JPS6074534A - Method and equipment for forming thin film - Google Patents

Method and equipment for forming thin film

Info

Publication number
JPS6074534A
JPS6074534A JP18023683A JP18023683A JPS6074534A JP S6074534 A JPS6074534 A JP S6074534A JP 18023683 A JP18023683 A JP 18023683A JP 18023683 A JP18023683 A JP 18023683A JP S6074534 A JPS6074534 A JP S6074534A
Authority
JP
Japan
Prior art keywords
substrate
film
ion source
thin film
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18023683A
Other languages
Japanese (ja)
Other versions
JPH067548B2 (en
Inventor
Sukeyoshi Tsunekawa
恒川 助芳
Yoshio Honma
喜夫 本間
Hiroshi Morizaki
森▲崎▼ 浩
Sadayuki Okudaira
奥平 定之
Kiichiro Mukai
向 喜一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58180236A priority Critical patent/JPH067548B2/en
Priority to US06/655,438 priority patent/US4599135A/en
Publication of JPS6074534A publication Critical patent/JPS6074534A/en
Publication of JPH067548B2 publication Critical patent/JPH067548B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species

Abstract

PURPOSE:To form a thin film having a flat surface on a substrate by a method wherein a device for deposition of a thin film and an etching device are independently provided, and these devices are used simultaneously or alternately. CONSTITUTION:When an SiO2 film is going to be formed on a substrate 6, the interior of a vacuum chamber 5 is evacuated using an exhaust hole 4, and the air pressure of said vacuum chamber is brought to approximately 10<-4>-10<-5>Pa. Then, a microwave power is applied to a microwave ion source 7, SiH4 and O2 are introduced from gas introducing holes 2 and 3, sais SiH4 and O2 are made to react each other by generating microwave discharge, and an SiO2 film is deposited on the substrate 6 using a CVD method. On the other hand, Ar is introduced from a gas introducing hole 1, Ar ions are generated by applying electric power on a hot filament type ion source 8, the Ar ion beams accelerated by a grid 13 are made to irradiate on the substrate 6, and the surface of the SiO2 film deposited on the substrate 6 is flattened.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は薄膜形成方法および薄膜形成装置に関し、詳し
くは、たとえばSム02膜など、絶縁膜の形成にとくに
好適な薄膜形成方法および薄膜形成装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a thin film forming method and a thin film forming apparatus, and more specifically, a thin film forming method and a thin film forming apparatus particularly suitable for forming an insulating film such as an Smu02 film. Regarding.

〔発明の背景〕[Background of the invention]

被処理物にバイアス電圧を印加しつつ、スパッタリング
を行なうバイアススパッタ法は、たとえばSiO,など
の膜の堆積と膜表面の平坦化を、同時に達成できるとい
う特長を有している。
The bias sputtering method, in which sputtering is performed while applying a bias voltage to the object to be processed, has the advantage that it can simultaneously deposit a film of, for example, SiO, and flatten the surface of the film.

バイアススパッタ法は、SiO2などの堆積を行ないな
がら、堆積した5fOzなどの一部を同時にエッチして
、5IO2などの膜を形成する方法であシ、膜表面の平
坦化は、膜形成中に行なわれるエツチングの速度が、下
地の形状に依存することによって起る。
The bias sputtering method is a method in which a part of the deposited 5fOz etc. is simultaneously etched while depositing SiO2 etc. to form a film of 5IO2 etc. The film surface is flattened during film formation. This occurs because the rate of etching depends on the shape of the underlying material.

すなわち、バイアススパッタ法においては、下地が傾斜
している部分のエツチング速度が、平坦である部分のエ
ツチング速度よシ大きいため、下地の突起に起因する堆
積膜表面の突起は、エツチングの進行とともに小さくな
シ、ついには表面平坦化が達成される。
In other words, in the bias sputtering method, the etching rate on the sloped part of the base is higher than the etching rate on the flat part, so the protrusions on the surface of the deposited film caused by the protrusions on the base become smaller as etching progresses. Finally, surface flattening is achieved.

