JPS627852A - Formation of thin film - Google Patents

Formation of thin film

Info

Publication number
JPS627852A
JPS627852A JP14702285A JP14702285A JPS627852A JP S627852 A JPS627852 A JP S627852A JP 14702285 A JP14702285 A JP 14702285A JP 14702285 A JP14702285 A JP 14702285A JP S627852 A JPS627852 A JP S627852A
Authority
JP
Japan
Prior art keywords
substrate
target material
film
deposition rate
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14702285A
Other languages
Japanese (ja)
Inventor
Koji Shimomura
下村 幸二
Riyouichi Hatsuki
巴月 良一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP14702285A priority Critical patent/JPS627852A/en
Publication of JPS627852A publication Critical patent/JPS627852A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target

Abstract

PURPOSE:To increase the deposition rate of a film and to improve productivity in the stage of forming the thin film by a sputtering method by specifying the surface shape of a target material. CONSTITUTION:An Si substrate as a substrate 17 to be treated is installed on a lower electrode 13 and the inside of a vacuum vessel 11 is evacuated to a prescribed degree of vacuum in the stage of forming, for example, a silicon oxide film by a sputtering device. For example, gaseous Ar is introduced into the vessel from an introducing port 18 and the inside of the vessel 11 is maintained under a prescribed gaseous pressure. A high-frequency power source 15 is then turned on to impress the prescribed high-frequency voltage between upper and lower electrodes 12 and 13 to generate an electric discharge so that the target material 16 is sputtered by Ar ions and the silicon oxide film is deposited on the substrate 17. The surface shape of the material 16 is thereby made into a recessed shape. Then the released atoms are directed toward the substrate 17 to be formed with the film thereon and the deposition rate is increased.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は薄膜形成方法に係り、特にスパッタリング法に
おけるターゲット材料の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for forming a thin film, and particularly to improvement of a target material in a sputtering method.

[発明の技術的背景とその問題点] 半導体ウェハー等の基体上に薄膜を形成する1つの方法
として、スパッタリング法は広く用いられている方法で
ある。一般のスパッタリング法では、10−1〜10 
’、[Torr]程度の真空中で放電を起こし、陰極降
下電圧により陽イオンを加速して陰極に衝突せしめ、こ
の際陽イオンのスパッタリングにより、陰極部に設置さ
れたターゲット材料から放出される原子を基体上に堆積
せしめることにより薄膜を形成している。
[Technical Background of the Invention and Problems Therewith] Sputtering is a widely used method for forming a thin film on a substrate such as a semiconductor wafer. In general sputtering method, 10-1 to 10
', a discharge is generated in a vacuum of about [Torr], and cations are accelerated by the cathode falling voltage and collided with the cathode, and at this time, due to sputtering of the cations, atoms are emitted from the target material placed on the cathode part. A thin film is formed by depositing on a substrate.

しかしながらこの方法では、膜の堆積速度が遅く、所望
の厚さの膜を得るのに要する時間が長いという問題があ
る。この方法では、入射してくる陽イオンがターゲット
内へ侵入する過程においてターゲットの構成原子との弾
性散乱の結果、その運動エネルギーの一部を該構成原子
に与えることになる。その運動エネルギーが該構成原子
のまわりに存在する該構成原子によって形成されている
ポテンシャルの障壁を越えるのに十分なときは、その原
子は格子点からはじき出されて(knock−on)、
さらに近くの構成原子と順次衝突を重ねることによって
、いわゆる衝突カスケード(knock−oncasc
ade)が生じる。この衝突カスケードがターゲット表
面に達したとき、ターゲットの表面近傍の原子の運動エ
ネルギーが表面結合エネルギーを越えるのに十分であれ
ば、その原子はターゲツト面から真空中へ放出されるこ
とになる。
However, this method has the problem that the film deposition rate is slow and it takes a long time to obtain a film of a desired thickness. In this method, incoming positive ions impart part of their kinetic energy to the constituent atoms of the target as a result of elastic scattering with the constituent atoms in the process of penetrating into the target. When the kinetic energy is sufficient to overcome the potential barrier formed by the constituent atoms surrounding the constituent atoms, the atom is knocked-on from the lattice point;
Furthermore, by successively colliding with nearby constituent atoms, a so-called collision cascade (knock-on cascade) is created.
ade) occurs. When this collision cascade reaches the target surface, if the kinetic energy of the atoms near the surface of the target is sufficient to exceed the surface binding energy, the atoms will be ejected from the target surface into the vacuum.

