JPS6361387B2 - - Google Patents

Info

Publication number
JPS6361387B2
JPS6361387B2 JP58102757A JP10275783A JPS6361387B2 JP S6361387 B2 JPS6361387 B2 JP S6361387B2 JP 58102757 A JP58102757 A JP 58102757A JP 10275783 A JP10275783 A JP 10275783A JP S6361387 B2 JPS6361387 B2 JP S6361387B2
Authority
JP
Japan
Prior art keywords
target
substrate
electrode
film
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58102757A
Other languages
Japanese (ja)
Other versions
JPS59229480A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10275783A priority Critical patent/JPS59229480A/en
Publication of JPS59229480A publication Critical patent/JPS59229480A/en
Publication of JPS6361387B2 publication Critical patent/JPS6361387B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/225Oblique incidence of vaporised material on substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、高エネルギイオンの衝突によりター
ゲツト表面からターゲツト構成原子をたたき出
し、この原子を基板上に堆積させて薄膜を形成す
るスパツタリング装置、特に、高堆積速度で良質
な膜を均一性良く形成させることのできる電極、
ターゲツト構造を備えたスパツタリング装置に関
するもので、例えば半導体デバイスの製造に適用
できる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a sputtering apparatus for ejecting atoms constituting a target from a target surface by collision with high-energy ions and depositing these atoms on a substrate to form a thin film. An electrode that can form a high quality film with good uniformity at a high deposition rate.
The present invention relates to a sputtering apparatus equipped with a target structure, and can be applied, for example, to the manufacture of semiconductor devices.

〔発明の背景〕[Background of the invention]

近年、発展の著しい半導体デバイスの製作に、
スパツタリング法を用いる場合が急激に増大して
いる。従来のこの種のスパツタリング装置は、第
1図に示す構成を備えている。真空槽11内に、
陰極もしくは高周波電極となる平板形の電極12
と、この電極12上にターゲツト13を設置し、
電極12とターゲツト13との周辺部に電極シー
ルド14が設けてあり、ターゲツト13の前面
に、シヤツタ17を介して、基板支持台15が配
置されている。基板支持台15上に基板16を設
置した後、真空槽11を排気し、Ar等の不活性
ガスと、O2やN2等の活性ガスとを所定量導入し、
電極12に負電圧あるいは高周波電圧を印加する
と、、グロー放電が起こり、高エネルギイオンが
生成され、これがターゲツト13の表面に衝突
し、ターゲツト構成原子がたたき出される。この
状態をしばらく続けて後、シヤツタ17を除く
と、ターゲツト構成原子を主成分とする薄膜が基
板16上に形成される。ターゲツト13のみをエ
ツチングし、電極12のエツチングを阻止するた
めに、通常のスパツタリング装置においては、電
極12の周辺部は電極シールド14でおおわれて
いる。
In recent years, the production of semiconductor devices has seen remarkable progress.
The use of the sputtering method is rapidly increasing. A conventional sputtering apparatus of this type has a configuration shown in FIG. In the vacuum chamber 11,
A flat electrode 12 that serves as a cathode or high frequency electrode
Then, a target 13 is placed on this electrode 12,
An electrode shield 14 is provided around the electrode 12 and the target 13, and a substrate support 15 is placed in front of the target 13 via a shutter 17. After setting the substrate 16 on the substrate support stand 15, the vacuum chamber 11 is evacuated, and a predetermined amount of an inert gas such as Ar and an active gas such as O 2 or N 2 is introduced.
When a negative voltage or a high frequency voltage is applied to the electrode 12, a glow discharge occurs and high-energy ions are generated, which collide with the surface of the target 13 and knock out atoms constituting the target. After this state continues for a while, the shutter 17 is removed, and a thin film containing the target constituent atoms as a main component is formed on the substrate 16. In order to etch only the target 13 and prevent etching of the electrode 12, the periphery of the electrode 12 is covered with an electrode shield 14 in a typical sputtering apparatus.

