JPS6242417A - Thin film forming method - Google Patents

Thin film forming method

Info

Publication number
JPS6242417A
JPS6242417A JP18235485A JP18235485A JPS6242417A JP S6242417 A JPS6242417 A JP S6242417A JP 18235485 A JP18235485 A JP 18235485A JP 18235485 A JP18235485 A JP 18235485A JP S6242417 A JPS6242417 A JP S6242417A
Authority
JP
Japan
Prior art keywords
substrate
deposited
electron beam
molecule
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18235485A
Other languages
Japanese (ja)
Other versions
JPH0654756B2 (en
Inventor
Shinji Matsui
真二 松井
Katsumi Mori
克己 森
Susumu Asata
麻多 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP18235485A priority Critical patent/JPH0654756B2/en
Publication of JPS6242417A publication Critical patent/JPS6242417A/en
Publication of JPH0654756B2 publication Critical patent/JPH0654756B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials

Abstract

PURPOSE:To form high purity microscopic thin film pattern in a highly precise manner without using a mask by a method wherein gas containing the material to be deposited is fed on the substrate on which said material is deposited, the substrate is cooled down to 10 deg.C or below, and an electron beam is made to irradiate on the desired part on the surface of the substrate. CONSTITUTION:When a cooled substrate 11 on which a material will be deposited is provided in the atmosphere of gas molecule 13 containing the material to be deposited, said gas molecule 13 is adsorbed on the surface of the substrate 11 whereon a material is deposited. The quantity of adsorption molecule 12 depends on the temperature of the substrate, and the quantity of adsorption becomes larger as the temperature of the substrate goes down. When an electron beam 16 is made to irradiate on the substrate 11, the adsorption molecule 12 of the atmospheric gas on the part whereon the electron beam 16 is projected is decomposed into the deposition material element 14 to be contained in the atmospheric gas adsorption molecule 12 and a volatile material molecule 15 by the energy of the electron beam, and the deposition material element 14 is deposited on the substrate surface. On the other hand, the volatile material molecule 15 is exhausted.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、基板上にデポジション材料をデポジションさ
せる薄膜形成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a thin film forming method for depositing a deposition material onto a substrate.

〔従来の技術〕[Conventional technology]

従来、基板上にノ々ターンを形成する場合、第4図(、
)〜(e)および第5図(、)〜(d)に示されている
工程が行なわれて込る。第4図では、基板41上にパタ
ーン形成材料42を蒸着やスノ々ツタ法によプ形成する
(第4図(a))。さらにレジスト43を塗布しく第4
図(b) ) 、次に光露光や電子ビーム露光によシレ
ジスト43のパターニングをする(第4図(C))。そ
して、レジスト43のパターンをマスクとしてケミカル
エツチングまたは、ドライエツチングによジノ譬ターン
形成材料42ヘパターントランスファーヲ行なう(第4
図(d))。そして、レジスト43をはくりする(第4
図(e))。第5図(1)〜(d)ではリフトオフ工程
を示している。基板51上にレジスト52ヲ塗布しく第
5図(a) ) 、次に光露光や電子ビーム露光により
レジスト52のノリーニングをする(第5図(b))。
Conventionally, when forming no-no-turns on a substrate, the process shown in Fig. 4 (,
) to (e) and the steps shown in FIGS. 5(,) to (d) are performed. In FIG. 4, a pattern-forming material 42 is formed on a substrate 41 by vapor deposition or a dripping method (FIG. 4(a)). Furthermore, resist 43 is applied in the fourth step.
(FIG. 4(B)) Then, the resist 43 is patterned by light exposure or electron beam exposure (FIG. 4(C)). Then, using the pattern of the resist 43 as a mask, pattern transfer is performed to the pattern forming material 42 by chemical etching or dry etching (fourth step).
Figure (d)). Then, the resist 43 is peeled off (the fourth
Figure (e)). FIGS. 5(1) to 5(d) show the lift-off process. A resist 52 is coated on the substrate 51 (FIG. 5(a)), and then the resist 52 is subjected to nolining by light exposure or electron beam exposure (FIG. 5(b)).

次に/4’ターン材料53を蒸着しく第5図(C))、
レジスト52を剥難することによシ、基板51上にノ母
ターン材料53をノリーン形成できる(第5図(d))
Next, /4' turn material 53 is deposited (FIG. 5(C)),
By peeling off the resist 52, the base material 53 can be formed on the substrate 51 (FIG. 5(d)).
.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この従来の方法では基板上にパターン材料を形成するの
に工程がきわめて長いという欠点を有していた。
This conventional method has the disadvantage that the process for forming the pattern material on the substrate is extremely long.