従って、スパッタされる原子はターゲット表面第1層な
らびに第2層からはじき出されたものが大部分であって
、スパッタリングにより、表面原子が順次削り取られて
いくことが推測される。
Therefore, it is assumed that most of the sputtered atoms are ejected from the first and second layers on the target surface, and the surface atoms are sequentially scraped off by sputtering.

そこで、膜の堆積速度は、放出原子を増やすこと、すな
わち、電源出力、圧力等、スパッタリング条件によりあ
る程度は速めることができる。しかしながら、このよう
にスパッタリング条件を改善しても、例えば、酸化シリ
コン膜等の絶縁膜の堆積速度はせいぜい100 [A/
min、]前後であり、厚い膜を形成するには多大な時
間を要するものもあり、堆積速度が遅いということが依
然としてスパッタリングにおける重大な問題となってい
た。
Therefore, the film deposition rate can be increased to some extent by increasing the number of released atoms, that is, by changing sputtering conditions such as power output and pressure. However, even if the sputtering conditions are improved in this way, the deposition rate of an insulating film such as a silicon oxide film is only 100 [A/
min,], and it takes a long time to form a thick film, and the slow deposition rate remains a serious problem in sputtering.

ところでターゲット材料の表面形状としては、従来は平
坦なものを用いるのが一般的であったが、平坦な表面形
状とした場合、前述の如く、放出されるのはターゲット
の表面近傍の原子であるため表面形状の影響をそのまま
受けて、飛び出す原子は広範囲に広がってしまう。この
ため基体上への原子の到達率が小さくなり、膜の堆積速
度が遅くなっているものと考えられる。
By the way, it has been common practice to use a target material with a flat surface shape, but when the surface shape is flat, as mentioned above, the atoms near the surface of the target are emitted. Therefore, the ejected atoms are affected by the surface shape and spread over a wide range. It is thought that this reduces the rate of atoms reaching the substrate, slowing down the film deposition rate.

[発明の目的] 本発明は、前記実情に鑑みてなされたもので、基本的に
はスパッタリング装置を改良することなく膜の堆積速度
を向上させ、生産性の向上をはかることを目的とする。
[Object of the Invention] The present invention has been made in view of the above-mentioned circumstances, and basically aims at increasing the film deposition rate without improving the sputtering apparatus and improving productivity.

[発明の概要] そこで本発明では、スパッタリングによってターゲット
材料から放出される原子を収束し基体上への到達率を上
げるという点に着目してなされたもので、従来平坦であ
ったターゲット材料の表面形状を凹状とすることにより
、放出原子が膜を形成すべき基体に向うようにし、堆積
速度を高めるようにしている。
[Summary of the Invention] Therefore, the present invention focuses on converging atoms emitted from a target material by sputtering and increasing the rate of reaching the substrate. By making the shape concave, the emitted atoms are directed toward the substrate on which the film is to be formed, increasing the deposition rate.

すなわち、ターゲット材料の周辺部を中央部より厚く加
工することにより、ターゲット材料から飛び出す原子は
収束され、基体上への原子の到達率が大きくなり、膜の
堆積速度は高められる。
That is, by processing the peripheral part of the target material to be thicker than the central part, atoms flying out of the target material are focused, the rate of atoms reaching the substrate is increased, and the film deposition rate is increased.

[発明の効果] 本発明によれば、ターゲット材料の表面を凹状にしてい
るため、飛び出す原子が収束されて基体上への到達率が
高められ、薄膜の堆積速度が高められて生産性が大幅に
向上する。
[Effects of the Invention] According to the present invention, since the surface of the target material is made concave, the ejected atoms are focused and the rate of reaching the substrate is increased, and the deposition rate of the thin film is increased, resulting in a significant increase in productivity. improve.

さらに、スパッタリング装置自体には何ら改良を施す必
要がなく、ターゲット材料の形状を変えるのみで実施で
きるため、製造が容易で実用的利点が大である。
Furthermore, there is no need to make any improvements to the sputtering apparatus itself, and the sputtering apparatus can be implemented simply by changing the shape of the target material, so it is easy to manufacture and has great practical advantages.

[発明の実施例] 以下、本発明の実施例について図面を参照しつつ詳細に
説明する。
[Embodiments of the Invention] Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は、本発明実施例の方法に用いられるスパッタリ
ング装置の概略構成を示す断面図である。
FIG. 1 is a sectional view showing a schematic configuration of a sputtering apparatus used in the method of the embodiment of the present invention.

