6とした場合に形成されるTiNのTiとNとの比が
一定な)薄膜を形成することができる。更に、低エネル
ギーなのでスパッタ率が低減される。
As described above, in this invention, the sample is
(When forming a thin film, an evaporation source 6 and a high-energy ion source 8A are used together, thereby forming a mixing layer to strengthen the interface between the sample and the thin film. Then, a thin film is formed on the sample. When increasing the thickness of the sample, the evaporation source 6 and low energy ion source 8B are used together.In this case, since thin film formation is performed with low energy, the temperature rise of the sample can be suppressed to a low level. A thin film having a constant elemental composition ratio (for example, the ratio of Ti to N of TiN formed when the evaporated material is Ti and the ion is N6 is constant) can be formed on the extreme surface of the sample.Furthermore, Sputtering rate is reduced due to low energy.

更に、第1図に示したようにホルダ10に試料を複数個
取り付け、かつホルダ10を回転させているので、複数
の試料に対して高エネルギーによるイオン照射と低エネ
ルギーによるイオン照射とを交互にしかも連続して行う
ことができる。従って薄膜形成の能率が非常に良い。し
かもホルダ10に冷却機構を設けると、試料はイオンや
蒸発物質にさらされていない時に冷却され、高温になる
ことによって試料の物性が変化することが防止される。
Furthermore, as shown in FIG. 1, since a plurality of samples are attached to the holder 10 and the holder 10 is rotated, high-energy ion irradiation and low-energy ion irradiation are alternately applied to the plurality of samples. Moreover, it can be performed continuously. Therefore, the efficiency of thin film formation is very high. Moreover, if the holder 10 is provided with a cooling mechanism, the sample is cooled when it is not exposed to ions or evaporated substances, and the physical properties of the sample are prevented from changing due to high temperatures.

〔発明の効果〕〔Effect of the invention〕

以上説明したようにこの発明の薄膜形成方法によれば、
蒸着と合わせて高エネルギーのイオン照射と低エネルギ
ーのイオン照射の両方を実現でき、これによって試料と
蒸着物との界面を強固にし、かつ試料表面に元素組成比
が一定な薄膜を厚く形成することができる。
As explained above, according to the thin film forming method of the present invention,
In conjunction with vapor deposition, it is possible to achieve both high-energy ion irradiation and low-energy ion irradiation, thereby strengthening the interface between the sample and the deposited material and forming a thick thin film with a constant elemental composition on the sample surface. I can do it.

又この発明の薄膜形成装置によれば、高エネルギーイオ
ン源と低エネルギーイオン源の2種類を設けており、し
かも回転ホルダに複数の試料を取り付けているので、試
料と蒸着物との界面が強固でしかも試料表面の元素組成
比が一定の薄膜を、短時間に能率良く形成することがで
きる。
Furthermore, according to the thin film forming apparatus of the present invention, two types of ion sources, a high-energy ion source and a low-energy ion source, are provided, and since a plurality of samples are attached to the rotating holder, the interface between the sample and the deposited material is strong. Moreover, a thin film having a constant elemental composition ratio on the sample surface can be efficiently formed in a short time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の薄膜形成装置の一実施例を示す概
略図である。第2図は、この発明の薄膜形成方法の一実
施例を示す工程図である。第3図は、従来の薄膜形成方
法に用いられる装置を示す概略図である。
FIG. 1 is a schematic diagram showing an embodiment of the thin film forming apparatus of the present invention. FIG. 2 is a process diagram showing an embodiment of the thin film forming method of the present invention. FIG. 3 is a schematic diagram showing an apparatus used in a conventional thin film forming method.

Claims (2)

【特許請求の範囲】[Claims] (1)真空中で試料に対して蒸発物質を蒸着させ、かつ
当該試料に対してイオンを照射する薄膜形成方法におい
て、 試料に蒸発物質を蒸着させる第1の工程と、第1の工程
の後に試料に高エネルギーのイオンを照射する第2の工
程と、 第2の工程の後に試料に蒸発物質を蒸着させる第3の工
程と、 第3の工程の後に試料に低エネルギーのイオンを照射す
る第4の工程とを備えることを特徴とする薄膜形成方法
(1) In a thin film forming method in which an evaporative substance is deposited on a sample in a vacuum and ions are irradiated onto the sample, a first step of depositing an evaporative substance onto the sample, and after the first step, a second step in which the sample is irradiated with high-energy ions; a third step in which an evaporated substance is deposited on the sample after the second step; and a third step in which the sample is irradiated with low-energy ions after the third step. A method for forming a thin film, comprising the steps of step 4.
(2)真空中で試料に対して蒸発物質を蒸着させる蒸発
源と、当該試料に対してイオンを照射するイオン源とを
備える薄膜形成装置において、複数の試料を外側に取り
付けて回転する回転ホルダと、 第1の方向から回転ホルダ上の試料に順次蒸発物質を蒸
着させる蒸発源と、 第2の方向から回転ホルダ上の試料に順次高エネルギー
のイオンを照射する高エネルギーイオン源と、 第3の方向から回転ホルダ上の試料に順次低エネルギー
のイオンを照射する低エネルギーイオン源とを備えるこ
とを特徴とする薄膜形成装置。
(2) In a thin film forming apparatus equipped with an evaporation source that deposits an evaporation substance onto a sample in vacuum and an ion source that irradiates the sample with ions, a rotary holder that rotates with multiple samples attached to the outside. an evaporation source that sequentially deposits an evaporated substance onto the sample on the rotating holder from a first direction; a high-energy ion source that sequentially irradiates the sample on the rotating holder with high-energy ions from a second direction; 1. A thin film forming apparatus comprising: a low energy ion source that sequentially irradiates a sample on a rotating holder with low energy ions from the direction of .
JP25633184A 1984-12-03 1984-12-03 Thin film forming method and apparatus Expired - Fee Related JPH0726197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25633184A JPH0726197B2 (en) 1984-12-03 1984-12-03 Thin film forming method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25633184A JPH0726197B2 (en) 1984-12-03 1984-12-03 Thin film forming method and apparatus

