JPH0543789B2 - - Google Patents

Info

Publication number
JPH0543789B2
JPH0543789B2 JP4783284A JP4783284A JPH0543789B2 JP H0543789 B2 JPH0543789 B2 JP H0543789B2 JP 4783284 A JP4783284 A JP 4783284A JP 4783284 A JP4783284 A JP 4783284A JP H0543789 B2 JPH0543789 B2 JP H0543789B2
Authority
JP
Japan
Prior art keywords
sample
argon
mof
molybdenum
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4783284A
Other languages
Japanese (ja)
Other versions
JPS60190560A (en
Inventor
Eiji Igawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP4783284A priority Critical patent/JPS60190560A/en
Publication of JPS60190560A publication Critical patent/JPS60190560A/en
Publication of JPH0543789B2 publication Critical patent/JPH0543789B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/486Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using ion beam radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
    • C23C16/14Deposition of only one other metal element

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子デバイス製造プロセスのモリブデ
ンのデポジシヨン方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for depositing molybdenum in an electronic device manufacturing process.

〔従来技術とその問題点〕[Prior art and its problems]

従来、モリブデンのデポジシヨン方法は直流ス
パツタ、高周波スパツタ、マグネトロンスパツ
タ、イオンビームスパツタというスパツタデポジ
シヨン方法が主流となつていた。これらの基本原
理については、共立出版(株)、早川茂氏、和佐清孝
氏著の薄膜化技術に述べられている。これらの方
法はターゲツト材をイオン照射によりスパツタし
そのスパツタ物を試料にデポジシヨンするもので
ある。この際、長時間使用することによりターゲ
ツト材のエツチングの不均一性が増加し、デポジ
シヨン膜の膜厚均一性に重大な問題となつてい
た。又、Si上にデポジシヨンし、シリサイド層を
形成するには制御性よくアニールする必要があつ
た。さらに、電子デバイス製造プロセスのモリブ
デンのパターンに利用するためには一度、試料全
面にモリブデンを形成し、その後、P.Rによりマ
スクを形成し、その後モリブデンをエツチングし
てモリブデンパターンを形成するため、プロセス
工程が長くなるという欠点を有していた。
Conventionally, the main methods for depositing molybdenum have been sputter deposition methods such as DC sputtering, high frequency sputtering, magnetron sputtering, and ion beam sputtering. These basic principles are described in Thin Film Technology written by Shigeru Hayakawa and Kiyotaka Wasa, published by Kyoritsu Shuppan Co., Ltd. In these methods, a target material is sputtered by ion irradiation, and the sputtered material is deposited onto a sample. In this case, the non-uniformity of etching of the target material increases due to long-term use, which poses a serious problem in the uniformity of the thickness of the deposited film. Furthermore, in order to deposit on Si and form a silicide layer, it was necessary to perform annealing with good controllability. Furthermore, in order to use molybdenum as a pattern in the electronic device manufacturing process, molybdenum is first formed on the entire surface of the sample, then a mask is formed by PR, and then the molybdenum is etched to form a molybdenum pattern. It had the disadvantage of being long.

〔発明の目的〕[Purpose of the invention]

本発明は、このような従来の欠点を除去したモ
リブデンのデポジシヨン方法あるいはマスクレス
のパターニング方法を提供することにある。
An object of the present invention is to provide a molybdenum deposition method or a maskless patterning method that eliminates these conventional drawbacks.

〔発明の構成〕[Structure of the invention]

本発明は、MoF6ガス雰囲気中に試料を置き、
同時に、イオンビームを照射することを特徴とす
るモリブデンのデポジシヨン方法である。
The present invention places a sample in a MoF 6 gas atmosphere,
This is a molybdenum deposition method characterized by simultaneous irradiation with an ion beam.