このスパッタリング装置は、真空容器11(スパッタ容
器)と、該真空容器内に相対向して配置された平板状の
上部電極(陰極)12および下部電極13(陽極)とか
ら構成されている。
This sputtering apparatus is composed of a vacuum chamber 11 (sputter chamber), and a flat upper electrode (cathode) 12 and a lower electrode 13 (anode) which are arranged facing each other in the vacuum chamber.

該上部電極12には、整合鼎14を介して高周波電源1
5から高周波電力が供給される。また該上部電極12の
下面には、例えば、酸化シリコン膜を形成する場合とし
て石英ガラス(SiOz)からなるターゲット材料16
が設置されている。
A high frequency power source 1 is connected to the upper electrode 12 via a matching pin 14.
High frequency power is supplied from 5. Further, on the lower surface of the upper electrode 12, a target material 16 made of quartz glass (SiOz) is placed, for example, in the case of forming a silicon oxide film.
is installed.

このターゲット材料16は、第2図にその断面図を示す
如く(第1図と第2図は同一縮尺に基づくものではない
)、主表面が球面の1部からなり断面円弧状をなすもの
で厚みが中央部でt1=10[#]、周辺部でt2”3
o[姻]、直径R=20[cmlの円板状をなすもので
ある。
As shown in the cross-sectional view of FIG. 2 (FIGS. 1 and 2 are not to scale), this target material 16 has a main surface that is part of a spherical surface and has an arcuate cross-section. The thickness is t1=10 [#] at the center and t2”3 at the periphery.
It is in the shape of a disc with a diameter R of 20 cm.

更に、下部電極13は通常接地されており、この上に半
導体ウェハー等の被処理基体17が載置されるようにな
っている。
Further, the lower electrode 13 is normally grounded, and a substrate 17 to be processed, such as a semiconductor wafer, is placed thereon.

更にまた、真空容器11の両側面には、ガスを導入する
ためのガス導入口18と、ガスを排出するためのガス排
出口19とが相対向して設けられている。
Furthermore, a gas inlet 18 for introducing gas and a gas outlet 19 for discharging gas are provided on both sides of the vacuum container 11 to face each other.

加えて、第1図中、20.21は夫々両電極12.13
と真空容器11とを電気的に絶縁するための絶縁材であ
る。
In addition, in FIG. 1, 20.21 represents both electrodes 12.13, respectively.
This is an insulating material for electrically insulating the vacuum container 11 and the vacuum container 11.

次に、上記スパッタリング装置を用いた酸化シリコン膜
の形成方法について説明する。
Next, a method for forming a silicon oxide film using the above sputtering apparatus will be described.

まず、被処理基体17としてのシリコン基板を下部電極
13上に設置し真空容器11内を1×10−6[Tor
r]程度の真空度となるように真空排気したのち、ガス
導入口18より例えばアルゴンガス[Ar1を導入し、
真空容器11内のガス圧を10 [mtorrlに保持
する。
First, a silicon substrate as a substrate to be processed 17 is placed on the lower electrode 13, and the inside of the vacuum chamber 11 is heated to 1×10-6 [Tor].
After evacuation to a degree of vacuum of approximately
The gas pressure inside the vacuum container 11 is maintained at 10 mtorrl.

次いで、高周波電源15をONにし、例えば1 [KW
]の高周波電力を印加することにより、上部電極12と
下部電極13との間で放電を生起せしめ、アルゴンイオ
ンによりターゲット材料16をスパッタリングし、シリ
コン基板17上に酸化シリコン膜を堆積させる。このと
き、ターゲット材料16とシリコン基板17との距離は
7.5[Cl1lとする。
Next, the high frequency power supply 15 is turned on and, for example, 1 [KW
] is applied to generate a discharge between the upper electrode 12 and the lower electrode 13, the target material 16 is sputtered with argon ions, and a silicon oxide film is deposited on the silicon substrate 17. At this time, the distance between the target material 16 and the silicon substrate 17 is 7.5 [Cl1l].

このようにしてシリコン基板上に酸化シリコン膜を形成
した場合、堆積速度は320 [A/min、]であっ
た。
When a silicon oxide film was formed on a silicon substrate in this manner, the deposition rate was 320 [A/min].

ターゲット材料として、従来の如く表面が平坦なものを
用いた場合、同一条件下での堆積速度は100 [A/
min、1 Fアッタ。
When a target material with a flat surface is used as in the past, the deposition rate under the same conditions is 100 [A/
min, 1 F atta.

すなわち、本発明実施例の方法によれば、従来に比べて
3倍以上の堆積速度を得ることができる。
That is, according to the method of the embodiment of the present invention, a deposition rate three times or more can be obtained compared to the conventional method.