バイアススパッタ法において、膜表面を十分に平坦化す
るためには、膜形成中における上記エツチングの割合を
、再スパツタ率で30〜80チにする必要があシ、その
ためには、その上に膜を形成すべき基板に印加する高周
波電力を、ターゲット電力の15〜40チとする必要が
ある。
In the bias sputtering method, in order to sufficiently flatten the film surface, it is necessary to increase the etching rate during film formation to a re-sputtering rate of 30 to 80 inches. It is necessary to set the high frequency power applied to the substrate on which the target power is to be 15 to 40 inches higher than the target power.

その結果、上記基板は、グロー放電に直接さらされるこ
とになり、S!02の凝縮エネルギや、入射する荷電粒
子の衝突エネルギのみではなく、グロー放電からのふく
射によっても温度が上昇する、という問題がある。
As a result, the substrate is directly exposed to glow discharge and S! There is a problem in that the temperature rises not only due to the condensation energy of 0.02 and the collision energy of incident charged particles, but also due to radiation from the glow discharge.

しかも、SiO□など絶縁膜は、金属膜にくらべてスパ
ッタ率が小さいため、十分な形成速度を得るためには、
さらに大きな高周波電力を、ターゲットに印加しなけれ
ばならず、基板温度は、このターゲットからふく射によ
っても上昇してしまう。
Moreover, insulating films such as SiO□ have a lower sputtering rate than metal films, so in order to obtain a sufficient formation rate,
Even greater high-frequency power must be applied to the target, and the substrate temperature also increases due to radiation from the target.

また、膜の形成をスパッタリングによって行なっている
ため、膜の堆積速度が遅いという問題があシ、解決が望
まれていた。
Furthermore, since the film is formed by sputtering, there is a problem that the film deposition rate is slow, and a solution has been desired.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記従来の問題を解決し、表面が平坦
な膜を、基板に対する大きな影響なしに形成することの
できる薄膜形成方法および薄膜形成装置を提供すること
でおる。
SUMMARY OF THE INVENTION An object of the present invention is to provide a thin film forming method and a thin film forming apparatus that can solve the above-mentioned conventional problems and form a film with a flat surface without greatly affecting the substrate.

〔発明の概要〕[Summary of the invention]

上記目的を達成するため、本発明は、薄膜を堆積する手
段とエツチングする手段をそれぞれ独立させ、両者を同
時または交互に使用することによって、表面が平坦な薄
膜を基板上に形成するものである。
In order to achieve the above object, the present invention forms a thin film with a flat surface on a substrate by using independent means for depositing a thin film and means for etching, and using both simultaneously or alternately. .

本発明において、上記薄膜を堆積する手段や上記エツチ
ング手段から発生するプラズマやグロー放電を、それぞ
れ上記手段の近傍に局在させれば、上記プラズマやグロ
ー放電の、基板に対する影響を減少させ、基板温度の上
昇を少なくすることができる。
In the present invention, if the plasma and glow discharge generated from the thin film depositing means and the etching means are localized in the vicinity of the means, the influence of the plasma and glow discharge on the substrate can be reduced, and The rise in temperature can be reduced.

また、上記プラズマやグロー放電の上記局在を行なわな
い場合は、基板の温度上昇を抑制することはできないが
、膜の堆積速度が極めて大きい、という利点が生ずる。
Furthermore, if the plasma or glow discharge is not localized, the temperature rise of the substrate cannot be suppressed, but there is an advantage that the film deposition rate is extremely high.

〔発明の実施例〕[Embodiments of the invention]

以下、実施例を参照して本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail with reference to Examples.

実施例1 第1図は、本発明の一実施例を説明するための図である
Embodiment 1 FIG. 1 is a diagram for explaining an embodiment of the present invention.

反応容器となる真空槽5は、ガス導入口1.2゜3、排
気口4をそなえ、さらに、基板6上に膜を堆積するため
の、マイクロ波イオン源7および上記基板60表面をエ
ツチングするためのホットフィラメント型イオン源8を
それぞれ独立しつ有している。なお上記基板6は、石英
12によって回転可能なサセプタ9上に保持されている
A vacuum chamber 5 serving as a reaction vessel is equipped with a gas inlet 1.2° 3 and an exhaust port 4, and is further provided with a microwave ion source 7 for depositing a film on a substrate 6 and for etching the surface of the substrate 60. Each of the hot filament ion sources 8 has an independent hot filament type ion source 8 for the purpose. Note that the substrate 6 is held on a rotatable susceptor 9 by quartz 12.