平板形の電極上に、平板形のターゲツトを設置
して用いる、従来のスパツタリング装置は、発展
の著しい半導体デバイスを製作する上で、多くの
問題点を有することが明らかとなつている。問題
点が生じる主な原因は、半導体基板が大口径化し
てきていることにある。これを第2図によつて説
明する。電極21上に設置したターゲツト22か
らたたき出された原子が、基板支持台23上の基
板24に堆積する。この場合、基板24の中央部
の(a+b)の領域には、ターゲツト22の左側
のA領域及び右側のB領域から、ターゲツト構成
原子がほぼ同量入射し、さらに、基板面へ入射す
る角度も、法線に対して対称な分布となる。一
方、基板24の周辺部のa領域あるいはb領域で
は、それぞれ、ターゲツト22のA領域あるいは
B領域からのターゲツト構成原子が多く入射し、
また、基板面への入射角分布も法線に対して非対
称となる。これらの理由から、基板24上に形成
される膜の厚さは均一でなく、さらに、膜の特性
も不均一となる。第3図は従来装置により、
SiO2膜を形成した時の厚さの分布を示し、横軸
は基板の中心からの距離(cm)を、縦軸は規格化
した膜厚を示している。この第3図から、基板の
中央部の方が厚く堆積し、周辺部になるに伴つて
薄くなつていることがわかる。
It has become clear that conventional sputtering equipment, which uses a planar target placed on a planar electrode, has many problems in manufacturing semiconductor devices, which are undergoing rapid development. The main reason for this problem is that semiconductor substrates are becoming larger in diameter. This will be explained with reference to FIG. Atoms ejected from a target 22 placed on an electrode 21 are deposited on a substrate 24 on a substrate support 23. In this case, approximately the same amount of target constituent atoms are incident on the region (a+b) at the center of the substrate 24 from the A region on the left side and the B region on the right side of the target 22, and the angle of incidence on the substrate surface is also different. , the distribution is symmetrical with respect to the normal. On the other hand, many target constituent atoms from region A or region B of the target 22 are incident on region a or region b at the periphery of the substrate 24, respectively.
Furthermore, the incident angle distribution on the substrate surface is also asymmetric with respect to the normal line. For these reasons, the thickness of the film formed on the substrate 24 is not uniform, and furthermore, the properties of the film are also non-uniform. Figure 3 shows the conventional equipment.
It shows the thickness distribution when a SiO 2 film is formed, with the horizontal axis showing the distance (cm) from the center of the substrate, and the vertical axis showing the normalized film thickness. From FIG. 3, it can be seen that the deposit is thicker at the center of the substrate and becomes thinner toward the periphery.

さらに、スパツタリング法は、同一電極上に、
性質の異なるターゲツトを設置してて、各ターゲ
ツトの組成から成る薄膜を形成する場合にも極め
て有効である。この場合、第2図に示すように、
電極21上に、性質の異なるターゲツト22A及
び22Bを設置することにより、基板24上に
は、ターゲツト22A及び22Bから成る組成の
薄膜が形成される。しかし、その場合、基板24
の中央部においてのみ22Aと22Bの組成が同
量となり、周辺部では、一方の組成が不足してく
る。
Furthermore, the sputtering method uses
It is also extremely effective when setting targets with different properties and forming a thin film consisting of the composition of each target. In this case, as shown in Figure 2,
By placing targets 22A and 22B with different properties on the electrode 21, a thin film having a composition composed of the targets 22A and 22B is formed on the substrate 24. However, in that case, the substrate 24
The compositions of 22A and 22B are the same only in the central part, and one of the compositions becomes insufficient in the peripheral part.

以上のように、従来のスパツタリング装置で
は、膜の厚さ、膜特性ならびに膜組成の均一性に
問題がある。これを解決する目的で、ターゲツト
の口径を大きくしたり、あるいは、基板に自転、
公転等の複雑な運動を付与する対策がとられてい
る。しかし、前者のターゲツトを大口径化する方
式は、良質なターゲツトの大口径化は困難であ
り、大口径化に伴つて著しく高価になるという問
題点があり、一方、後者の基板に運動を与える方
式では、真空槽を大きくしなければならず、その
内部を高真空に保つことが困難になることや、膜
の形成速度が小さくなる等の問題が新たに生じて
くる。
As described above, conventional sputtering apparatuses have problems with the uniformity of film thickness, film properties, and film composition. To solve this problem, the diameter of the target can be increased, or the substrate can be rotated.
Measures are being taken to add complex movements such as revolution. However, the former method of increasing the diameter of the target has the problem that it is difficult to increase the diameter of a high-quality target and becomes extremely expensive as the diameter increases; In this method, the vacuum chamber must be made larger, which causes new problems such as difficulty in maintaining a high vacuum inside the chamber and a slowing of the film formation rate.