なお、ターゲット材料の主表面の形状としては、実施例
においては球面の1部が構成されており断面円弧状とし
たが、必ずしもこれに限定されるものではなく複数個の
テーパを有する面からなる複合面でもよく、放出原子が
収束されるように周辺部が中央部より厚くなるような形
状すなわち表面が凹状になっていればよい。
Although the shape of the main surface of the target material is a part of a spherical surface in the example and has an arcuate cross section, it is not necessarily limited to this, and may be a surface having multiple tapers. It may be a composite surface, as long as it has a shape where the peripheral part is thicker than the central part, that is, the surface is concave so that the emitted atoms are focused.

また、ターゲット材料の材質についても石英ガラスに限
定されるものではなく、必要に応じて適宜選枦すればよ
いことはいうまでもない。
Further, it goes without saying that the material of the target material is not limited to quartz glass, and may be appropriately selected as necessary.

更に、装置の構成についても実施例に何ら限定されるも
のではなく、ターゲット材料を担持する上部電極上にマ
グネットを配置し電磁界空間中で電子をドリフト運動さ
せるようにしたマグネトロンスパッタ装置、被処理基体
を載置する下部電極にも適当なバイアス電圧を印加して
イオンの1部が被処理基体表面の近傍に流れ込むように
し、堆積過程でも被処理基体表面がイオンによる衝撃を
受けて、堆積膜面に吸着されるガスをたたき出し堆積膜
の純化を行なうようにしたバイアススパッタ装置等、他
の装置でも本発明は有効である。
Furthermore, the configuration of the device is not limited to the embodiments, and the present invention includes a magnetron sputtering device in which a magnet is placed on an upper electrode supporting a target material to cause drift movement of electrons in an electromagnetic field space, and a target material to be processed. Appropriate bias voltage is also applied to the lower electrode on which the substrate is placed so that some of the ions flow into the vicinity of the surface of the substrate to be processed.During the deposition process, the surface of the substrate to be processed is bombarded by the ions and the deposited film is The present invention is also effective with other devices such as a bias sputtering device that purifies the deposited film by ejecting the gas adsorbed on the surface.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明実施例の方法に用いられるスパッタリ
ング装置の概略構成を示す断面図、第2図は、同方法に
用いられるターゲット材料の形状を示す断面図である。 11・・・真空容器、12・・・上部電極、13・・・
下部電極、14・・・整合器、15・・・高周波電源、
16・・・ターゲット材料、17・・・被処理基体、1
8・・・ガス導入口、19・・・ガス排出口、20.2
1・・・絶縁材。 第1図 第2図
FIG. 1 is a sectional view showing a schematic configuration of a sputtering apparatus used in the method of an embodiment of the present invention, and FIG. 2 is a sectional view showing the shape of a target material used in the method. 11... Vacuum container, 12... Upper electrode, 13...
Lower electrode, 14... matching box, 15... high frequency power supply,
16...Target material, 17...Substrate to be processed, 1
8... Gas inlet, 19... Gas outlet, 20.2
1...Insulating material. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 放電により生じたイオンでターゲット材料をスパッタリ
ングし、被処理基体上に薄膜を堆積形成する薄膜形成方
法において、 前記放出原子を被処理基体上に収束せしむべく、前記タ
ーゲット材料として表面が凹面状をなすように形成され
たものを用いるようにしたことを特徴とする薄膜形成方
法。
[Claims] In a thin film forming method in which a target material is sputtered with ions generated by electric discharge to deposit a thin film on a substrate to be processed, the target material is 1. A method for forming a thin film, characterized in that a thin film formed with a concave surface is used.
JP14702285A 1985-07-04 1985-07-04 Formation of thin film Pending JPS627852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14702285A JPS627852A (en) 1985-07-04 1985-07-04 Formation of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14702285A JPS627852A (en) 1985-07-04 1985-07-04 Formation of thin film

Publications (1)

Publication Number Publication Date
JPS627852A true JPS627852A (en) 1987-01-14

Family

ID=15420773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14702285A Pending JPS627852A (en) 1985-07-04 1985-07-04 Formation of thin film

Country Status (1)

