JPS60190560A - Deposition method of molybdenum - Google Patents

Deposition method of molybdenum

Info

Publication number
JPS60190560A
JPS60190560A JP4783284A JP4783284A JPS60190560A JP S60190560 A JPS60190560 A JP S60190560A JP 4783284 A JP4783284 A JP 4783284A JP 4783284 A JP4783284 A JP 4783284A JP S60190560 A JPS60190560 A JP S60190560A
Authority
JP
Japan
Prior art keywords
sample
argon
mof6
molybdenum
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4783284A
Other languages
Japanese (ja)
Other versions
JPH0543789B2 (en
Inventor
Eiji Igawa
英治 井川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP4783284A priority Critical patent/JPS60190560A/en
Publication of JPS60190560A publication Critical patent/JPS60190560A/en
Publication of JPH0543789B2 publication Critical patent/JPH0543789B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/486Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using ion beam radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
    • C23C16/14Deposition of only one other metal element

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To depositing Mo on a sample surface to form the Mo film having good sticking property with the sample by irradiating ion beams on the sample mounted in an MoF6 atmosphere in a vacuum chamber. CONSTITUTION:The sample 16 of Si wafer is mounted in the vacuum chamber 11 evacuated thoroughly to vacuum, and MoF6 is sent in from a gas introducing hole 13. On the other hand, gaseous argon is introduced to an argon beam ion source 12 to discharge argon, and argon ion beams 15 are irradiated on the surface of the sample 16 adsorbing MoF6 molecules or dissociated atoms 14. Thereby, MoF6 is dissociated, and the formed Mo is deposited on the sample 16 surface. The Mo forms the silicide mixing with the upper layer of the sample 16 surface by kinetic energy of the ion irradiation, and the Mo film superior in the sticking property with Si substrate can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子デバイス製造プロセスのモリブデンのデポ
ジション方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for depositing molybdenum in an electronic device manufacturing process.

〔従来技術とその問題点〕[Prior art and its problems]

従来、モリブデンのデポジション方法は直流スパッタ、
高周波スノぐツタ、マクネトロンスパッタ、イオンビー
ムスパッタというスパッタデ?ジション方法が主流とな
っていた。これらの基本原理については、共立出版(株
)、早用茂氏、和佐清孝氏著の薄膜化技術に述べられて
いる。これらの方法はターグツト材をイオン照射により
スパッタしそのスノQツタ物を試料にデヂジションする
ものである。この際、長時間使用す石ことによりターグ
ツト材のエツチングの不均一性が増加し、デポジシロン
膜の膜厚均一性に重大な問題となっていた。
Traditionally, molybdenum deposition methods are direct current sputtering,
Sputtering devices such as high-frequency snow ivy, Macnetron sputtering, and ion beam sputtering? The conventional method was the mainstream. These basic principles are described in Thin Film Technology written by Shigeru Hayayo and Kiyotaka Wasa, published by Kyoritsu Shuppan Co., Ltd. In these methods, a target material is sputtered by ion irradiation, and the spatter is transferred onto a sample. At this time, due to the long use of the stone, the non-uniformity of the etching of the target material increased, which caused a serious problem in the uniformity of the thickness of the Deposisilon film.

又、Si上ニデデジションし、シリサイド層を形成する
には制御性よくアニールする必較があった。
Furthermore, in order to form a silicide layer on Si, it is necessary to perform annealing with good controllability.

さらに、電子デバイス製造ゾロセスのモリブデンのパタ
ーンに利用するためには一度、試料全面にモリブデンを
形成し、その後、P、Rによシマスフを形成し、その後
モリブデンをエツチングしてモリブデンツクターンを形
成するため、プロセス工程が長くなるという欠点を有し
ていた。
Furthermore, in order to use molybdenum as a pattern for electronic device manufacturing, molybdenum is first formed on the entire surface of the sample, then a stripe is formed on P and R, and then the molybdenum is etched to form a molybdenum pattern. Therefore, it had the disadvantage that the process steps were long.

〔発明の目的〕[Purpose of the invention]

本発明は、このような従来の欠点を除去したモリブデン
のデポジション方法あるいはマスクレスのパターニング
方法全提供することにある。
The object of the present invention is to provide an entire molybdenum deposition method or maskless patterning method that eliminates these conventional drawbacks.