以上述べたように、従来のスパツタリング装置
においては、高堆積速度で、良質な膜を均一性良
く形成することが困難であり、これらを改善する
ためには、さらにターゲツト口径を大きくした
り、真空槽を高真空に排気する時間を長くする等
の必要があり、薄膜の形成に要する費用が高いも
のになるという問題があつた。
As mentioned above, with conventional sputtering equipment, it is difficult to form a high-quality film with good uniformity at a high deposition rate. There was a problem in that it was necessary to take a longer time to evacuate the tank to high vacuum, and the cost required to form the thin film was high.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、従来装置での上記した諸問題
点を解決できる構成を備えたスパツタリング装置
を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a sputtering apparatus having a configuration that can solve the above-mentioned problems of conventional apparatuses.

〔発明の概要〕[Summary of the invention]

本発明の特徴は、陰極電極もしくは高周波電極
となる電極を互いにある傾き角をなす複数の平面
板で形成してこれらの複数電極板上に平板状のタ
ーゲツトを密着状に設置し、これらの各平面板電
極上のターゲツトの表面に平行な磁界成分を発生
する、複数個の永久磁石もしくは電磁石を各平面
板電極ごとにそれぞれ内蔵させる構成とするにあ
る。
A feature of the present invention is that the electrodes serving as cathode electrodes or high-frequency electrodes are formed from a plurality of flat plates that are inclined at a certain angle to each other, and flat targets are placed in close contact with each other on these multiple electrode plates. The structure is such that each plane plate electrode has a plurality of permanent magnets or electromagnets built therein, which generate magnetic field components parallel to the surface of the target on the plane plate electrode.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面により説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第4図は本発明の一実施例を示す断面図で、陰
極電極もしくは高周波電極(以下電極と呼ぶ)4
1が、互いにある傾き角をなす複数の平面板から
なり、これらの複数電極板上に平板状のターゲツ
ト42が、各電極板面に沿つて傾き角を作りなが
ら密着するように設置され、これらの電極及びタ
ーゲツトの周辺部は電極シールド43で覆われて
いる。その他の符号は従来のものと同じ構成の部
品で、44は真空槽、45は基板支持台、46は
基板、47はシヤツタである。第5図には、ター
ゲツトと基板との相対的位置関係が示されてい
る。第5図において、電極51上にターゲツト5
2を設置し、放電を開始すると、ターゲツト52
の表面からターゲツト構成原子がたたき出され、
基板支持台53に取付けた基板54上に上記原子
の膜が形成される。電極51が、互いにある傾き
角をなす複数の平面板で構成され、これらの各電
極板のそれぞれが基板54の面とほぼ同じ傾き角
となるように配置することにより、電極51上に
密着状に取付けられるターゲツト52も電極数に
応じて多面体形状となり、その各面がそれぞれ基
板54の面に対してほぼ同じ傾き角ずつ傾くこと
になる。このため、基板54の全面にわたり、タ
ーゲツト52の図示A領域ならびにB領域から、
ターゲツト構成原子がほぼ同量入射し、さらに、
基板面への入射角度も法線に対して対称な分布と
なる。この理由から、第1図及び第2図に示した
従来装置に比べて、基板上での膜の厚さは均一
で、さらに、膜の特性も均一となる。第6図は、
電極が2個の平面板から成る場合の膜の厚さ分布
である。この場合の2平面板の間の傾き角は20度
である。第3図に示した従来装置による分布と比
べて、膜の厚さは著しく均一となつている。
FIG. 4 is a sectional view showing one embodiment of the present invention, in which a cathode electrode or high frequency electrode (hereinafter referred to as an electrode) 4
1 consists of a plurality of flat plates that form a certain angle of inclination to each other, and a flat target 42 is placed on these plurality of electrode plates so as to be in close contact with each other while creating an angle of inclination along the surface of each electrode plate. The electrode and the periphery of the target are covered with an electrode shield 43. The other reference numerals are parts having the same structure as the conventional one, and 44 is a vacuum chamber, 45 is a substrate support stand, 46 is a substrate, and 47 is a shutter. FIG. 5 shows the relative positional relationship between the target and the substrate. In FIG. 5, a target 5 is placed on an electrode 51.
2 and start discharging, the target 52
The target atoms are ejected from the surface of the
The above-described atomic film is formed on the substrate 54 attached to the substrate support 53. The electrode 51 is composed of a plurality of flat plates that are inclined at a certain angle to each other, and by arranging each of these electrode plates so that the angle of inclination is approximately the same as that of the surface of the substrate 54, the electrode 51 is formed in close contact with the surface of the substrate 54. The target 52 attached to the substrate 52 also has a polyhedral shape depending on the number of electrodes, and each surface thereof is inclined at approximately the same angle with respect to the surface of the substrate 54. Therefore, over the entire surface of the substrate 54, from the illustrated areas A and B of the target 52,
Almost the same amount of target constituent atoms are incident, and furthermore,
The angle of incidence on the substrate surface also has a symmetrical distribution with respect to the normal. For this reason, the thickness of the film on the substrate is more uniform, and the properties of the film are also more uniform, compared to the conventional devices shown in FIGS. 1 and 2. Figure 6 shows
This is the thickness distribution of the film when the electrode consists of two flat plates. The angle of inclination between the two planar plates in this case is 20 degrees. The thickness of the film is significantly more uniform than the distribution obtained by the conventional device shown in FIG.