5loz膜を基板6上に形成する場合を例に用いて説明
すると、まず、排気口4を介して真空槽5内を排気し、
内部の空気圧をほぼ101〜1O−5paとする。
To explain the case of forming a 5LOZ film on the substrate 6 as an example, first, the inside of the vacuum chamber 5 is evacuated through the exhaust port 4,
The internal air pressure is approximately 101 to 1 O-5 pa.

つぎに、上記マイクロ波イオン源7に周波数2、.45
 GHZのマイクロ波電力を印加し、さらに、上記ガス
導入口2,3からモノシラン(SiH4)と酸素(02
)を導入するとともに、マイクロ波放電を発生してSi
H4と02を反応させ、CvD(Chemical V
apor Deposition )によって基板6上
に810z膜を堆積した。
Next, the microwave ion source 7 is supplied with a frequency of 2, . 45
GHZ microwave power is applied, and monosilane (SiH4) and oxygen (02
) and generates microwave discharge to
By reacting H4 and 02, CvD (Chemical V
An 810z film was deposited on the substrate 6 by apor deposition.

一方、上記ガス導入口1からは、アルゴン(At)を導
入し、ホットフィラメント型イオン源8に電力を印加し
てArイオンを発生させ、グリッド13によって加速し
て得られたArイオンビームを、基板6を照射して、基
板6に堆積された810g膜をエツチングして表面の平
坦化を行なった。
On the other hand, argon (At) is introduced from the gas inlet 1, power is applied to the hot filament ion source 8 to generate Ar ions, and the resulting Ar ion beam is accelerated by the grid 13. The substrate 6 was irradiated to etch the 810 g film deposited on the substrate 6 to flatten the surface.

なお、基板6は、内部を水冷されているサセプタ7/9
に静電チャックによって吸着させ、サセプタ9とともに
回転させた。
Note that the substrate 6 includes a susceptor 7/9 whose interior is water-cooled.
was adsorbed by an electrostatic chuck and rotated together with the susceptor 9.

このようにすると、基板6に対するマイクロ波イオン源
8からの荷電粒子による衝撃は、グリッド14によって
防止させ、その結果、基板6の温度上昇は著るしく抑制
される。
In this way, the impact of charged particles from the microwave ion source 8 on the substrate 6 is prevented by the grid 14, and as a result, the temperature rise of the substrate 6 is significantly suppressed.

すなわち、第2図は5iHz膜の形成速度と基板温度の
関係を示す曲線図であシ、曲線aおよびbは、それぞれ
従来のバイアススパッタ法および本発明によって得られ
た結果を示す。
That is, FIG. 2 is a curve diagram showing the relationship between the formation rate of a 5iHz film and the substrate temperature, and curves a and b show the results obtained by the conventional bias sputtering method and the present invention, respectively.

ここに、上記曲線すは、真空槽5内の圧力を6.7 X
 10−” pa、基板6の中心とマイクロ波イオン源
7およびホットフィラメント型イオン源8との間隙を、
いずれも15crnとし、膜形成中における薄膜の堆積
量に対するエツチング量の割合を、30鋒とした場合に
得られた結果を示す。
Here, the above curve shows that the pressure inside the vacuum chamber 5 is 6.7
10-" pa, the gap between the center of the substrate 6 and the microwave ion source 7 and hot filament type ion source 8,
The results are shown when the etching amount was 15 crn and the ratio of the etching amount to the thin film deposition amount during film formation was 30 crn.

第2図から明らかなように、本発明によっての 5fOz膜!形成を行なうと、バイアススパッタ法を用
いた場合よシも、基板の温度上昇ははるかに少なく、た
とえば8i02膜の形成速度50■/分の場合の基板温
度の上昇は、本発明を用いると、バイアススパッタ法の
1/2以下となることがわかる。
As is clear from FIG. 2, the 5fOz film according to the present invention! When forming the substrate, the temperature rise of the substrate is much smaller than when using the bias sputtering method. It can be seen that the amount is less than 1/2 that of the bias sputtering method.

また、許容される基板温度の上昇を250Cとすると、
バイアススパッタ法を用いたときよシも、5fOz膜の
形成速度が3倍以上になる。
Also, assuming that the allowable increase in substrate temperature is 250C,
Even when bias sputtering is used, the formation rate of the 5fOz film is more than tripled.

