JPS6148566A - Electron beam vapor deposition device - Google Patents
Electron beam vapor deposition deviceInfo
- Publication number
- JPS6148566A JPS6148566A JP16866084A JP16866084A JPS6148566A JP S6148566 A JPS6148566 A JP S6148566A JP 16866084 A JP16866084 A JP 16866084A JP 16866084 A JP16866084 A JP 16866084A JP S6148566 A JPS6148566 A JP S6148566A
- Authority
- JP
- Japan
- Prior art keywords
- vapor deposition
- source
- substrates
- electron beam
- evaporation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/28—Vacuum evaporation by wave energy or particle radiation
- C23C14/30—Vacuum evaporation by wave energy or particle radiation by electron bombardment
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、半導体装置の製造等に広範囲に使用される電
子ビーム蒸着装置(以後EB蒸着装置という)に関する
もので、最近、薄膜の応用分野が急速に拡大すると共に
、蒸着される薄膜の材料も多種多様になり、特に比較的
高融点の材料を蒸着する場合には、多くの場合、この電
子ビーム蒸着が採用されており、このような理由から、
EB蒸着は半導体装置の製造工程に限らず多方面に採用
されている。Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an electron beam evaporation apparatus (hereinafter referred to as an EB evaporation apparatus) that is widely used in the manufacture of semiconductor devices, etc., and has recently been applied in the field of thin film applications. With the rapid expansion of evaporation, the materials for thin films that can be deposited have become more diverse.Especially when depositing materials with relatively high melting points, electron beam evaporation is often used. For the reason,
EB evaporation is used not only in the manufacturing process of semiconductor devices but also in many other fields.
このEB蒸着装置は、真空可能の容器内に、被蒸着基板
を配置しくこの被蒸着基板は全面に蒸着する場合はレジ
スト膜が被覆されていないが、パターニングした蒸着面
を形成する場合には、被蒸着基板の表面の一部パターニ
ングされたレジスト膜で被覆されている)、又蒸着材料
を充填した高融点の材料で製作された蒸着ソースと、こ
の蒸着ソースに電子ビームを放射する電子放射電極があ
り、坩堝と電子放射電極との間に数KVの電圧が印加さ
れると、電子ビームが坩堝に充填された蒸着材料に投射
され、この電子ビームのエネルギーによって蒸着材料が
溶融蒸発して被蒸着基板に蒸着することになる。In this EB evaporation apparatus, a substrate to be evaporated is placed in a vacuum-enabled container, and when the entire surface of the evaporation target substrate is to be evaporated, it is not coated with a resist film, but when a patterned evaporation surface is to be formed, A part of the surface of the substrate to be evaporated is covered with a patterned resist film), a evaporation source made of a high melting point material filled with evaporation material, and an electron emitting electrode that emits an electron beam to this evaporation source. When a voltage of several kilovolts is applied between the crucible and the electron emitting electrode, an electron beam is projected onto the deposition material filled in the crucible, and the energy of the electron beam melts and evaporates the deposition material. It will be deposited on the deposition substrate.
このようにE’B蒸着は、電子ビームのエネルギー量を
電源電圧で加減することができるので、蒸着量の制御が
容易であり、又高融点の材料を蒸着することが可能であ
る等の利点があるが、他方電子ビーム電圧が高電圧のた
めに、電子ビームが投射される蒸着ソースからX線が発
生されることになる。In this way, E'B evaporation has advantages such as the ability to adjust the amount of energy of the electron beam by adjusting the power supply voltage, making it easy to control the amount of evaporation, and making it possible to evaporate materials with high melting points. On the other hand, since the electron beam voltage is high, X-rays are generated from the evaporation source onto which the electron beam is projected.
このX線は、半導体装置の製造工程で1μm以下の微細
なパターニングを形成する際に、電子ビーム用レジスト
膜を使用して、電子ビーム露光でパターニングを行うの
が通例であり、このような電子ビーム露光用レジスト膜
で被着された基板をEB蒸着で蒸着する場合には、被蒸
着基板面の電子ビーム露光用のレジスト膜がX線によっ
て感光され、折角電子ビーム露光によって高精度にパタ
ーニングされたレジスト膜の非露光部分迄露光されて蒸
着のパターニングの精度が劣化するという欠点がある。When forming fine patterns of 1 μm or less in the manufacturing process of semiconductor devices, this X-ray is normally used to pattern by electron beam exposure using an electron beam resist film. When a substrate covered with a resist film for beam exposure is vapor-deposited by EB evaporation, the resist film for electron beam exposure on the surface of the substrate to be vapor-deposited is exposed to X-rays, and is patterned with high precision by the electron beam exposure. This method has the disadvantage that unexposed portions of the resist film are exposed to light, resulting in deterioration of the patterning accuracy of vapor deposition.