上記実施例においては、電極51上に同一のタ
ーゲツトを取付けるとして説明したが、さらに、
本発明は、複数の平面板で構成される電極上に、
性質の異なるターゲツトを複数個設置して、それ
らのターゲツトの組成から成る薄膜を得る場合に
も極めて有効である。即ち、第5図において、A
領域に設置するターゲツトとB領域に設置するタ
ーゲツトとを、組成を異にするターゲツトとする
ことで、基板54上には、A領域の組成とB領域
の組成との両者を含む薄膜が得られる。この場
合、A領域のターゲツトとB領域のターゲツトと
が、それぞれほぼ同じ傾き角で基板54に対向し
ているため、基板54の全面にわたつてAとBの
組成が同量となり、均一組成の膜が得られる。
In the above embodiment, it has been explained that the same target is attached on the electrode 51, but furthermore,
In the present invention, on an electrode composed of a plurality of flat plates,
It is also extremely effective when a plurality of targets with different properties are provided and a thin film having the composition of those targets is obtained. That is, in FIG.
By setting the target installed in region B and the target installed in region B as targets having different compositions, a thin film containing both the composition of region A and the composition of region B can be obtained on the substrate 54. . In this case, since the target in area A and the target in area B face the substrate 54 at approximately the same angle of inclination, the compositions of A and B are the same over the entire surface of the substrate 54, resulting in a uniform composition. A membrane is obtained.

以上のように、第4図実施例によれば、膜の厚
さ、膜特性ならびに膜組成の著しい均一性が実現
し、この結果、従来法で必要とした、基板に複雑
な運動を付与する必要がなく、膜の形成速度を高
めることができる利点がある。さらに、本実施例
によれば小さなターゲツトにより良質な膜を均一
に形成できることから、ターゲツト形成に必要な
費用を低減できる利点がある。
As described above, according to the embodiment shown in FIG. 4, remarkable uniformity in film thickness, film properties, and film composition is achieved, and as a result, it is possible to impart complex motion to the substrate, which is required in the conventional method. There is no need for this, and there is an advantage that the film formation rate can be increased. Furthermore, according to this embodiment, a high-quality film can be uniformly formed using a small target, so there is an advantage that the cost required for forming the target can be reduced.

スパツタリング装置では、プラズマを集束し、
膜形成速度を向上する目的で、外部から磁界を印
加することが一般に行なわれている。磁界の印加
方法により、スパツタリング装置は、ダイオード
方式とマグネトロン方式とに区別されている。前
者方式は、ターゲツトの表面にほぼ垂直な磁界を
印加する方式であり、一方、後者は平行に印加す
る方式である。本発明においても、ダイオード方
式を採用する場合は、永久磁石もしくはヘルムホ
ルツコイルによる電磁石を用いて、一括して磁界
を印加することができる。一方、マグネトロン方
式を採用する場合には、第7図に一実施例を示す
ように、ターゲツト71の裏面に複数対の永久磁
石72が配置されるように、電極に永久磁石群を
内蔵させる。この状態でスパツタリングを行なう
と、ターゲツト表面に平行磁界が印加され、この
磁界領域のターゲツト表面73が顕著にエツチン
グされ、膜の形成速度が増大する。
Sputtering equipment focuses plasma and
In order to improve the film formation rate, it is common practice to apply a magnetic field from the outside. Depending on the method of applying a magnetic field, sputtering devices are classified into diode type and magnetron type. The former method applies a magnetic field substantially perpendicular to the surface of the target, while the latter method applies a magnetic field parallel to the surface of the target. In the present invention, when a diode system is employed, a magnetic field can be applied all at once using an electromagnet using a permanent magnet or a Helmholtz coil. On the other hand, when the magnetron system is adopted, as shown in one embodiment in FIG. 7, a group of permanent magnets is built into the electrode so that a plurality of pairs of permanent magnets 72 are arranged on the back surface of the target 71. When sputtering is performed in this state, a parallel magnetic field is applied to the target surface, and the target surface 73 in this magnetic field region is markedly etched, increasing the film formation rate.