〔発明の構成〕[Structure of the invention]

本発明はN MoF6ガス雰囲気中に試料f:置き、同
時に、イオンビームを照射することを特徴とするモリブ
デンのデポジション方法である。
The present invention is a molybdenum deposition method characterized by placing a sample f in an N 2 MoF 6 gas atmosphere and simultaneously irradiating it with an ion beam.

〔実施例の説明〕[Explanation of Examples]

以下に本発明の実施例を図によ、って説明する。 Embodiments of the present invention will be described below with reference to the drawings.

まず真空排気可能なチャンバーにMOF6fスの導入口
と、イオン源を設け、試料にMo F bガスの分子又
は解離原子を(1,!′ζ着させ、同時にイオン照射す
る。
First, an inlet for MOF6f gas and an ion source are provided in a chamber that can be evacuated, and MoFb gas molecules or dissociated atoms (1,!'ζ) are deposited on the sample and ions are irradiated at the same time.

すると、MOはS1上にデポジションし、フッ素ガスは
、気相中に排気される。そして、イオン照射が行なわれ
た部分のみデフ1?ジシヨンがおこるため、試料上への
モリブデンの直接パターニングが可能となる。
MO is then deposited on S1 and fluorine gas is exhausted into the gas phase. And only the part where ion irradiation was performed is differential 1? This allows direct patterning of molybdenum onto the sample.

以下に本発明の実施例について、図面を参照して詳細に
説明する。第1図に本発明の第1の実施例の構成図を示
す。これは、2インチsiウェファーへの全面デポジシ
ョンの例である。MoF6ガス導入口13およびアルゴ
ンビームイオン源12を備えた真空チャンバー11中に
試料16を置く。ガス導入口13より十分に真空排気し
た真空チャンバー11へMoF6ff1送入する。一方
、アルデフビームイオン源12ヘアルゴンガスを導入し
て放電させ、アルゴンイオンビーム15を試料16へ照
射する。この際、試料16の表面にはガス導入口13よ
り導入されたMoF 6の分子又は解離した原子14が
化学吸着している。なお、この本発明第1の実施例では
アルゴンイオンビーム715’、流密塵ヲ0.8(m忰
2〕、加速エネルギー300[:eV]とし、Mo F
 6ガス分圧を、I X 10−’ (Torr )と
した。又、試料16は(100)3〜6Ω・crnSi
基板を用いた。
Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 shows a configuration diagram of a first embodiment of the present invention. This is an example of a full surface deposition on a 2 inch si wafer. A sample 16 is placed in a vacuum chamber 11 equipped with a MoF6 gas inlet 13 and an argon beam ion source 12. MoF6ff1 is introduced from the gas inlet 13 into the vacuum chamber 11 which has been sufficiently evacuated. On the other hand, argon gas is introduced into the Aldef beam ion source 12 and discharged, and the sample 16 is irradiated with the argon ion beam 15. At this time, MoF 6 molecules or dissociated atoms 14 introduced through the gas inlet 13 are chemically adsorbed on the surface of the sample 16 . In the first embodiment of the present invention, the argon ion beam is 715', the flow rate is 0.8 (m2), the acceleration energy is 300 [:eV], and the MoF
The partial pressure of the 6 gases was set to I x 10-' (Torr). Moreover, sample 16 is (100)3~6Ω・crnSi
A substrate was used.

Mo F 6が化学吸着された試料16上へアルゴンイ
オンビーム15が照射されると、MoF6の解nIFが
おこる。このときMOはSi上にデポジションし、フッ
素はSiと結合して5tF4. F2もしくは、再びM
 o F bとして気相中に脱離してゆく。しかし、ア
ルゴンイオンビーム15の照射があるので一部Si中あ
るいはデポジションしたMo中に残留する。しかし、こ
れはデポジション後、アニールによって除去できるlエ
ネルギーの伝達があるため、Si上の最初の数十層はM
oとStのまざシあったシリサイドに力っておシ、別基
板との密着性がきわめてすぐれている。
When the argon ion beam 15 is irradiated onto the sample 16 on which MoF 6 has been chemically adsorbed, nIF of MoF 6 occurs. At this time, MO is deposited on Si, and fluorine is combined with Si to form 5tF4. F2 or M again
It desorbs into the gas phase as oFb. However, since it is irradiated with the argon ion beam 15, some of it remains in the Si or deposited Mo. However, this is because the first few tens of layers on Si are M
By applying pressure to the silicide that has the same shape as O and St, it has extremely good adhesion to other substrates.