半導体装置における高集積化の傾向と、優れた高周波特
性を有する半導体装置を実現するために半導体素子の電
極を可能な限り緻密に製作するために電子ビーム露光で
レジスト膜のパターニングを行って高精度の電極形成を
するが、その−例として、例えば低雑音の電界効果トラ
ンジスタ(FET、)のゲート電極の形成等があげられ
る。With the trend toward higher integration in semiconductor devices, and in order to create semiconductor devices with excellent high-frequency characteristics, we are using electron beam exposure to pattern resist films to make the electrodes of semiconductor elements as precise as possible. An example of this is the formation of a gate electrode for a low-noise field effect transistor (FET).
作
このFETの製作する際に、最初に基板にレジスト膜を
被着し、そのレジスト膜を電子ビーム露光と現像によっ
てパターニングを行い、その基板をEB蒸着装置に配置
して蒸着が行われる。When manufacturing this FET, a resist film is first deposited on a substrate, the resist film is patterned by electron beam exposure and development, and the substrate is placed in an EB evaporation device to perform evaporation.
第2図は従来の電子ビーム蒸着装置の断面を示す模式図
であるが、真空にされた容器1のなかに単数以上の被蒸
着基板2を配置する基板台3があり、この基板台3に対
応して、蒸着ソース4を蒸発させるための坩堝5と、そ
の坩堝に充填されている蒸着材料に電子ビームを投射す
る電子ガン6があって、ビーム電圧は電源7によって坩
堝5と、電子ガン6との間に印加される。FIG. 2 is a schematic diagram showing a cross section of a conventional electron beam evaporation apparatus. In a vacuumed container 1, there is a substrate stand 3 on which one or more substrates 2 to be evaporated are placed. Correspondingly, there is a crucible 5 for evaporating the evaporation source 4 and an electron gun 6 for projecting an electron beam onto the evaporation material filled in the crucible, and a beam voltage is applied to the crucible 5 and the electron gun by a power source 7. 6.
この場合に、蒸着ソース4に高エネルギーの電子ビーム
が投射されるために、蒸着ソース4から矢印のようなX
線8が容器内で発射されて、被蒸着基板2にも、このX
線が投射される。In this case, since a high-energy electron beam is projected onto the evaporation source 4, the evaporation source 4 emits an
The ray 8 is emitted inside the container, and this X
A line is projected.
このX線の発生量を少なくするために、蒸着のレートを
変化させるとか、又は蒸着ソースと被蒸着基板との距離
を離す等の手段が講しられているが、前者では蒸着工程
時間が掛り過ぎて不経済であり、後者では蒸着装置の大
きさに制限があって、従来X線による影響を完全に防止
することは不可能であった。In order to reduce the amount of X-rays generated, measures such as changing the deposition rate or increasing the distance between the deposition source and the substrate to be deposited have been taken, but the former takes longer time for the deposition process. In the latter case, the size of the vapor deposition apparatus is limited, and conventionally it has been impossible to completely prevent the effects of X-rays.
上記の構成のEB蒸着装置においては、高電圧の電子ビ
ームを蒸着ソースに投射するのであるから、当然X線が
発生するものであり、従ってX線の発生を防止すること
は不可能であるが、X線によって感光する被蒸着基板を
X線から遮蔽することにより、X線による影響を大幅に
減少することが可能である。In the EB evaporation apparatus with the above configuration, since a high-voltage electron beam is projected onto the evaporation source, X-rays are naturally generated, and therefore it is impossible to prevent the generation of X-rays. By shielding the substrate to be deposited, which is sensitive to X-rays, from the X-rays, it is possible to significantly reduce the influence of the X-rays.
そのために本問題を解決する方法として、蒸着ソースと
被蒸着基板との間に、遮蔽板を設け、この遮蔽板には蒸
着物が通過するスリットを形成し、且つこの遮蔽板を回
転することにより、蒸着装置内に配置された複数の被蒸
着基板のそれぞれが均質な蒸着がなされるようにしたも
のである。Therefore, as a method to solve this problem, a shielding plate is provided between the evaporation source and the substrate to be evaporated, a slit is formed in the shielding plate through which the deposit passes, and the shielding plate is rotated. , uniform vapor deposition is performed on each of a plurality of substrates to be vapor deposited arranged in a vapor deposition apparatus.
本発明は上記問題点を解消した蒸着装置を提供するもの
で、その手段は、基板の一部が電子ビーム用レジスト膜
で被覆された該基板の表面に電子ビーム蒸着法で蒸着を
行う際に、蒸着ソースと該基板との間に、回転可能で且
つ少なくとも単数以上のスリットを有するX線防止板を
設けたことを特徴とする電子ビーム法蒸着装置を提供す
ることによって達成できる。The present invention provides an evaporation apparatus that solves the above problems, and has a means for performing evaporation using an electron beam evaporation method on the surface of a substrate, a part of which is coated with an electron beam resist film. This can be achieved by providing an electron beam vapor deposition apparatus characterized in that a rotatable X-ray prevention plate having at least one or more slits is provided between the vapor deposition source and the substrate.
即ち、電子ガンからの電子ビームが高電圧で蒸着ソース
に衝突する際にX線を発生し、そのX線が被蒸着基板の
レジスト膜を露光するものであるから、そのX線の発生
源である蒸着ソースと被蒸着基板との間を遮蔽板で遮蔽
し、その遮蔽板上に蒸着ソースと被蒸着基板の相対位置
を考慮した、蒸着物質が通過するスリットを設け、且つ
複数の被蒸着基板が同時に蒸着できるように遮蔽板を回
転させる構造にして、X線の被害を防止するように考慮
したものである。In other words, when the electron beam from the electron gun collides with the evaporation source at high voltage, it generates X-rays, and the X-rays expose the resist film on the substrate to be evaporated. A shielding plate is provided between a certain evaporation source and a substrate to be evaporated, a slit is provided on the shielding plate through which the evaporation material passes, taking into consideration the relative position of the evaporation source and the substrate to be evaporated, and a plurality of substrates to be evaporated are provided. The structure is such that the shield plate is rotated so that both can be vapor-deposited at the same time, thereby preventing damage from X-rays.
第1図に本発明のEB蒸着装置を説明するためのEB蒸
着装置の内部の透視図であるが、真空にされた容器11
のなかに、複数個の被蒸着基板12が基板台13の円周
方向に配置され、この被蒸着基板12に対応して、蒸着
ソースI4を蒸発させるため電子ビームを投射する電子
ガン16があって、電源17によって坩堝15と電子ガ
ン16との間に電圧が印加される。FIG. 1 is a perspective view of the inside of the EB evaporation apparatus for explaining the EB evaporation apparatus of the present invention.
A plurality of substrates 12 to be evaporated are arranged in the circumferential direction of a substrate table 13, and there is an electron gun 16 corresponding to each substrate 12 to project an electron beam to evaporate the evaporation source I4. Then, a voltage is applied between the crucible 15 and the electron gun 16 by the power source 17.
本発明による遮蔽板18は、基板台13と蒸着ソース1
4との間に設けられたものであって、はぼ被蒸着基板1
20寸法番こ対応した立体角で蒸着ソース14からの蒸
発物質が通過できるような(図では実線の矢印)寸法の
スリット19を設けておき、然もこの遮蔽板は回転可能
構造20にして、複数の被蒸着基板12が均質に蒸着被
膜されるように考慮がなされている。A shielding plate 18 according to the present invention includes a substrate table 13 and a deposition source 1.
4, which is provided between the substrate 1 to be deposited and
A slit 19 having a dimension (solid arrow in the figure) through which the evaporated material from the evaporation source 14 can pass through is provided at a solid angle corresponding to the 20 dimension number, and this shielding plate is made to have a rotatable structure 20. Consideration is given so that the plurality of substrates 12 to be vapor-deposited are uniformly coated with vapor-deposited films.
このような遮蔽板1Bを設けることにより、蒸着ソース
から放射されるX線は点線の矢印のように遮蔽板で反射
され、被蒸着基板に対するX線放射は僅かにスリット1
9を通過して投射されるだけなのでX線によるレジスト
膜への影響を殆ど除去すt ることがで
きる。By providing such a shielding plate 1B, the X-rays emitted from the deposition source are reflected by the shielding plate as shown by the dotted arrow, and the X-rays emitted to the substrate to be deposited are slightly transmitted through the slit 1.
Since the X-rays are only projected through X-rays 9, the influence of the X-rays on the resist film can be almost completely eliminated.
実際のEB蒸着装置の動作として、被蒸着基板にチタン
(Ti) 、白金(Pt)のような高融点の金属を50
00人の厚みで蒸着する場合を例にとると、それらの蒸
着金属材料を坩堝15に充填し、坩堝15と電子ガン1
6との間に電圧6kvを印加することによって、ビーム
電流がほぼ0.5Aになり、この電力によって坩堝に充
填された蒸着金属材料が溶融、蒸発するがこの際に遮蔽
板18を数r、p、mの速度で回転させることにより、
遮蔽板のスリットを通過する蒸着金属材料を複数の基板
に蒸着させることができる。As for the actual operation of the EB evaporation equipment, 50% of high melting point metals such as titanium (Ti) and platinum (Pt) are applied to the substrate to be evaporated.
For example, in the case of vapor deposition to a thickness of 0.000, the crucible 15 is filled with these vapor-deposited metal materials, and the crucible 15 and the electron gun 1 are
6, the beam current becomes approximately 0.5 A, and this electric power melts and evaporates the deposited metal material filled in the crucible. At this time, the shielding plate 18 is By rotating at speeds p and m,
The deposited metal material passing through the slit in the shielding plate can be deposited on a plurality of substrates.
しかも、レジスト膜に対するX線の露光現象は殆ど完全
に防止することが可能となって蒸着面のバターニングの
精度を大幅に改善することができる。Moreover, the phenomenon of exposure of the resist film to X-rays can be almost completely prevented, and the accuracy of patterning of the vapor deposition surface can be greatly improved.
尚、本説明では、被蒸着基板を固定し、遮蔽板を回転さ
せた場合についてであるが、これは遮蔽板を回転する方
が機構的に容易であるとの理由によるもので、これと反
対に遮蔽板を固定して被蒸着基板を回転させても同一の
結果が得られる。In this explanation, the case where the substrate to be deposited is fixed and the shielding plate is rotated is explained, but this is because rotating the shielding plate is mechanically easier; The same result can be obtained even if the shielding plate is fixed to the substrate and the substrate to be deposited is rotated.
以上詳細に説明したように、本発明のEB蒸着装置を採
用することにより、極めて高精度の蒸着のパターニング
が可能になり、これによって高性能の半導体装置が得ら
れるという効果が大なるものがある。As explained in detail above, by employing the EB evaporation apparatus of the present invention, extremely high-precision evaporation patterning becomes possible, which has the great effect of producing high-performance semiconductor devices. .