本発明の目的は、レジスト等のマスクを必要とせず、高
精度、高純度の微細な薄膜パターンを形成することので
きる、電子ビームを用いた薄膜形成方法を提供すること
にある。
An object of the present invention is to provide a thin film forming method using an electron beam that can form a fine thin film pattern with high precision and high purity without requiring a mask such as a resist.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、少なくとも堆積させるべき材料を構成元素と
して含んだガスを被堆積基板上に供給し、基板を10℃
以下に冷却し、その表面の所望の部分に電子ビームを照
射して前記材料を基板上に堆積させることを特徴とする
薄膜形成方法である。
In the present invention, a gas containing at least a material to be deposited as a constituent element is supplied onto a substrate to be deposited, and the substrate is heated at 10°C.
This method of forming a thin film is characterized in that the material is deposited on a substrate by cooling the substrate and irradiating a desired portion of the surface with an electron beam.

〔作用〕[Effect]

次に、本発明の原理と作用について第1図を用いて説明
する。デポジションさせるべき材料を含んだガス分子1
3の雰囲気中に冷却した被デ?ジシ璽ン基板11を設置
すると、ガス分子13が被デポジシ、ン基板11の表面
上に吸着する。12がその吸着ガス分子を示している。
Next, the principle and operation of the present invention will be explained using FIG. 1. Gas molecules containing the material to be deposited 1
Is the target cooled in the atmosphere of 3? When the printed substrate 11 is installed, gas molecules 13 are adsorbed onto the surface of the printed substrate 11. 12 indicates the adsorbed gas molecules.

その吸着量は基板温度に依存し、基板温度が低い程その
吸着量は大きい。電子ビーム16を基板11上に照射す
ると、照射された部分の雰囲気ガスの吸着分子12が電
子ビーム16のエネルギーにより雰囲気ガス吸着分子1
2に含まれるデポジション材料元素14と揮発性材料分
子15に分解し、デポジション材料元素14は基板表面
に析出する。一方揮発性材料分子15は排出される。以
上の様な原理によシ被デlジシ、ン基板11の表面上に
電子ビーム照射によシ、直接、雰囲気ガス中に含まれる
デIジシ、ン材を析出させパターニングする。
The amount of adsorption depends on the substrate temperature, and the lower the substrate temperature, the larger the amount of adsorption. When the electron beam 16 is irradiated onto the substrate 11, the adsorbed molecules 12 of the atmospheric gas in the irradiated area are changed to the atmospheric gas adsorbed molecules 1 due to the energy of the electron beam 16.
2 is decomposed into a deposition material element 14 and a volatile material molecule 15, and the deposition material element 14 is deposited on the substrate surface. Meanwhile, volatile material molecules 15 are discharged. According to the principle described above, the digital material contained in the atmospheric gas is directly deposited and patterned on the surface of the digital substrate 11 by electron beam irradiation.

〔実施例〕〔Example〕

以下に本発明の実施例について図面を参照して説明する
。第2図は本実施例で用いる装置の構成図である。本装
置は電子ビーム照射系208、試料室206及び雰囲気
ガス材料収納室201とから構成されている。本実施例
においては、タングステン(W)を構成元素として含む
六フフ化タングステンW6を雰囲気ガスとして用い、集
束された電子ビーム照射によシ0.5m厚の5io2又
は81基板上にWをデダジションさせた。WF6202
を雰囲気ガス材料収納室201に入れ、Wをデポジショ
ンさせる0、5μm厚の8%02又はSL基板205を
試料として試料台204にセットする。電子ビーム照射
系208と試料室206をIOTory程度以上の高真
空に排気する。雰囲気ガス材料であるwF′6は大気中
では液体であるが真空にひくことによシ、容易にガス化
し、配管203を通り、試料でおる基板205上に照射
される。試料室206の圧力は5X10  Torr程
度である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 is a block diagram of the apparatus used in this embodiment. This apparatus is composed of an electron beam irradiation system 208, a sample chamber 206, and an atmospheric gas material storage chamber 201. In this example, tungsten hexafluoride W6 containing tungsten (W) as a constituent element is used as an atmospheric gas, and W is de-distilled onto a 5io2 or 81 substrate with a thickness of 0.5 m by focused electron beam irradiation. Ta. WF6202
is placed in the atmospheric gas material storage chamber 201, and an 8% 02 or SL substrate 205 with a thickness of 0.5 μm on which W is to be deposited is set on the sample stage 204 as a sample. The electron beam irradiation system 208 and the sample chamber 206 are evacuated to a high vacuum of IOTory or higher. Although wF'6, which is an atmospheric gas material, is a liquid in the atmosphere, it is easily gasified by applying a vacuum, passes through the pipe 203, and is irradiated onto the substrate 205 that is the sample. The pressure in the sample chamber 206 is approximately 5×10 Torr.