〔実施例の説明〕[Explanation of Examples]

以下に本発明の実施例を図によつて説明する。
まず真空排気可能なチヤンバーにMoF6ガスの導
入口と、イオン源を設け、試料にMoF6ガスの分
子又は解離原子を吸着させ、同時にイオン照射す
る。すると、MoはSi上にデポジシヨンし、フツ
素ガスは、気相中に排気される。そして、イオン
照射が行なわれた部分のみデポジシヨンがおこる
ため、試料上へのモリブデンの直接パターニング
が可能となる。
Embodiments of the present invention will be described below with reference to the drawings.
First, an inlet for MoF 6 gas and an ion source are installed in a chamber that can be evacuated, and molecules or dissociated atoms of MoF 6 gas are adsorbed onto the sample, and ions are irradiated at the same time. Then, Mo is deposited on the Si, and the fluorine gas is exhausted into the gas phase. Since deposition occurs only in the ion-irradiated area, direct patterning of molybdenum onto the sample becomes possible.

以下に本発明の実施例について、図面を参照し
て詳細に説明する。第1図は本発明の第1の実施
例の構成図を示す。これは、2インチSiウエフア
ーへの全面デポジシヨンの例である。MoF6ガス
導入口13およびアルゴンビームイオン源12を
備えた真空チヤンバー11中に試料16を置く。
ガス導入口13より十分に真空排気した真空チヤ
ンバー11へMoF6を送入する。一方、アルゴン
ビームイオン源12へアルゴンガスを導入して放
電させ、アルゴンイオンビーム15を試料16へ
照射する。この際、試料16の表面にはガス導入
口13より導入されたMoF6の分子又は解離した
原子14が化学吸着している。なお、この本発明
第1の実施例ではアルゴンイオンビーム電流密度
を0.8〔mA/cm2〕、加速エネルギー300〔eV〕と
し、MoF6ガス分圧を、1×10-4〔Torr〕とした。
又、試料16は(100)3〜6Ω・cmSi基板を用い
た。MoF6が化学吸着された試料16上へアルゴ
ンイオンビーム15が照射されると、MoF6の解
離がおこる。このときMoはSi上にデポジシヨン
し、フツ素はSiと結合してSiF4、F2もしくは、再
びMoF6として気相中に脱離してゆく。しかし、
アルゴンイオンビーム15の照射があるので一部
Si中あるいはデポジシヨンしたMo中に残留する。
しかし、これはデポジシヨン後、アニールによつ
て除去できることはいうまでもない。さらに、こ
のイオン照射の効果は電子線等の照射と異なり、
試料への運動エネルギーの伝達があるため、Si上
の最初の数十層はMoとSiのまざりあつたシリサ
イドになつており、Si基板との密着性がきわめて
すぐれている。第1の実施例でのデポジシヨンレ
イトは、200Å/min程度が得られた。
Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 shows a block diagram of a first embodiment of the present invention. This is an example of a full surface deposition on a 2 inch Si wafer. A sample 16 is placed in a vacuum chamber 11 equipped with a MoF 6 gas inlet 13 and an argon beam ion source 12 .
MoF 6 is introduced from the gas inlet 13 into the vacuum chamber 11 which has been sufficiently evacuated. On the other hand, argon gas is introduced into the argon beam ion source 12 and discharged, and the sample 16 is irradiated with the argon ion beam 15. At this time, MoF 6 molecules or dissociated atoms 14 introduced from the gas inlet 13 are chemically adsorbed on the surface of the sample 16 . In the first embodiment of the present invention, the argon ion beam current density was 0.8 [mA/cm 2 ], the acceleration energy was 300 [eV], and the MoF 6 gas partial pressure was 1×10 -4 [Torr]. .
Further, for sample 16, a (100) 3-6 Ω·cmSi substrate was used. When the argon ion beam 15 is irradiated onto the sample 16 on which MoF 6 has been chemically adsorbed, dissociation of MoF 6 occurs. At this time, Mo is deposited on Si, and fluorine is bonded to Si and desorbed into the gas phase as SiF 4 , F 2 , or MoF 6 again. but,
Some parts are irradiated with argon ion beam 15.
It remains in Si or deposited Mo.
However, it goes without saying that this can be removed by annealing after deposition. Furthermore, the effect of this ion irradiation is different from that of electron beam irradiation,
Because of the transfer of kinetic energy to the sample, the first few tens of layers on the Si are made of silicide, a mixture of Mo and Si, and have extremely good adhesion to the Si substrate. In the first example, a deposition rate of about 200 Å/min was obtained.