第1の実施例でのデポジションレイトは、20017m
 i n程度が得られた。
The deposition rate in the first example is 20017m
About in was obtained.

第2図は本発明第2の実施例を示す構成図である。第2
の実施例は、第1の実施例とは異なり、別ウェファー上
への部分的デポジションの例である。
FIG. 2 is a block diagram showing a second embodiment of the present invention. Second
The embodiment differs from the first embodiment in that it is an example of partial deposition on a separate wafer.

第1図と同様にMo F 6ガス導入口23および収束
レンズ系をそなえたアルゴンビームイオン源22を備え
た真空チャンバー21中に試料26を置き、ガス導入口
23より十分に真空排気した真空チャフ パー 21へ
Mo F 6を送入する。一方、アルゴンビームイオン
源22よりアルゴンイオンビーム25を試料26へ照射
する。すると、第1の実施例と同様の原理でMoが81
上にデポジションするが、第2の実施例では、アルゴン
ビームイオン源22は、レンズ系で収束されており、ア
ルゴンイオンビーム25ff:偏向できる偏向電極27
によシ、そのビーム位置すなわち、Moをデポジション
できる位置をSi上のいたるところに変化できる。従っ
て、モリブデンのパターニングがエツチング工程なしに
直接可能となる。デポジションレイトとしては、第1図
とはは同様の東件下で180 i/minが得られた。
The sample 26 was placed in a vacuum chamber 21 equipped with an argon beam ion source 22 equipped with a Mo F 6 gas inlet 23 and a converging lens system in the same way as in FIG. Send Mo F 6 to Par 21. On the other hand, the sample 26 is irradiated with an argon ion beam 25 from the argon beam ion source 22 . Then, based on the same principle as in the first example, Mo becomes 81
In the second embodiment, the argon beam ion source 22 is focused by a lens system, and the argon ion beam 25ff is deposited on the deflection electrode 27.
Alternatively, the beam position, ie, the position where Mo can be deposited, can be varied anywhere on the Si. Therefore, patterning of molybdenum is possible directly without an etching step. As for the deposition rate, 180 i/min was obtained under the same condition as in Fig. 1.

なお、以上の、実施例ではそれぞれイオン源としてカフ
マン型およびデュオプラズマトロン型を用いたが、いか
なる方式のイオン源でも本発明の原理は、実行できる。
In the above embodiments, a Kafman type and a duoplasmatron type ion source were used as ion sources, but the principles of the present invention can be practiced with any type of ion source.

さらに、イオンビームとして実施例にpいてもアルゴン
を用いたが、He等のジョンレイト等を考慮すると、不
活性ガス特に、アルゴンの方が良い結果が得られた。又
、試料としてはSiを用いたが、5tO2等のいかなる
試料に対してもデI−)ジョンレイトは変化するが、本
発明の原理は実行可能である。なお、デポジションレイ
トはイオン電流密度を増加させれば増加する傾向にあっ
た。
Furthermore, although argon was used as the ion beam in the examples, better results were obtained with an inert gas, especially argon, when taking into account the ion rays such as He. Further, although Si was used as the sample, the principle of the present invention is practicable for any sample such as 5tO2, although the deionization rate changes. Note that the deposition rate tended to increase as the ion current density increased.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、試料との密着性のよいM
o膜を得ることが可能となシ、しかも、従来のターグツ
ト材のスパッタ方法と基本的に異なる原理□のため、s
i上に形成した場合に1I−jSl界面と、MOとの間
ではデポジションするだけでシリサイド層<、@−成で
きる。そして、そのシリサイド層の厚さはイオンエネル
ギーでコントロール可能である。
As described above, according to the present invention, M
It is possible to obtain an S film, and because the principle is fundamentally different from the conventional sputtering method for targt materials, it is possible to obtain an S film.
When formed on i, a silicide layer <,@- can be formed between the 1I-jSl interface and MO by simply depositing it. The thickness of the silicide layer can be controlled by ion energy.