電子ビームがン209より発した電子ビーム210を収
束レンズ207で収束して0.5μm 810□又はS
l基板205上の所望の部分に照射することにより0.
5μm8102又はSt基基板20衣 202を分解する。その分解の結果WF6202はWと
Fとに分かれる。Wは0.5μm SiO□又はSl基
板205上に析出する.一方、Fは揮発ガスであるので
排出される。この様にしてWが0.5膜mの5IO2又
はSl基板205上に析出される。第3図は基板温度と
デポゾシ、ン厚さとの関係を示してhる.電子ビームの
加速電圧及びドーズ量はそれぞれ、10kV。
An electron beam 210 emitted from an electron beam 209 is converged by a converging lens 207 to a diameter of 0.5 μm 810□ or S
0.1 by irradiating a desired portion on the substrate 205.
The 5 μm 8102 or St base substrate 20 and the coating 202 are disassembled. As a result of the decomposition, WF 6202 is divided into W and F. W is deposited on a 0.5 μm SiO□ or Sl substrate 205. On the other hand, F is a volatile gas and is therefore emitted. In this way, W is deposited on the 5IO2 or Sl substrate 205 in a thickness of 0.5 m. Figure 3 shows the relationship between substrate temperature and deposition thickness. The accelerating voltage and dose of the electron beam were each 10 kV.

2 C/crr?であった。基板温度として25℃,−
600。
2 C/crr? Met. 25℃ as substrate temperature, -
600.

−110℃の3点で測定された。基板温度の減少と共に
W6の基板表面への吸着率が増大するために、デポジシ
ョン膜厚は増大している。基板温度−110℃のデポジ
ション膜厚は基板温度25℃のデポジション膜厚の約4
000倍である。この様に、基板温度によυデポジショ
ン膜厚が制御される。
It was measured at three points at -110°C. As the substrate temperature decreases, the adsorption rate of W6 on the substrate surface increases, so the deposition film thickness increases. The deposition film thickness at a substrate temperature of -110°C is approximately 4 times the deposition film thickness at a substrate temperature of 25°C.
000 times. In this way, the υ deposition film thickness is controlled by the substrate temperature.

本実施例では、デポジション材料としてwl含むWF′
6を雰囲気ガスとして用いたが、その他にも原料として
wct6,WCL5,WB r 5等を用いればWが堆
積できる。又、構成元素としてMoを含むMO ( C
 、5H6) 2、構成元素としてAtを含むAz(c
H,)5 、構成元素としてCrを含むcr(c6H6
)2等の有機金属化合物に対しても同様の効果を示す。
In this example, WF′ containing wl is used as a deposition material.
Although W was used as the atmospheric gas, W can also be deposited by using other materials such as WCT6, WCL5, WB r 5, etc. Moreover, MO containing Mo as a constituent element (C
, 5H6) 2. Az (c
H,)5, cr(c6H6) containing Cr as a constituent element
)2 and other organometallic compounds exhibit similar effects.

Mo (C6H6 ) 2を用いるとMoが堆積され、
At(CH3)、を用いるとAtが堆積され、cr(e
6ri4)2を用いると、Crが堆積される。ま之Mo
 Cr5 * Mo B r 5等を用いればMOを堆
積できる。同様にしてTaCr5,TaBr3等でT 
a r T i 14等でTllZr工4等でZrが堆
積できる。以上述べたAt,Mo,W,Ti等はIC,
LSIにおいて配線,r−)電極等に用いることができ
る。
When Mo (C6H6) 2 is used, Mo is deposited,
When using At(CH3), At is deposited and cr(e
When using 6ri4)2, Cr is deposited. ManoMo
MO can be deposited using Cr5*MoBr5 or the like. Similarly, T with TaCr5, TaBr3, etc.
Zr can be deposited using a r Ti 14 or the like and TllZr process 4 or the like. At, Mo, W, Ti, etc. mentioned above are IC,
It can be used for wiring, r-) electrodes, etc. in LSI.

また本発明の方法で堆積できる簿膜材料は何も金属に限
るわけではない。例えば原料として5IH4ガスを用い
ればS1膜を堆積できる。一方BC1,やB B r 
5を用いればB 、POct,を用いればPを堆積でき
、また基板中にこのBやPをドーグできる。更に基板上
での流量比や圧力を調整すればBやPがドープされ九S
i膜を基板上に形成できる。また前記のようにBやPを
堆積あるいはドープできるから、siやGaAs等の半
導体基板表面にpn接合を形成することができる。
Furthermore, the film material that can be deposited by the method of the present invention is not limited to metals. For example, if 5IH4 gas is used as a raw material, an S1 film can be deposited. On the other hand, BC1, and B B r
5 can be used to deposit B, and POct can be used to deposit P, and B and P can be doped into the substrate. Furthermore, by adjusting the flow rate ratio and pressure on the substrate, B and P are doped and 9S
An i-film can be formed on a substrate. Furthermore, since B or P can be deposited or doped as described above, a pn junction can be formed on the surface of a semiconductor substrate such as Si or GaAs.

また’r i ct4ガスと、N2ガスを同時に基板表
面上に流して電子ビームを照射することによってTiN
を堆積できる。TlI4とN2.Tit:N(C2H5
)2)4でもTiNを形成できる。ま九5l(OC2H
5)4を用いれば5102.T’5(OC2H6)5を
用いればTa205が形成できる。
In addition, TiN
can be deposited. TlI4 and N2. Tit:N(C2H5
)2) 4 can also form TiN. Maku 5l (OC2H
5) If you use 4, it will be 5102. If T'5(OC2H6)5 is used, Ta205 can be formed.

また前記BC1,、BBr 5と前記金属形成材料とを
同時に用いると?2イド膜を形成できる。
What if the BC1, BBr5 and the metal forming material are used at the same time? A two-sided film can be formed.

〔発明の効果〕〔Effect of the invention〕

本発明は以上説明した様に、デlジシ、ン材料を含む雰
囲気ガス中において冷却した基板表面に電子ビームを照
射することによシデ7f?ノション材料を析出させるこ
とができ、従来の方法に比べて工程がきわめて簡単であ
る。
As explained above, the present invention uses electron beams to irradiate the surface of a substrate cooled in an atmospheric gas containing a digital material. Notion materials can be precipitated, and the process is extremely simple compared to conventional methods.

なお前記実施例では集束された社子ビームを用いたが、
集束されてbない4子ビームを用すてもよい。
In addition, although a focused beam was used in the above embodiment,
An unfocused quadruplet beam may also be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理と作用を説明する模式図、第2図
は本発明の実施例で用いる装置の構成図、第3図は、第
2図に示した実施例の実験データを示す図、第4図(a
) 〜(s)および第5図(a) 〜(d) Vi基板
上にパターンを形成する従来の方法を説明するための図
で、主要工程における基板の断面を1に次示した模式的
断面図である。 14・・・電子ビーム照射によシ、基板表面に吸着した
雰囲気ガス分子が分解した結果析出し之デ?ジシ、ン材
料分子、15・・・亀子ビーム照射により、基板表面に
吸着し念雰囲気ガス分子が、分解した結果生成された揮
発性物雪分子、16・・・電子ビーム、201・・・雰
囲気ガス材料収納室、202・・・デポジショ°ン材料
を含む雰囲気ガス材料、203・・・雰囲気ガス材料収
納室と試料室とを接続する配管、204・・・試料台、
205・・・デポジシ、ンさせる基板、206・・・試
料室、207・・・電子ビーム収束レンズ、208・・
・電子ビーム照射系、209・・・1子ビームがン、2
10・・・1子ビーム。 16電子ビーム %1図 基板温度 (°C) 第3図 第4図 第5図
Fig. 1 is a schematic diagram explaining the principle and operation of the present invention, Fig. 2 is a configuration diagram of an apparatus used in an embodiment of the present invention, and Fig. 3 shows experimental data of the embodiment shown in Fig. 2. Figure 4 (a
) ~ (s) and Figures 5 (a) ~ (d) are diagrams for explaining the conventional method of forming a pattern on a Vi substrate, and are schematic cross sections showing the cross sections of the substrate in the main steps in 1. It is a diagram. 14... Due to electron beam irradiation, atmospheric gas molecules adsorbed on the substrate surface are decomposed and deposited? Material molecules, 15... Volatile snow molecules generated as a result of decomposition of atmospheric gas molecules adsorbed to the substrate surface by Kameko beam irradiation, 16... Electron beam, 201... Atmosphere Gas material storage chamber, 202... Atmosphere gas material including deposition material, 203... Piping connecting the atmosphere gas material storage chamber and sample chamber, 204... Sample stand,
205... Substrate to be deposited, 206... Sample chamber, 207... Electron beam converging lens, 208...
・Electron beam irradiation system, 209...1 child beam gun, 2
10...1 child beam. 16 Electron beam%1 Figure Substrate temperature (°C) Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] (1)少なくとも堆積させるべき材料を構成元素として
含んだガスを被堆積基板上に供給し、基板を10℃以下
に冷却し、その表面の所望の部分に電子ビームを照射し
て前記材料を基板上に堆積させることを特徴とする薄膜
形成方法。
(1) A gas containing at least the material to be deposited as a constituent element is supplied onto the substrate to be deposited, the substrate is cooled to 10°C or less, and a desired portion of the surface is irradiated with an electron beam to deposit the material onto the substrate. A method for forming a thin film, characterized by depositing it on top.
JP18235485A 1985-08-19 1985-08-19 Thin film formation method Expired - Lifetime JPH0654756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18235485A JPH0654756B2 (en) 1985-08-19 1985-08-19 Thin film formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18235485A JPH0654756B2 (en) 1985-08-19 1985-08-19 Thin film formation method