Publications (2)

Publication Number Publication Date
JPS61133376A true JPS61133376A (en) 1986-06-20
JPH0726197B2 JPH0726197B2 (en) 1995-03-22

Family

ID=17291185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25633184A Expired - Fee Related JPH0726197B2 (en) 1984-12-03 1984-12-03 Thin film forming method and apparatus

Country Status (1)

Country Link
JP (1) JPH0726197B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61217571A (en) * 1985-03-25 1986-09-27 Hitachi Ltd Thin film forming device
JPS62284076A (en) * 1986-06-02 1987-12-09 Shinku Kikai Kogyo Kk Formation of thin film and its device
JPS63100179A (en) * 1986-10-16 1988-05-02 Nissin Electric Co Ltd Film forming device
US4870284A (en) * 1987-11-17 1989-09-26 Hitachi, Ltd. Ion source and method of drawing out ion beam
JPH02159362A (en) * 1988-12-13 1990-06-19 Mitsubishi Heavy Ind Ltd Method and apparatus for production of thin film
US9028923B2 (en) 2006-05-27 2015-05-12 Korea Atomic Energy Research Institute Coating and ion beam mixing apparatus and method to enhance the corrosion resistance of the materials at the elevated temperature using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61217571A (en) * 1985-03-25 1986-09-27 Hitachi Ltd Thin film forming device
JPS62284076A (en) * 1986-06-02 1987-12-09 Shinku Kikai Kogyo Kk Formation of thin film and its device
JPS63100179A (en) * 1986-10-16 1988-05-02 Nissin Electric Co Ltd Film forming device
US4870284A (en) * 1987-11-17 1989-09-26 Hitachi, Ltd. Ion source and method of drawing out ion beam
JPH02159362A (en) * 1988-12-13 1990-06-19 Mitsubishi Heavy Ind Ltd Method and apparatus for production of thin film
US9028923B2 (en) 2006-05-27 2015-05-12 Korea Atomic Energy Research Institute Coating and ion beam mixing apparatus and method to enhance the corrosion resistance of the materials at the elevated temperature using the same

Also Published As

Publication number Publication date
JPH0726197B2 (en) 1995-03-22

Similar Documents

Publication Publication Date Title
DE10100746A1 (en) Device and method for forming films
JPS61133376A (en) Method and device for forming thin film
JPS6082665A (en) Manufacture of multilayer thin film by ion-beam sputtering method
JPH02163366A (en) Formation of chromium layer onto iron or steel product surface
JPS59215045A (en) Manufacture of photomagnetic disk
JPS61201772A (en) Method and device for forming thin film
JP2603919B2 (en) Method for producing boron nitride film containing cubic boron nitride crystal grains
JPH05166727A (en) Manufacture of compound thin film
JP4389076B2 (en) Compound film forming method and apparatus
JPH01205071A (en) Multilayered film forming device
JPS62230965A (en) Manufacture of thin film
JPS61195968A (en) Production of alloy film deposited by evaporation
JPH0794412A (en) Thin film forming device
JPS62134909A (en) Surface treated magnetic substance and manufacture thereof
JPS6348632A (en) Manufacture of optical information recording and reproducing disk
JPS63254726A (en) X-ray exposure mask and manufacture thereof
JPH05295522A (en) Formation of thin film
JPH07292460A (en) Surface treatment
JPH02175868A (en) Sample holder of sputtering film forming device
JPH05250770A (en) Magnetic head and fabrication thereof
JPS599170A (en) Production of thin film
JPH0288762A (en) Production of thin film of high-valence copper oxide
JPH0959773A (en) Thin film forming device
JPS63100179A (en) Film forming device
JPH04183856A (en) Magnetron sputtering method and system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees