JPS62263973A - Thin metallic film and its production - Google Patents

Thin metallic film and its production

Info

Publication number
JPS62263973A
JPS62263973A JP61103816A JP10381686A JPS62263973A JP S62263973 A JPS62263973 A JP S62263973A JP 61103816 A JP61103816 A JP 61103816A JP 10381686 A JP10381686 A JP 10381686A JP S62263973 A JPS62263973 A JP S62263973A
Authority
JP
Japan
Prior art keywords
thin
metallic film
film
metal
org
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61103816A
Other languages
Japanese (ja)
Inventor
Kazumichi Omura
大村 八通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP61103816A priority Critical patent/JPS62263973A/en
Publication of JPS62263973A publication Critical patent/JPS62263973A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/08Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/14Decomposition by irradiation, e.g. photolysis, particle radiation or by mixed irradiation sources
    • C23C18/145Radiation by charged particles, e.g. electron beams or ion irradiation

Abstract

PURPOSE:To simply and easily obtain a thin metallic film in which the metal having excellent dimensional accuracy is made to remain by forming a thin org. metallic film on a substrate, and radiating electric charge particle beams thereto to decompose the org. metal. CONSTITUTION:An SiN film 2 of a holding substrate is formed on an Si wafer 1 and the thin org. metallic film 4 is formed thereon by spin-coating the org. metal thereon. The charge particle beams are radiated thereto in a vacuum at the acceleration voltage necessary for the thickness of the thin film 4, and the thin org. metallic film 4 is changed to the thin metallic film 4 down to the boundary with the SiN film 2. The thin org. metallic film 4 in the non- radiated part is then dissolved away by a solvent. The thin metallic film 5 formed with the fine wire pattern of the metal is thereby obtd. The above- mentioned metal is preferably Au or Pt and the charge particles are preferably ions. This method is adequate for a field such as X-ray lithography for forming the fine pattern.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、特に微細なパターンを形成するためのX線
リソグラフィ等の分野に適合し、高精度に製作されたX
線マスクとその製作および修正方法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Field of Application) The present invention is particularly applicable to fields such as X-ray lithography for forming fine patterns, and is particularly suited to the field of X-ray lithography produced with high precision.
Concerning line masks and their production and modification methods.

(従来の技術) 半導体素子が微細化されるにつれその製造プロセスには
光りソグラフィに代わってX線リソグラフィが用いられ
る可能性が高まっている。微細化が用いる光の波長程麿
で限定されるためで、可視光に比し波長が数自分の−の
軟X線が注目されるわけである。このような波長領域で
はレンズが使用出来ない。光りソグラフィでは半導体上
パターンの5倍又は10倍のパターンを有するマスクを
用い、これをレンズを用いて縮小することが出来るため
マスクパターンの精度は緩やかでも良い。
(Prior Art) As semiconductor devices become smaller, there is an increasing possibility that X-ray lithography will be used instead of optical lithography in their manufacturing process. This is because the wavelength of the light used for miniaturization is limited, and soft X-rays with wavelengths several orders of magnitude smaller than visible light are attracting attention. Lenses cannot be used in such wavelength ranges. In optical lithography, a mask having a pattern five or ten times larger than the pattern on the semiconductor is used, and since this can be reduced using a lens, the accuracy of the mask pattern may be moderate.

しかし軟X線リングラフィでは上記の理由で5倍、10
倍マスクが使用出来ず、1:1等倍マスクを使用する。
However, in soft X-ray phosphorography, 5 times, 10 times
A double mask cannot be used, so a 1:1 equal size mask is used.

従って等化マスクパターンは最小線幅の数分の−の精度
が要求される。
Therefore, the equalization mask pattern is required to have an accuracy of - several times the minimum line width.

ところで軟X線リソグラフィで用いられるマスクの一般
的構造と製造法は次のようなものである。シリコンウェ
ハの表面に低原子番号の元素から成る無機薄膜を被着形
成する。これは後述のX線吸収体のマスクパターンを保
持する基板となるもので、CVO法によるBN、SiN
、SIOユ等である。無機膜の代わりにポリイミド膜や
これらの多層膜も用いられる。次にX線吸収体のパター
ンをこの保持薄膜上に形成刃る。吸収体には原子番号が
大きく、化学的に安定な材料としてAu。
By the way, the general structure and manufacturing method of masks used in soft X-ray lithography are as follows. An inorganic thin film made of a low atomic number element is deposited on the surface of a silicon wafer. This will be the substrate that holds the mask pattern of the X-ray absorber, which will be described later, and is made of BN, Si, and
, SIO Yu et al. Polyimide films and multilayer films thereof may also be used instead of inorganic films. A pattern of X-ray absorbers is then formed on this holding film. Au is a chemically stable material with a large atomic number for the absorber.

Pt、W、Ta等が用いられる。就中Auは最も広く用
いられている。これら吸収体パターンは二 一種類の方
法で製作されている。第一の方法では保持薄膜上にAu
との付着を良くするためCr又はTi等を50=100
人蒸着、その上にメッキ用下地としてAuを50−10
0尺蒸着する。レジストを塗布、電子ビーム露光により
レジストを微細加工し、前記Aug膜までの開孔を形成
する。
Pt, W, Ta, etc. are used. Among them, Au is the most widely used. These absorbent patterns are manufactured using two different methods. In the first method, Au
50=100 of Cr or Ti etc. to improve adhesion with
Manual vapor deposition, then 50-10 Au as a plating base
Deposit 0 shaku. A resist is applied, and the resist is microfabricated by electron beam exposure to form an opening up to the Aug film.

次にこのAug膜を陰極としてALJのメッキを行う。Next, ALJ plating is performed using this Aug film as a cathode.

Auは上記レジストの開孔のみにメッキされる。0.5
μm前後の厚さにメッキ層を成長した後、レジストを除
去、レジメ1〜下の薄いAU/(Cr、Ti)膜を希王
水等で除去する。最終的には保持薄膜下の3iウエハを
中心部のみ裏面よりエッヂし、保持薄膜のみとする。こ
れにより。
Au is plated only on the openings of the resist. 0.5
After growing a plating layer to a thickness of about μm, the resist is removed, and the thin AU/(Cr, Ti) films under Regime 1 are removed with dilute aqua regia or the like. Finally, only the central portion of the 3i wafer under the holding thin film is edged from the back surface, leaving only the holding thin film. Due to this.

可視光と軟X線に透明な薄膜上に形成したAuパターン
を持つX線マスクが得られる。次に第二の一2= パターン形成V、では、上記の保持薄膜上に、ALJ、
pt、丁a、W等を吸収体に必要な厚さに一面に堆積し
た復、エツチングにより吸収体パターンを形成するもの
である。吸収体がAIJの場合では、先づ50−100
人のCr又はTi膜を蒸着。
An X-ray mask having an Au pattern formed on a thin film transparent to visible light and soft X-rays is obtained. Next, in the second pattern formation V, ALJ,
The absorber pattern is formed by depositing PT, D, W, etc. on one surface to the thickness required for the absorber, and then etching it. If the absorber is AIJ, 50-100
Deposit Cr or Ti film.

この上にAUを0.5μm程度堆積する。次にTaを0
.1−0.2μm厚さに電子ビーム蒸もする。レジスト
を塗布、電子ビーム露光でパターンを形成した後、この
レジストをマスクとしてCBrF3等のガスによるRI
Eで]aをエッヂし、Taにパターンを形成1次いでT
aをマスクとしてArイオンエツチングによりAUにパ
ターンを形成する。貝−の後、中心パターン部の3iを
裏面よりエッチしてマスクが完成する。
On top of this, AU is deposited to a thickness of about 0.5 μm. Next, set Ta to 0
.. Electron beam evaporation is also performed to a thickness of 1-0.2 μm. After applying a resist and forming a pattern by electron beam exposure, RI is performed using a gas such as CBrF3 using this resist as a mask.
Edge [E] a and form a pattern on Ta 1 then T
A pattern is formed on the AU by Ar ion etching using a as a mask. After etching, the central pattern portion 3i is etched from the back side to complete the mask.

このようにして作られたX線マスクの吸収体では全面積
に亙って完全でなく、欠陥が存在する。
The absorber of the X-ray mask produced in this way is not perfect over the entire area and has defects.

例えばメッキ法によるAuパターンの場合、レジスト開
孔が一部で大きすぎたり余分なピンホールがあるとAu
寸法が大きくなり又は不必要なALJが付着する。この
ような欠陥に対しては集束イオンビームのスパッタリン
グ機能を利用して余分な吸収パターンを除去出来る。反
対に、パターンの欠落部分を修正する場合は簡単でない
。同じく集束イオンビームを用い、高真空のイオンビー
ム室と試料室を分離し、イオンビーム通過のための小孔
を設けてイオンビームを試料室に導入する。試料室には
王a堆積用にはTa (QC!2H,>、。
For example, in the case of an Au pattern made by plating, if some resist openings are too large or there are extra pinholes, the Au
Increased size or unnecessary ALJ attachment. For such defects, redundant absorption patterns can be removed using the sputtering function of a focused ion beam. On the other hand, it is not easy to correct missing parts of a pattern. Similarly, using a focused ion beam, the high-vacuum ion beam chamber and sample chamber are separated, a small hole is provided for the ion beam to pass through, and the ion beam is introduced into the sample chamber. The sample chamber contains Ta (QC!2H,>, for aqua deposition).

W堆積にはWF6の減圧ガスを流し、堆積させるべき箇
所にビームを整合させ、照射すると、ガス分子が吸着し
イオンにより分解してTa、Wが堆積して行く。しかし
このような方法では小孔といえども高真空室側へ使用ガ
スの流入がある。又。
For W deposition, a reduced pressure gas of WF6 is flowed, the beam is aligned with the location to be deposited, and when irradiated, gas molecules are adsorbed and decomposed by ions, and Ta and W are deposited. However, in this method, the gas used flows into the high vacuum chamber even though the holes are small. or.

化学的に安定なALJヤPtによる修正では常温で気体
の分子化合物がないことから不可能である。
Modification using ALJ or Pt, which is chemically stable, is impossible because there is no molecular compound that is a gas at room temperature.

(発明が解決しようとする問題点) 以上を整理すると、従来法によるX線マスクとその製造
法においては、近接効果等で微細加工に問題のある電子
ビーム露光によるレジストプロセスをメッキ法又はRI
Eと組合せる複雑なものであり、吸収パターンの欠落欠
陥修正に対しては。
(Problems to be Solved by the Invention) To summarize the above, in conventional X-ray masks and their manufacturing methods, the resist process using electron beam exposure, which has problems in microfabrication due to proximity effects, is replaced by plating or RI.
It is complex to combine with E for missing defect correction of absorption pattern.

−5= Au、ptの直接堆積方法が存在しなかったということ
が出来る。本発明の目的は、マスク製作においては上記
の組合せを必要とすることなく直接吸収体パターンが得
られ、又、吸収体欠落欠陥部に直接Au、Pt等を堆積
出来る方法により、高精度のX線マスク等を提供するこ
とである。
-5=It can be said that there was no direct deposition method for Au and pt. The purpose of the present invention is to obtain a direct absorber pattern without requiring the above-mentioned combinations in mask production, and to achieve high-precision The aim is to provide line masks, etc.

[発明の構成] (問題点を解決するだめの手段) 本発明においTは、bric]ht  goldと称さ
れる。テルペン類と硫黄の誘導体と金(又は白金)塩の
化合物(以下有機金又は有機白金と略称)の薄膜を基板
上に形成し、真空中でイオンビーム照射により分解、非
金属成分を蒸発せしめ。
[Structure of the Invention] (Means for Solving the Problems) In the present invention, T is referred to as bric]ht gold. A thin film of a compound of terpenes, sulfur derivatives, and gold (or platinum) salt (hereinafter referred to as organic gold or organic platinum) is formed on a substrate, and decomposed by ion beam irradiation in a vacuum to evaporate the nonmetallic components.

金(又は白金)のみを残置し、未照射薄膜を除去するこ
とにより基板上に金(又は白金)膜を形成する。平行イ
オンビームを、マスクを通過せしめて断面をパターン化
して照射するか、又はいわゆる液体金属イオン源から得
られる集束イオンビームを用いて描画照射することによ
り金等の微細パターンが得られる。X線マスク吸収体の
欠落欠陥6一 修正においては上記有機金薄膜をX線マスクに塗イFし
た後、欠落部分のみを集束イオンビームで照射、金等を
析出せしめて修復し、後に余分な薄膜を溶解除去する。
A gold (or platinum) film is formed on the substrate by leaving only the gold (or platinum) and removing the unirradiated thin film. A fine pattern of gold or the like can be obtained by passing a parallel ion beam through a mask to pattern the cross section and irradiating it, or by performing drawing irradiation using a focused ion beam obtained from a so-called liquid metal ion source. To repair missing defects in X-ray mask absorbers, after coating the X-ray mask with the organic gold thin film described above, only the missing parts are irradiated with a focused ion beam, depositing gold, etc. to repair them, and later removing the excess. Dissolve and remove the thin film.

(作用) テルペン類と硫黄の誘脅体と金(又は白金)塩の化合物
すなはちbrrght  goldはセラミックス等に
塗布して薄膜状とじ700−800℃で加熱することに
より金(白金)以外の軽元素が蒸発し、金(白金)の薄
膜か残留することか知られでいるがこの有機金(白金)
薄膜を真空中でイオンビーム照射することによっても同
様の効果かあることを見出した。イオンビームはその加
速電圧により薄膜中への到達距離1が決まるため、N膜
厚さに必要な加速電圧て照射することにより。
(Function) A compound of terpenes, sulfur attractants, and gold (or platinum) salt, ie, brrght gold, is applied to ceramics, etc., and is bound into a thin film.By heating at 700-800°C, it is possible to remove substances other than gold (platinum). It is known that when light elements evaporate, a thin film of gold (platinum) remains, but this organic gold (platinum)
We found that a similar effect can be obtained by irradiating a thin film with an ion beam in a vacuum. Since the distance 1 that the ion beam reaches into the thin film is determined by its acceleration voltage, the ion beam is irradiated with the acceleration voltage necessary for the thickness of the N film.

基板との界面まで有機薄膜を金(白金)薄膜に変化させ
、非照射部有機薄膜を溶剤で除去する際にも金属膜を残
置せしめ得る。
The organic thin film is changed to a gold (platinum) thin film up to the interface with the substrate, and even when the non-irradiated organic thin film is removed with a solvent, the metal film can be left behind.

(実施例) (I)2インチ径の3iウエハ上に1μm厚の低引張応
力を右するSiN膜を形成、この上に溶剤で希釈したb
right  goldを、リソグラフィに用いるレジ
ストのように回転塗布し、乾燥する。乾燥を促進するた
め80’0.20分程度、窒素ガス中に保っても良い。
(Example) (I) A 1 μm thick SiN film with low tensile stress was formed on a 2-inch diameter 3i wafer, and on top of this was diluted with a solvent.
Right gold is spin coated like a resist used in lithography and dried. To accelerate drying, it may be kept in nitrogen gas for about 80'0.20 minutes.

約0.5μm厚の均一な有機金薄膜が得られた。これを
集束イオンビーム装置に入れ、lX10−’Paの真空
で。
A uniform organic gold thin film about 0.5 μm thick was obtained. This was placed in a focused ion beam device under a vacuum of lx10-'Pa.

Ga  イオノビームを180kVの加速電圧で照射し
た。ビーム径は0.5μm、ビーム電流は8X10”△
であった。線ドーズは1.5XIC5’1ons/cm
にイjるようビームを走査した。トルエンやトリクロル
エチレン等の溶剤で未照剣有a薄膜を溶解除去した結果
、SiN上に巾0.5μm、高さ0.27μmの金の細
線パターンが形成されたことが分った。Siウェハの中
心を20mm直径の円状に央面よりエツチングで取り去
り、X線マスクとし、この金パターン側を、他の3iウ
エハに塗イロしたレジメ1〜と20μmlし。
A Ga ion beam was irradiated with an accelerating voltage of 180 kV. Beam diameter is 0.5μm, beam current is 8X10”△
Met. Line dose is 1.5XIC5'1ons/cm
I scanned the beam so that it hit the target. As a result of dissolving and removing the unglazed a thin film with a solvent such as toluene or trichlorethylene, it was found that a fine gold line pattern with a width of 0.5 μm and a height of 0.27 μm was formed on the SiN. A circle with a diameter of 20 mm was removed from the center of the Si wafer by etching, used as an X-ray mask, and the gold pattern side was coated with 20 .mu.ml of Regime 1 to 2, which was applied to another 3i wafer.

パターン側より軟X線を照射、レジストを露光。Irradiates soft X-rays from the pattern side and exposes the resist.