Country Link
JP (1) JPS627852A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06505051A (en) * 1990-10-31 1994-06-09 東京エレクトロン株式会社 Equipment with magnetron sputter coating method and rotating magnet cathode
US5336386A (en) * 1991-01-28 1994-08-09 Materials Research Corporation Target for cathode sputtering
WO2002012584A3 (en) * 2000-08-08 2002-04-25 Cemecon Ceramic Metal Coatings Sputtertarget
JP2009046735A (en) * 2007-08-21 2009-03-05 Ulvac Japan Ltd Sputtering device and plasma processing apparatus
US7874267B2 (en) 2001-12-14 2011-01-25 Osaka Industrial Promotion Organization Animal breeding system and use thereof
JP2012522894A (en) * 2009-04-03 2012-09-27 アプライド マテリアルズ インコーポレイテッド Sputter target for PVD chamber
US9888667B2 (en) 2005-06-14 2018-02-13 Innovive, Inc. Cage cover with filter, shield and nozzle receptacle
US10278361B2 (en) 2010-10-11 2019-05-07 Innovive, Inc. Rodent containment cage monitoring apparatus and methods
US10448612B2 (en) 2004-12-13 2019-10-22 Innovive, Inc. Process for replacing a cage in a rodentcontainment system for animal husbandry
US10729098B2 (en) 2013-07-01 2020-08-04 Innovive, Inc. Cage rack monitoring apparatus and methods
US10842124B2 (en) 2014-07-25 2020-11-24 Innovive, Inc. Animal containment enrichment compositions and methods

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06505051A (en) * 1990-10-31 1994-06-09 東京エレクトロン株式会社 Equipment with magnetron sputter coating method and rotating magnet cathode
US5336386A (en) * 1991-01-28 1994-08-09 Materials Research Corporation Target for cathode sputtering
WO2002012584A3 (en) * 2000-08-08 2002-04-25 Cemecon Ceramic Metal Coatings Sputtertarget
US6852201B2 (en) 2000-08-08 2005-02-08 Cemecon Ag Sputter target and method of using a sputter target
US7874267B2 (en) 2001-12-14 2011-01-25 Osaka Industrial Promotion Organization Animal breeding system and use thereof
US10448612B2 (en) 2004-12-13 2019-10-22 Innovive, Inc. Process for replacing a cage in a rodentcontainment system for animal husbandry
US10314287B2 (en) 2005-06-14 2019-06-11 Innovive, Inc. Cage cover with filter, shield and nozzle receptacle
US9888667B2 (en) 2005-06-14 2018-02-13 Innovive, Inc. Cage cover with filter, shield and nozzle receptacle
JP2009046735A (en) * 2007-08-21 2009-03-05 Ulvac Japan Ltd Sputtering device and plasma processing apparatus
JP2012522894A (en) * 2009-04-03 2012-09-27 アプライド マテリアルズ インコーポレイテッド Sputter target for PVD chamber
US10060024B2 (en) 2009-04-03 2018-08-28 Applied Materials, Inc. Sputtering target for PVD chamber
US10278361B2 (en) 2010-10-11 2019-05-07 Innovive, Inc. Rodent containment cage monitoring apparatus and methods
US10729098B2 (en) 2013-07-01 2020-08-04 Innovive, Inc. Cage rack monitoring apparatus and methods
US10842124B2 (en) 2014-07-25 2020-11-24 Innovive, Inc. Animal containment enrichment compositions and methods

Similar Documents

Publication Publication Date Title
US4599135A (en) Thin film deposition
US5431799A (en) Collimation hardware with RF bias rings to enhance sputter and/or substrate cavity ion generation efficiency
US4871433A (en) Method and apparatus for improving the uniformity ion bombardment in a magnetron sputtering system
GB2129021A (en) Sputtering apparatus
JPS627852A (en) Formation of thin film
JPH08188873A (en) Method and apparatus for forming multi-layer optical film
JPH10219442A (en) Sputtering apparatus
JPS6147645A (en) Formation of thin film
JPS6143427A (en) Sputter-etching method
JP2761875B2 (en) Deposition film forming equipment by bias sputtering method
US5536381A (en) Sputtering device
JPS6361387B2 (en)
JPS61174726A (en) Formation of thin film
JPS6197838A (en) Formation of thin film
JPH0585633B2 (en)
JPH0717147Y2 (en) Plasma processing device
JPH01116068A (en) Bias sputtering device
JPS63307272A (en) Ion beam sputtering device
JPS6277477A (en) Thin film forming device
JP2002012970A (en) Apparatus and method for sputtering
JP2777657B2 (en) Plasma deposition equipment
JPS61174725A (en) Thin film forming apparatus
JPS6050927A (en) Thin film formation
JPS60115228A (en) Sputtering apparatus
JPH09237776A (en) Method and apparatus for plasma treatment