さらに、従来デ2j?、ゾション後、P、R,工程でマ
スク全形成し、エツチングしてモリブデン/4’ターン
を形成していたのが、本発明の原理を用いることにヨリ
、直接必要なモリブデンパターンを試料上に形成できる
。従って、本発明は電子デバイス製造プロセスにおける
モリブデンのデポジションあるいはパターニングに重大
なる効果をもたらす。
Furthermore, conventional de 2j? , After sorption, the entire mask was formed in the P and R steps, and the molybdenum/4' turn was formed by etching.However, by using the principle of the present invention, the necessary molybdenum pattern can be directly printed on the sample. Can be formed. Therefore, the present invention has significant effects on molybdenum deposition or patterning in electronic device manufacturing processes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例を示す構成図、第2図は
第2の実施例を示す構成図である。 11.21・・・真空チャンバー、12.22・・・ア
ルゴンビームイオン源、13.23・・・ガス導入口、
14.24・・・Mo F 6の分子又は解離した原子
、15゜25・・・アルゴンイオンビーム、16.26
・・・試料、27・・・偏向′市イa0 第1図 第2図
FIG. 1 is a block diagram showing a first embodiment of the present invention, and FIG. 2 is a block diagram showing a second embodiment. 11.21... Vacuum chamber, 12.22... Argon beam ion source, 13.23... Gas inlet,
14.24... MoF6 molecules or dissociated atoms, 15°25... Argon ion beam, 16.26
...Sample, 27...Deflection'a0 Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1) Mo F 6雰囲気中に置かれた試料に、イオ
ンビームを照射することを特徴とするモリブデンのデポ
ジション方法。
(1) A molybdenum deposition method characterized by irradiating an ion beam onto a sample placed in a MoF6 atmosphere.
JP4783284A 1984-03-13 1984-03-13 Deposition method of molybdenum Granted JPS60190560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4783284A JPS60190560A (en) 1984-03-13 1984-03-13 Deposition method of molybdenum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4783284A JPS60190560A (en) 1984-03-13 1984-03-13 Deposition method of molybdenum

Publications (2)

Publication Number Publication Date
JPS60190560A true JPS60190560A (en) 1985-09-28
JPH0543789B2 JPH0543789B2 (en) 1993-07-02

Family

ID=12786325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4783284A Granted JPS60190560A (en) 1984-03-13 1984-03-13 Deposition method of molybdenum

Country Status (1)

Country Link
JP (1) JPS60190560A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6324033A (en) * 1986-07-16 1988-02-01 Nippon Kokan Kk <Nkk> Production of metallic material by utilizing chemical vapor deposition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6324033A (en) * 1986-07-16 1988-02-01 Nippon Kokan Kk <Nkk> Production of metallic material by utilizing chemical vapor deposition

Also Published As

Publication number Publication date
JPH0543789B2 (en) 1993-07-02

Similar Documents

Publication Publication Date Title
JPS61218134A (en) Device and method for forming thin film
JPS582022A (en) Thin film formation
JP3077393B2 (en) X-ray exposure mask
JPH0518906B2 (en)
JPS60190560A (en) Deposition method of molybdenum
CA2288757A1 (en) Method of forming a silicon layer on a surface
JPH06110197A (en) Formation of mask forming fine pattern and device therefor
JPS6046372A (en) Thin film forming method
JPH02115359A (en) Formation of compound thin film and device therefor
JP2844779B2 (en) Film formation method
JPH0658889B2 (en) Thin film formation method
JPH08115903A (en) Manufacture of semiconductor, and plasma etching device
JPS6242417A (en) Thin film forming method
JPH06291063A (en) Surface treatment device
JPH0559991B2 (en)
JPS5952526A (en) Method for sputtering metal oxide film
JP2625107B2 (en) Manufacturing method of exposure mask
JPH01150139A (en) Mask correction process for device and mask
JPH03271367A (en) Sputtering apparatus
JPH06295889A (en) Formation of fine pattern
JPS59153882A (en) Vapor deposition method by sputtering
JPS60211849A (en) Forming method of conductive film pattern
JPH09246259A (en) Method and apparatus to form a thin film
JPS63254726A (en) X-ray exposure mask and manufacture thereof
JPH06168932A (en) Device for patterning semiconductor device