このような基板温度上昇における改善は、プラズマ源を
基板から離間させたために基板への熱ふく射が減少し、
加えて、グリッド14によって、荷電粒子による基板へ
の衝撃が抑制されたためと考えられる。
This improvement in substrate temperature rise is due to the fact that the plasma source is separated from the substrate, which reduces heat radiation to the substrate.
In addition, it is thought that this is because the grid 14 suppressed the impact of charged particles on the substrate.

実施例2 第3図に本発明の他の実施例を示す。Example 2 FIG. 3 shows another embodiment of the invention.

マイクロ波イオン源7とホットフィラメント型イオン源
8は、いずれも真空槽5の底面に設けられ、これら両イ
オン源7,8に対向した位置には、回転し得るサセプタ
9が設けられている。
Both the microwave ion source 7 and the hot filament type ion source 8 are provided on the bottom surface of the vacuum chamber 5, and a rotatable susceptor 9 is provided at a position facing both of the ion sources 7 and 8.

上記サセプタ9上に、複数のf3i基板66′を固定し
て、サセプタ9を回転させながら、マイクロ波イオン源
7とホットフィラメント型イオン源8を動作させる。
A plurality of f3i substrates 66' are fixed on the susceptor 9, and the microwave ion source 7 and the hot filament type ion source 8 are operated while the susceptor 9 is rotated.

このようにすると、基板6,6′がマイクロ波イオン源
7の上方に位置したときは、5io2膜の堆積が、実施
例と同様にCVDによって行なわれ、ホットフィラメン
ト型イオン源8の上方に達すると、堆積したSiQ、膜
のArイオンによるエツチングが行なわれるから、結局
、膜の堆積とエツチングが交互に行なわれる。その結果
、各基板6゜6′は、マイクロ波イオン源7またはポッ
トフィラメント型イオン源8に、対向した位置にあると
き以外は、上記両イオン源7,8からの熱ふく射を受け
ずに冷却され、基板温度上昇の抑制は、実施例の場合よ
シもさらに顕著になシ、基板温度の上昇を効果的に防止
しながら、膜の堆積と表面平坦化を達成できる。
In this way, when the substrates 6, 6' are located above the microwave ion source 7, the 5io2 film is deposited by CVD as in the embodiment, and reaches above the hot filament type ion source 8. Then, since the deposited SiQ and the film are etched by Ar ions, the film deposition and etching are performed alternately. As a result, each substrate 6° 6' is cooled without being exposed to heat radiation from both the ion sources 7 and 8, except when it is in a position facing the microwave ion source 7 or the pot filament type ion source 8. The suppression of the substrate temperature rise is even more remarkable in the case of the embodiment, and film deposition and surface flattening can be achieved while effectively preventing the substrate temperature rise.

上記実施例は、SiH2と02を原料ガスとして用いて
、8102膜を形成する場合を示したが、例えばS l
 s N4 膜やリンガラス膜などの他の絶縁膜あるい
は、金属膜、合金膜を形成する場合にも、本発明を用い
ることができる。
The above example shows the case where an 8102 film is formed using SiH2 and 02 as raw material gases, but for example,
The present invention can also be used when forming other insulating films such as an s N4 film or a phosphorous glass film, a metal film, or an alloy film.

原料ガス間の気相反応を促進するためのプラズマは、上
記実施例ではマイクロ波イオン源を使用したが、他のプ
ラズマ発生手段を用いることも可能である。
In the above embodiment, a microwave ion source was used as the plasma for promoting the gas phase reaction between the raw material gases, but it is also possible to use other plasma generation means.

堆積膜表面の平坦化には、上記実施例において使用した
Arイオン以外のイオン用いてもよいことは、いうまで
もないことであわ、たとえば中性ビームなどイオン以外
の種々を粒子線を照射してエツチングを行なうことも可
能である。
It goes without saying that ions other than Ar ions used in the above embodiments may be used to flatten the surface of the deposited film. For example, various particle beams other than ions such as a neutral beam may be used. It is also possible to perform etching.