Publications (2)

Publication Number Publication Date
JPS6242417A true JPS6242417A (en) 1987-02-24
JPH0654756B2 JPH0654756B2 (en) 1994-07-20

Family

ID=16116843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18235485A Expired - Lifetime JPH0654756B2 (en) 1985-08-19 1985-08-19 Thin film formation method

Country Status (1)

Country Link
JP (1) JPH0654756B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04223329A (en) * 1990-12-25 1992-08-13 Nec Corp Method and device for fine pattern formation
US5147823A (en) * 1988-09-20 1992-09-15 Sony Corporation Method for forming an ultrafine metal pattern using an electron beam
JPH088254A (en) * 1994-06-21 1996-01-12 Nec Corp Formation of metal thin film
CN100440296C (en) * 2002-10-29 2008-12-03 东芝松下显示技术有限公司 Flat display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5147823A (en) * 1988-09-20 1992-09-15 Sony Corporation Method for forming an ultrafine metal pattern using an electron beam
JPH04223329A (en) * 1990-12-25 1992-08-13 Nec Corp Method and device for fine pattern formation
JPH088254A (en) * 1994-06-21 1996-01-12 Nec Corp Formation of metal thin film
CN100440296C (en) * 2002-10-29 2008-12-03 东芝松下显示技术有限公司 Flat display device

Also Published As

Publication number Publication date
JPH0654756B2 (en) 1994-07-20

Similar Documents

Publication Publication Date Title
US4022928A (en) Vacuum deposition methods and masking structure
US4324854A (en) Deposition of metal films and clusters by reactions of compounds with low energy electrons on surfaces
JPS60236219A (en) Depositing method and device using plasma produced source gas
JPH0737887A (en) Method of forming, repairing, and modifying wiring
JPS6242417A (en) Thin film forming method
JPH0458178B2 (en)
JPS6276521A (en) Etching method using electron beam
US5230970A (en) Method of forming metal regions
JPS62263973A (en) Thin metallic film and its production
EP0054189A1 (en) Improved photochemical vapor deposition method
JPH0830272B2 (en) Thin film formation method
JPH0658889B2 (en) Thin film formation method
US4555460A (en) Mask for the formation of patterns in lacquer layers by means of X-ray lithography and method of manufacturing same
JPH0518906B2 (en)
JPH01150139A (en) Mask correction process for device and mask
RU2017191C1 (en) Method of forming of mask masking layer
JPH0559991B2 (en)
JPS6116512A (en) Thin film forming method
JPS60190560A (en) Deposition method of molybdenum
JPH02311307A (en) Production of superconductor thin film
JPH0294421A (en) X-ray exposure mask
JPS5898922A (en) Pattern forming method
JPH03235320A (en) X-ray mask making method
JPS6293380A (en) Formation of thin silicide film
JPS637372A (en) Formation of extra-thin film