第1図は本発明の蒸着装置を説明するための断面図。
第2図は従来の蒸着装置を説明するための透視図である
。
図において、
11は真空容器、 12は被蒸着基板、13は基
板台、 14は蒸着ソース15は坩堝、
16は電子ガン17は電源、 18は
遮蔽板、19はスリット、 20は遮蔽板の回転
部をそれぞれ示す。
麩 ]
第2図FIG. 1 is a sectional view for explaining the vapor deposition apparatus of the present invention. FIG. 2 is a perspective view for explaining a conventional vapor deposition apparatus. In the figure, 11 is a vacuum container, 12 is a substrate to be deposited, 13 is a substrate stand, 14 is a deposition source 15 is a crucible,
Reference numeral 16 indicates an electronic gun 17, a power supply, 18 a shielding plate, 19 a slit, and 20 a rotating portion of the shielding plate. ] Fig. 2
Claims (1)
面に、電子ビーム蒸着装置内で蒸着を行う際に、蒸着ソ
ースと該基板との間に、回転可能で且つ少なくとも単数
以上のスリットを有するX線防止板を設けたことを特徴
とする電子ビーム蒸着装置。When performing vapor deposition on the surface of a substrate coated with a patterned resist film in an electron beam evaporation device, the X-ray prevention device is rotatable and has at least one or more slits between the vapor deposition source and the substrate. An electron beam evaporation device characterized by being provided with a plate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16866084A JPS6148566A (en) | 1984-08-10 | 1984-08-10 | Electron beam vapor deposition device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16866084A JPS6148566A (en) | 1984-08-10 | 1984-08-10 | Electron beam vapor deposition device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6148566A true JPS6148566A (en) | 1986-03-10 |
Family
ID=15872136
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16866084A Pending JPS6148566A (en) | 1984-08-10 | 1984-08-10 | Electron beam vapor deposition device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6148566A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010132991A (en) * | 2008-12-08 | 2010-06-17 | Hitachi Zosen Corp | Electron beam vapor deposition apparatus |
WO2010116682A1 (en) | 2009-03-30 | 2010-10-14 | 三菱マテリアル株式会社 | Process for producing porous sintered aluminum, and porous sintered aluminum |
WO2010140290A1 (en) | 2009-06-04 | 2010-12-09 | 三菱マテリアル株式会社 | Process for production of aluminum complex comprising sintered porous aluminum body |
US10543531B2 (en) | 2014-10-30 | 2020-01-28 | Mitsubishi Materials Corporation | Porous aluminum sintered material and method of producing porous aluminum sintered material |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5298631A (en) * | 1976-02-16 | 1977-08-18 | Hitachi Ltd | Voporrdepositing device by heating using electronic beam |
-
1984
- 1984-08-10 JP JP16866084A patent/JPS6148566A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5298631A (en) * | 1976-02-16 | 1977-08-18 | Hitachi Ltd | Voporrdepositing device by heating using electronic beam |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010132991A (en) * | 2008-12-08 | 2010-06-17 | Hitachi Zosen Corp | Electron beam vapor deposition apparatus |
WO2010116682A1 (en) | 2009-03-30 | 2010-10-14 | 三菱マテリアル株式会社 | Process for producing porous sintered aluminum, and porous sintered aluminum |
WO2010140290A1 (en) | 2009-06-04 | 2010-12-09 | 三菱マテリアル株式会社 | Process for production of aluminum complex comprising sintered porous aluminum body |
KR20120037399A (en) | 2009-06-04 | 2012-04-19 | 미쓰비시 마테리알 가부시키가이샤 | Process for production of aluminum complex comprising sintered porous aluminum body |
US10543531B2 (en) | 2014-10-30 | 2020-01-28 | Mitsubishi Materials Corporation | Porous aluminum sintered material and method of producing porous aluminum sintered material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2932650B2 (en) | Manufacturing method of microstructure | |
US3117025A (en) | Thin filming apparatus | |
US3205087A (en) | Selective vacuum deposition of thin film | |
JP2004288906A (en) | Device for elongating lifetime of stencil mask | |
US7062348B1 (en) | Dynamic mask for producing uniform or graded-thickness thin films | |
US3614423A (en) | Charged particle pattern imaging and exposure system | |
JPH0867970A (en) | Electron gun vapor deposition device | |
JPS6148566A (en) | Electron beam vapor deposition device | |
JP2004256843A (en) | Vacuum vapor deposition apparatus | |
US3607382A (en) | Method of producing photovarnish masks for semiconductors | |
TWI725319B (en) | Mask assembly | |
JPS62263973A (en) | Thin metallic film and its production | |
US4555460A (en) | Mask for the formation of patterns in lacquer layers by means of X-ray lithography and method of manufacturing same | |
JPH03129349A (en) | Production of photomask | |
JPS62185875A (en) | Apparatus for forming film in vapor phase | |
JPH05166236A (en) | Apparatus for producing magneto-optical recording medium | |
JPS59100270A (en) | Forming method of thin film | |
JPS60165373A (en) | Electron beam vapor deposition apparatus | |
JPS61124568A (en) | Ion beam sputter device | |
JP3026578B2 (en) | Thin film forming equipment | |
JP2890686B2 (en) | Laser sputtering equipment | |
JP2656302B2 (en) | Thin film formation method | |
JPH02311307A (en) | Production of superconductor thin film | |
JPH0660390B2 (en) | Planar magnetron method and apparatus for forming a film on a film formation target substrate having micropores | |
JPH02160609A (en) | Target for forming oxide superconductor |