基板上に膜を堆積するため手段としては、上記(9) CVDの他に、堆積速度は遅くなるが、スパッタリング
を用いることもできる。この場合、マイクロ波イオンに
はSJ烏と02などの反応性ガスのかわシに、不活性ガ
スを導入し、マイクロ波イオン源の開口側壁部に石英を
配置すれば、StO。
As a means for depositing a film on a substrate, in addition to the above-mentioned (9) CVD, sputtering can also be used, although the deposition rate is slow. In this case, if an inert gas is introduced into the microwave ion source in addition to a reactive gas such as SJ02, and quartz is placed on the side wall of the opening of the microwave ion source, StO.

膜の堆積が行なわれる。Film deposition is performed.

また、マイクロ波イオン源やホットフィラメント型イオ
ン源と基板との間に、開閉可能なシャッタを設けるなど
、実施を円滑するための各種手段を付加してもよい。
Further, various means may be added to facilitate the implementation, such as providing an openable/closable shutter between the microwave ion source or hot filament type ion source and the substrate.

〔発明の効果〕〔Effect of the invention〕

上記のように、本発明は膜を堆積させる手段と、堆積し
た膜をエッチして表面を平坦化する手段を、互いに独立
して設けたものである。
As described above, the present invention provides a means for depositing a film and a means for etching the deposited film to planarize the surface thereof, independently of each other.

そのため、従来のバイアススパッタ法にくらべて、基板
の温度上昇ははるかに少々くなり、また、膜の堆積手段
としてCVDを用いると、膜の堆積速度は極めて迅速に
なる。
Therefore, compared to the conventional bias sputtering method, the temperature rise of the substrate is much smaller, and when CVD is used as a film deposition method, the film deposition rate becomes extremely rapid.

膜の堆積手段とエツチング手段を、それぞれ独立して制
御できるため、膜の堆積速度や表面の平(10) 坦度を所望の値に制御するのは容易である。
Since the film deposition means and etching means can be controlled independently, it is easy to control the film deposition rate and surface flatness to desired values.

また、膜堆積手段がグリッドを有しているときは、膜の
堆積速度はやや小さくなるが、荷電粒子による衝撃が抑
制させて基板温度の上昇は極めて少ない。
Furthermore, when the film deposition means has a grid, the film deposition rate is slightly lower, but the impact of charged particles is suppressed and the rise in substrate temperature is extremely small.

一方、上記グリッドを使用すると、荷電粒子の衝撃のた
め、基板温度抑制の効果はあ−1シ大きくないが、膜の
堆積速は極めて大きくなるので、グリッドを適宜使用す
ることによって、広範囲の目的に対応することができる
On the other hand, when the above-mentioned grid is used, the effect of suppressing the substrate temperature is not very large due to the impact of charged particles, but the film deposition rate becomes extremely high. can correspond to

これらの特長は、いずれも従来の方法では不可能であっ
たものであり、表面が平坦な膜の形成に極めて有用であ
る。
All of these features were not possible with conventional methods, and are extremely useful for forming a film with a flat surface.

【図面の簡単な説明】[Brief explanation of drawings]

施例を示す図である。 1.2.3・・・ガス導入口、4・・・排気口、5・・
・真空槽、6.6/・・・基板、7・・・マイクロ波イ
オン源、8・・・ホットフィラメント型イオン源、9・
・・サセプ(11) り、10.11・・・電磁石、12・・・石英、13゜
(12) 第 1 目 第 2 図 5LO2膜#八遠度 (n鴫つ 第1頁の続き 0発 明 者 向 喜 −部 国分寺市東恋ケ窪央研究
所内
It is a figure showing an example. 1.2.3...Gas inlet, 4...Exhaust port, 5...
・Vacuum chamber, 6.6/...Substrate, 7...Microwave ion source, 8...Hot filament type ion source, 9.
...Sasep (11) Ri, 10.11...Electromagnet, 12...Quartz, 13° (12) 1st item 2nd Figure 5 LO2 film #8 distance (Continued from 1st page 0 shots Akira Mukai - Department Kokubunji City Higashi Koigakubo Research Institute

Claims (1)