現像した結果、0.5μmのl]のレジストパターンが
Ifられた。細線パターン、大面積パターン共、電子ビ
ーム露光時の近接効果はなかった。
As a result of development, a resist pattern of 0.5 μm was obtained. There was no proximity effect during electron beam exposure for both the thin line pattern and the large area pattern.

(2)同じ<Siウェハ上のSiN膜上にメッキ法で形
成した金のマスクパターンを電子ビームにより検査した
所、メッキ液中のゴミによると考えられる線状部の欠落
があった。0.4μm厚。
(2) When a gold mask pattern formed by plating on a SiN film on the same <Si wafer was inspected using an electron beam, it was found that linear portions were missing, which was thought to be due to dust in the plating solution. 0.4μm thick.

0.5μm巾の金線が1.5μm長さに亙り欠損してい
た。有機金薄膜を0.75μmマスク上に塗布、検査時
のデータを基に、集束イオノビームを欠陥部分に照射し
た。B“ビームを150kVの加速電圧、8X10  
 Aの電流で照射した。
The gold wire with a width of 0.5 μm was missing over a length of 1.5 μm. An organic gold thin film was applied onto a 0.75 μm mask, and a focused ion beam was irradiated onto the defective area based on the data from the inspection. B “beam accelerating voltage of 150kV, 8X10
It was irradiated with a current of A.

tj−ム径は0.25μm、F−ズは3X10”1on
s/cm″であった。有機膜除去後の検査では欠陥部分
は完全に金線で埋められていた。
Tj-mu diameter is 0.25μm, F-zu is 3X10”1on
Inspection after removing the organic film showed that the defective portion was completely filled with gold wire.

(3)同じ<Siウェハ上にBN膜、有機ポリイミド膜
の複合膜上に有機白金薄膜を0.8μm、回転塗布した
。平行He+ビームを、si薄膜に形成したイオンビー
ム用チャネリングマスクを通して有機白金膜にパターン
照射した。加速電圧は70kVおよび150kVとし、
各加速電圧で2X10  /cm′Lの1−10 を照
m L タ。溶剤で未照射部分を溶解除去し、約0.4
5μm厚のPtパターンを得た。
(3) On the same <Si wafer, an organic platinum thin film of 0.8 μm was spin-coated on a composite film of a BN film and an organic polyimide film. A parallel He+ beam was pattern-irradiated onto the organic platinum film through an ion beam channeling mask formed on the Si thin film. The acceleration voltage is 70kV and 150kV,
Illuminate 1-10 m L of 2X10 /cm'L at each accelerating voltage. Dissolve and remove the non-irradiated area with a solvent to give approximately 0.4
A Pt pattern with a thickness of 5 μm was obtained.

[発明の効果1 以上のようにこの発明は、電子ビーム露光にょるレジス
l〜プロセスを要しない簡便にして優れた寸法精度を右
するX線マスクの製作法であり、又、X線マスクの欠落
欠陥を修正する優れた方法と言い得る。
[Effects of the Invention 1 As described above, the present invention is a simple method for manufacturing an X-ray mask that does not require a resist process using electron beam exposure, and provides excellent dimensional accuracy. This can be said to be an excellent method for correcting missing defects.

イオノビーム照射箇所で金(又は白金)中に若干の有機
膜構成物質を含有する場合があるが、非照射部を取除い
た後、700−800℃等の熱処理をしても良い。AL
J、pttj;t:SiN、SiO。
Although gold (or platinum) may contain some organic film constituent substances at the ionobeam irradiated area, heat treatment at 700-800° C. or the like may be performed after removing the non-irradiated area. AL
J, pttj; t: SiN, SiO.