第2図は本発明第2の実施例を示す構成図であ
る。第2の実施例は、第1の実施例とは異なり、
Siウエフアー上への部分的デポジシヨンの例であ
る。第1図と同様にMoF6ガス導入口23および
収束レンズ系をそなえたアルゴンビームイオン源
22を備えた真空チヤンバー21中に試料26を
置き、ガス導入口23より十分に真空排気した真
空チヤンバー21へMoF6を送入する。一方、ア
ルゴンビームイオン源22よりアルゴンイオンビ
ーム25を試料26へ照射する。すると、第1の
実施例と同様の原理でMoがSi上にデポジシヨン
するが、第2の実施例では、アルゴンビームイオ
ン源22は、レンズ系で収束されており、アルゴ
ンイオンビーム25を偏向できる偏向電極27に
より、そのビーム位置すなわち、Moをデポジシ
ヨンできる位置をSi上のいたるところに変化でき
る。従つて、モリブデンのパターニングがエツチ
ング工程なしに直接可能となる。デポジシヨンレ
イトとしては、第1図とほぼ同様の条件下で180
Å/minが得られた。
FIG. 2 is a block diagram showing a second embodiment of the present invention. The second example is different from the first example,
An example of partial deposition on a Si wafer. The sample 26 was placed in a vacuum chamber 21 equipped with an argon beam ion source 22 equipped with a MoF 6 gas inlet 23 and a convergent lens system in the same manner as in FIG. 1, and the vacuum chamber 21 was sufficiently evacuated from the gas inlet 23. Send MoF 6 to On the other hand, the sample 26 is irradiated with an argon ion beam 25 from the argon beam ion source 22 . Then, Mo is deposited on Si using the same principle as in the first embodiment, but in the second embodiment, the argon beam ion source 22 is focused by a lens system, and the argon ion beam 25 can be deflected. The deflection electrode 27 allows the beam position, that is, the position where Mo can be deposited, to be varied anywhere on the Si. Therefore, patterning of molybdenum is possible directly without an etching step. The deposition rate was 180 under almost the same conditions as in Figure 1.
Å/min was obtained.