【特許請求の範囲】[Claims] 1、基板上に膜を堆積する手段を用いた上記基板上への
膜の堆積と、上記膜を堆積する手段とは独立して設けら
れた上記膜を粒子線によって照射する手段による上記膜
への粒子線の照射を、同時もしくは交互に行なうことに
よシ、上記基板上に所望の薄膜を形成することを特徴と
する段と、該膜を堆積する手段とは独立して設けられた
上記膜へ粒子を照射して上記膜をエッチする手段を少な
くともそなえたことを特徴とする薄膜形成装置。
1. Deposition of the film on the substrate using a means for depositing a film on the substrate, and depositing the film on the substrate by means of irradiating the film with a particle beam, which is provided independently of the means for depositing the film. a step for forming a desired thin film on the substrate by simultaneously or alternately performing irradiation with particle beams; and the step provided independently of the means for depositing the film. A thin film forming apparatus comprising at least means for etching the film by irradiating the film with particles.
JP58180236A 1983-09-30 1983-09-30 Thin film formation method Expired - Lifetime JPH067548B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58180236A JPH067548B2 (en) 1983-09-30 1983-09-30 Thin film formation method
US06/655,438 US4599135A (en) 1983-09-30 1984-09-28 Thin film deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58180236A JPH067548B2 (en) 1983-09-30 1983-09-30 Thin film formation method

Publications (2)

Publication Number Publication Date
JPS6074534A true JPS6074534A (en) 1985-04-26
JPH067548B2 JPH067548B2 (en) 1994-01-26

Family

ID=16079746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58180236A Expired - Lifetime JPH067548B2 (en) 1983-09-30 1983-09-30 Thin film formation method

Country Status (1)

Country Link
JP (1) JPH067548B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63233549A (en) * 1987-03-20 1988-09-29 Nippon Telegr & Teleph Corp <Ntt> Thin film formation
US5609691A (en) * 1994-11-29 1997-03-11 Nec Corporation Plasma CVD apparatus for forming a thin film of uniform thickness

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS513875A (en) * 1974-07-01 1976-01-13 Hitachi Ltd HAKUMAKUKEISEIHOHO
JPS534778A (en) * 1976-07-02 1978-01-17 Matsushita Electric Ind Co Ltd Crystal growth method with molecular beam
JPS53125761A (en) * 1977-04-08 1978-11-02 Nec Corp Manufacture for binary compound semiconductor thin film
JPS583221A (en) * 1981-06-29 1983-01-10 Fujitsu Ltd Ion beam accumulation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS513875A (en) * 1974-07-01 1976-01-13 Hitachi Ltd HAKUMAKUKEISEIHOHO
JPS534778A (en) * 1976-07-02 1978-01-17 Matsushita Electric Ind Co Ltd Crystal growth method with molecular beam
JPS53125761A (en) * 1977-04-08 1978-11-02 Nec Corp Manufacture for binary compound semiconductor thin film
JPS583221A (en) * 1981-06-29 1983-01-10 Fujitsu Ltd Ion beam accumulation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63233549A (en) * 1987-03-20 1988-09-29 Nippon Telegr & Teleph Corp <Ntt> Thin film formation
US5609691A (en) * 1994-11-29 1997-03-11 Nec Corporation Plasma CVD apparatus for forming a thin film of uniform thickness

Also Published As

Publication number Publication date
JPH067548B2 (en) 1994-01-26

Similar Documents

Publication Publication Date Title
US4599135A (en) Thin film deposition
JPH0864540A (en) Thin film forming method and device
JPS627852A (en) Formation of thin film
JPH08188873A (en) Method and apparatus for forming multi-layer optical film
JPS61213377A (en) Method and apparatus for plasma deposition
JPS6074534A (en) Method and equipment for forming thin film
JPH05211134A (en) Forming method of thin film and forming equipment of thin film
JPH0521983B2 (en)
JPH09118977A (en) Method for building up thin film
JPH0530500B2 (en)
JPH09125243A (en) Thin film forming device
JP2617539B2 (en) Equipment for producing cubic boron nitride film
JPH06145974A (en) Vacuum film forming device and vacuum film formation
JP2687468B2 (en) Thin film forming equipment
JPH0254770A (en) Formation of thin film
JPH0340422A (en) Film formation device
JPS619577A (en) Plasma chemical vapor phase growing method
JPH03130369A (en) Microwave plasma treating device
JPH0244720A (en) Microwave plasma treatment device
JPH05190450A (en) Method of forming silicon film
JPH062133A (en) Film forming method
JP3091466B2 (en) Thin film manufacturing method
JPS62224923A (en) Formation of semiconductor thin film and device therefor
JPH01149958A (en) Sputtering device
JPS60233816A (en) Thin film formation and device therefor