との付着力が弱いので有機金(白金)膜を塗布する前に
メッキ法等でよく行われるようにCr又は王iとAu 
(Pt)を夫々40−100人蒸着し、本発明により金
(白金)パターン形成後、わづかなエツチング工程で不
要部分のこの金属薄膜を除去すれば良い。本文ではX線
マスクの吸収体パターン形成につき説明したが、金、白
金は金属中=10− でも良導電体であり1本発明により微小配線を形成する
ことが出来る。更に2例えば金は他の元素と共晶合金を
容易に作るため接着材料としても用いられるので接着用
金薄膜の形成に本発明を利用することができる。
Since the adhesion between Cr and Au is weak, it is common practice to coat Cr or Au with plating before applying an organic gold (platinum) film.
(Pt) is deposited by 40 to 100 people each, and after forming a gold (platinum) pattern according to the present invention, unnecessary portions of the metal thin film may be removed by a slight etching process. In this text, the formation of an absorber pattern for an X-ray mask has been described, but gold and platinum are good conductors even when the metal is 10-, and minute wiring can be formed according to the present invention. Furthermore, for example, gold can be used as an adhesive material because it can easily form a eutectic alloy with other elements, so the present invention can be used to form a gold thin film for adhesives.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aは本発明によるX線マスク製作を示す図、bは
X線マスクの構成図、第2図aは本発明によるX線マス
クの欠落欠陥修正を示す図、bは同じ〈従来法を示す図
である。 1・・・シリコンウェハ。2・・・保持基板SiN。 3・・・集束イオンビーム。 4・・・有機金(白金)薄膜。 5・・・イオンビーム照射分解の金(白金)薄膜。 6・・・金(白金)薄膜。7・・・高真空側。 8・・・小孔。9・・・WF6等の低圧ガス。 10・・・イオンビーム照射分解の王a (W)薄膜。 大村へ通 す 第  1   図
FIG. 1a is a diagram showing the production of an X-ray mask according to the present invention, b is a diagram showing the configuration of the X-ray mask, FIG. FIG. 1...Silicon wafer. 2... Holding substrate SiN. 3... Focused ion beam. 4...Organic gold (platinum) thin film. 5... Gold (platinum) thin film decomposed by ion beam irradiation. 6... Gold (platinum) thin film. 7...High vacuum side. 8...Small hole. 9...Low pressure gas such as WF6. 10...King of ion beam irradiation decomposition a (W) thin film. Diagram 1 leading to Omura

Claims (1)

【特許請求の範囲】 ( I )基板上に形成せる有機金属薄膜に加速せる荷電
粒子ビームを照射し該有機金属を分解せしめ、金属を残
留せしめた金属薄膜とその製造方法。 (II)金属をAuあるいはPtとする第( I )項記載
の金属薄膜とその製造方法。 (III)荷電粒子をイオンとする第( I )項記載の金属
薄膜とその製造方法。
[Claims] (I) A metal thin film formed on a substrate, in which the organic metal thin film is irradiated with an accelerated charged particle beam to decompose the organic metal, leaving the metal remaining, and a method for producing the same. (II) The metal thin film and method for producing the same according to item (I), wherein the metal is Au or Pt. (III) The metal thin film and method for producing the same according to item (I), wherein the charged particles are ions.
JP61103816A 1986-05-08 1986-05-08 Thin metallic film and its production Pending JPS62263973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61103816A JPS62263973A (en) 1986-05-08 1986-05-08 Thin metallic film and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61103816A JPS62263973A (en) 1986-05-08 1986-05-08 Thin metallic film and its production

Publications (1)

Publication Number Publication Date
JPS62263973A true JPS62263973A (en) 1987-11-16

Family

ID=14363932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61103816A Pending JPS62263973A (en) 1986-05-08 1986-05-08 Thin metallic film and its production

Country Status (1)

Country Link
JP (1) JPS62263973A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5534312A (en) * 1994-11-14 1996-07-09 Simon Fraser University Method for directly depositing metal containing patterned films
US6599587B2 (en) 2001-09-11 2003-07-29 Samsung Eleectronics Co., Ltd. Organometallic precursor for forming metal pattern and method of forming metal pattern using the same
US6774034B2 (en) 2002-04-30 2004-08-10 Samsung Electronics Co., Ltd Organometallic precursor for forming metal pattern and method of forming metal pattern using the same
US6965045B2 (en) 2001-12-28 2005-11-15 Samsung Electronics Co., Ltd. Organic metal precursor for use in forming metal containing patterned films
US7014979B2 (en) 2002-07-03 2006-03-21 Samsung Electronics Co., Ltd. Organometallic precursor mixture for forming metal alloy pattern and method of forming metal alloy pattern using the same
US7033738B2 (en) 2002-01-03 2006-04-25 Samsung Electronics Co., Ltd. Process of forming a micro-pattern of a metal or a metal oxide
FR2900765A1 (en) * 2006-05-04 2007-11-09 Commissariat Energie Atomique METHOD OF MAKING A TRANSISTOR GRID COMPRISING A DECOMPOSITION OF PRECURSOR MATERIAL IN AT LEAST ONE METALLIC MATERIAL USING AT LEAST ONE ELECTRON BEAM
JP2009519594A (en) * 2005-12-13 2009-05-14 コミシリア ア レネルジ アトミック Reflective lithography mask manufacturing method and mask obtained by the method
US7883838B2 (en) 2002-11-25 2011-02-08 Samsung Electronics Co., Ltd. Organometallic composition for forming a metal alloy pattern and a method of forming such a pattern using the composition