なお、以上の、実施例ではそれぞれイオン源と
してカフマン型およびデユオプラズマトロン型を
用いたが、いかなる方式のイオン源でも本発明の
原理は、実行できる。さらに、イオンビームとし
て実施例においてもアルゴンを用いたが、He等
のイオンでも可能であることはいうまでもない。
しかし、堆積後のMo膜中の不純物、あるいはデ
ポジシヨンレイト等を考慮すると、不活性ガス特
に、アルゴンの方が良い結果が得られた。又、試
料としてはSiを用いたが、SiO2等のいかなる試
料に対してもデポジシヨンレイトは変化するが、
本発明の原理は実行可能である。なお、デポジシ
ヨンレイトはイオン電流密度を増加させれば増加
する傾向にあつた。
In the above embodiments, a Kafman type and a dual plasmatron type ion source were used, but the principles of the present invention can be practiced with any type of ion source. Furthermore, although argon was used as the ion beam in the embodiment, it goes without saying that ions such as He can also be used.
However, when considering impurities in the Mo film after deposition or the deposition rate, better results were obtained with inert gas, especially argon. Also, although Si was used as the sample, the deposition rate will change for any sample such as SiO 2 .
The principles of the invention are practicable. Note that the deposition rate tended to increase as the ion current density increased.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、試料との密着性
のよいMo膜を得ることが可能となり、しかも、
従来のターゲツト材のスパツタ方法と基本的に異
なる原理のため、Si上に形成した場合にはSi界面
と、Moとの間ではデポジシヨンするだけでシリ
サイド層を形成できる。そして、そのシリサイド
層の厚さはイオンエネルギーでコントロール可能
である。さらに、従来デポジシヨン後、P.R.工程
でマスクを形成し、エツチングしてモリブデンパ
ターンを形成していたのが、本発明の原理を用い
ることにより、直接必要なモリブデンパターンを
試料上に形成できる。従つて、本発明は電子デバ
イス製造プロセスにおけるモリブデンのデポジシ
ヨンあるいはパターニングに重大なる効果をもた
らす。
As described above, according to the present invention, it is possible to obtain a Mo film with good adhesion to the sample, and
Because the principle is fundamentally different from the conventional sputtering method for target materials, when it is formed on Si, a silicide layer can be formed between the Si interface and Mo by simply depositing it. The thickness of the silicide layer can be controlled by ion energy. Furthermore, conventionally, after deposition, a mask was formed in a PR process and a molybdenum pattern was formed by etching, but by using the principle of the present invention, the necessary molybdenum pattern can be directly formed on the sample. Therefore, the present invention has significant effects on molybdenum deposition or patterning in electronic device manufacturing processes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示す構成図、
第2図は第2の実施例を示す構成図である。 11,21……真空チヤンバー、12,22…
…アルゴンビームイオン源、13,23……ガス
導入口、14,24……MoF6の分子又は解離し
た原子、15,25……アルゴンイオンビーム、
16,26……試料、27……偏向電極。
FIG. 1 is a configuration diagram showing a first embodiment of the present invention,
FIG. 2 is a configuration diagram showing a second embodiment. 11, 21... vacuum chamber, 12, 22...
...Argon beam ion source, 13,23...Gas inlet, 14,24... MoF6 molecules or dissociated atoms, 15,25...Argon ion beam,
16, 26... Sample, 27... Deflection electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 MoF6雰囲気中に置かれた試料に、イオンビ
ームを照射することを特徴とするモリブデンのデ
ポジシヨン方法。
1. A molybdenum deposition method characterized by irradiating a sample placed in a MoF 6 atmosphere with an ion beam.
JP4783284A 1984-03-13 1984-03-13 Deposition method of molybdenum Granted JPS60190560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4783284A JPS60190560A (en) 1984-03-13 1984-03-13 Deposition method of molybdenum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4783284A JPS60190560A (en) 1984-03-13 1984-03-13 Deposition method of molybdenum

Publications (2)

Publication Number Publication Date
JPS60190560A JPS60190560A (en) 1985-09-28
JPH0543789B2 true JPH0543789B2 (en) 1993-07-02

Family

ID=12786325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4783284A Granted JPS60190560A (en) 1984-03-13 1984-03-13 Deposition method of molybdenum

Country Status (1)

Country Link
JP (1) JPS60190560A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6324033A (en) * 1986-07-16 1988-02-01 Nippon Kokan Kk <Nkk> Production of metallic material by utilizing chemical vapor deposition

Also Published As

Publication number Publication date
JPS60190560A (en) 1985-09-28

Similar Documents

Publication Publication Date Title
US5510011A (en) Method for forming a functional deposited film by bias sputtering process at a relatively low substrate temperature
JPH0697660B2 (en) Thin film formation method
JPS6354215B2 (en)
JPH0359986B2 (en)
JPH0245927A (en) Etching method
US5230971A (en) Photomask blank and process for making a photomask blank using gradual compositional transition between strata
JPS5814507B2 (en) Method for selectively ion etching silicon
JPH0518906B2 (en)
JPH0543789B2 (en)
JPH05326380A (en) Thin-film composition and mask for x-ray exposure using the same
JPS63317676A (en) Production of thin metallic compound film having non-grained structure
CA2288757A1 (en) Method of forming a silicon layer on a surface
JPS63233549A (en) Thin film formation
JP3926690B2 (en) Gas cluster ion assisted oxide thin film formation method
JPS637364A (en) Bias sputtering device
JPH06291063A (en) Surface treatment device
JPS63203760A (en) Method and device for forming inorganic film to glass substrate surface
JP2744505B2 (en) Silicon sputtering equipment
JP3009072B2 (en) Semiconductor surface etching method
JPH0247848B2 (en)
JP2687468B2 (en) Thin film forming equipment
JPH06295889A (en) Formation of fine pattern
JPH0559991B2 (en)
JPH03285061A (en) Cleaning method by sputtering
JPS6074534A (en) Method and equipment for forming thin film