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5534312A (en) * 1994-11-14 1996-07-09 Simon Fraser University Method for directly depositing metal containing patterned films
US6599587B2 (en) 2001-09-11 2003-07-29 Samsung Eleectronics Co., Ltd. Organometallic precursor for forming metal pattern and method of forming metal pattern using the same
US6965045B2 (en) 2001-12-28 2005-11-15 Samsung Electronics Co., Ltd. Organic metal precursor for use in forming metal containing patterned films
US7033738B2 (en) 2002-01-03 2006-04-25 Samsung Electronics Co., Ltd. Process of forming a micro-pattern of a metal or a metal oxide
US6774034B2 (en) 2002-04-30 2004-08-10 Samsung Electronics Co., Ltd Organometallic precursor for forming metal pattern and method of forming metal pattern using the same
US7014979B2 (en) 2002-07-03 2006-03-21 Samsung Electronics Co., Ltd. Organometallic precursor mixture for forming metal alloy pattern and method of forming metal alloy pattern using the same
US7883838B2 (en) 2002-11-25 2011-02-08 Samsung Electronics Co., Ltd. Organometallic composition for forming a metal alloy pattern and a method of forming such a pattern using the composition
US8715914B2 (en) 2002-11-25 2014-05-06 Samsung Electronics Co., Ltd. Organometallic composition for forming a metal alloy pattern and a method of forming such a pattern using the composition
JP2009519594A (en) * 2005-12-13 2009-05-14 コミシリア ア レネルジ アトミック Reflective lithography mask manufacturing method and mask obtained by the method
FR2900765A1 (en) * 2006-05-04 2007-11-09 Commissariat Energie Atomique METHOD OF MAKING A TRANSISTOR GRID COMPRISING A DECOMPOSITION OF PRECURSOR MATERIAL IN AT LEAST ONE METALLIC MATERIAL USING AT LEAST ONE ELECTRON BEAM
WO2007128780A1 (en) * 2006-05-04 2007-11-15 Commissariat A L'energie Atomique Method of producing a transistor gate comprising decomposition of a precursor material into at least one metallic material, by means of at least one electron beam
US8173545B2 (en) 2006-05-04 2012-05-08 Commissariat A L'energie Atomique Method for the fabrication of a transistor gate using at least one electron beam

Similar Documents

Publication Publication Date Title
US4405710A (en) Ion beam exposure of (g-Gex -Se1-x) inorganic resists
US20060204904A1 (en) Metal mask and manufacturing method thereof
US4072768A (en) Method for making patterned gold metallization
JPS62263973A (en) Thin metallic film and its production
US4874632A (en) Process for forming pattern film
US4555460A (en) Mask for the formation of patterns in lacquer layers by means of X-ray lithography and method of manufacturing same
JPH01161718A (en) Manufacture of x-ray mask
JPS6052022A (en) Correcting method of mask pattern
JPS63155618A (en) Mask for x-ray exposure
JPS6242417A (en) Thin film forming method
JPH04113299A (en) X-ray irradiation device and x-ray intensity distribution correcting filter
JPH01150139A (en) Mask correction process for device and mask
JPS61198722A (en) X-ray exposure mask and manufacture thereof
JP2003140356A (en) Method for forming fine pattern
JPH111761A (en) Formation of vapor deposited film and vacuum vapor deposition apparatus
JPS62106626A (en) Manufacture of exposure mask
JPS5898922A (en) Pattern forming method
JPH1126459A (en) Method for forming interconnection of semiconductor element
JP2625107B2 (en) Manufacturing method of exposure mask
JPS5934632A (en) Manufacture of x-ray mask
JPH04210473A (en) Production of semiconductor device
JPH04152514A (en) Manufacture of semiconductor element
JPS5884429A (en) Pattern formation
JPH0232524A (en) X-rays exposure mask
Balasubramanyam et al. Ion beam exposure of (g-Ge x-Se 1-x) inorganic resists