さらに、本発明において、シヤツタを複数個設
けることも有効である。第8図は、2個のシヤツ
タ84,85を、それぞれが基板87に対してほ
ぼ同じ傾き角となるように配置した場合である。
第8図において、電極81上に、性質の異なるタ
ーゲツト82,83を設置した後、放電を開始
し、シヤツタ84,85を開閉することによつ
て、基板支持台86上の基板87に膜形成が行な
われる。この際、シヤツタ84,85の開閉を時
間的に制御することによつて、基板87上には、
ターゲツト82,83から成る組成の膜を形成で
き、その組成を容易に制御できる。さらに、第8
図に示すように、ターゲツト82,83の表面も
それぞれ基板87の面に対して、ほぼ同じ傾き角
で傾いているために、形成される膜の組成を基板
87の全面にわたつて均一にすることができる。
Furthermore, in the present invention, it is also effective to provide a plurality of shutters. FIG. 8 shows a case where two shutters 84 and 85 are arranged so that they have substantially the same inclination angle with respect to a substrate 87. In FIG.
In FIG. 8, after targets 82 and 83 with different properties are placed on an electrode 81, a film is formed on a substrate 87 on a substrate support 86 by starting discharge and opening and closing shutters 84 and 85. will be carried out. At this time, by temporally controlling the opening and closing of the shutters 84 and 85, on the substrate 87,
A film having a composition consisting of targets 82 and 83 can be formed, and the composition can be easily controlled. Furthermore, the eighth
As shown in the figure, the surfaces of the targets 82 and 83 are also inclined at approximately the same angle with respect to the surface of the substrate 87, so that the composition of the formed film is made uniform over the entire surface of the substrate 87. be able to.

第9図には、第7図において述べた、電極に永
久磁石を内蔵させてターゲツト表面に平行磁界を
印加する構成の、具体的寸法を含めた実施例と、
それにより形成される膜の厚さの分布図を従来装
置で形成される膜厚分布図と比較して示してい
る。第9図実施例では、a図に平面図を、b図の
下段部にそのX−X断面図を示すように、直径が
それぞれ4インチ(100mm)の71(1),71(2),
71(3)の3個のSiターゲツトが、150×400mm2の長
方形状の電極74の面上に、71(2)を中心に、7
1(1),71(2),71(3)の順に一直線状に、、しか
も、中央のターゲツト71(2)に対してターゲツト
71(1),71(3)はそれぞれ15度ずつ傾斜するよう
に配置される。そして、ターゲツト71(1)と71
(2)との間、及び71(2)と71(3)との間にはそれぞ
れ32mmずつの間隔があけてあり、さらに、各ター
ゲツト71(1),71(2),71(3)の裏面の電極部分
には、それぞれ中心のS極のまわりをN極がリン
グ状に囲む形状の永久磁石72(1),72(2),72
(3)が埋め込まれている。72(0)は軟鉄材で形
成されるヨークである。
FIG. 9 shows an example including specific dimensions of the configuration described in FIG. 7, in which a permanent magnet is built into the electrode and a parallel magnetic field is applied to the target surface.
The thickness distribution chart of the film formed thereby is shown in comparison with the film thickness distribution chart formed by the conventional apparatus. In the embodiment of FIG. 9, 71(1), 71(2), each having a diameter of 4 inches (100 mm),
Three Si targets 71(3) are placed on the surface of a 150×400 mm 2 rectangular electrode 74, with 71(2) in the center.
1(1), 71(2), and 71(3) in a straight line in that order, and targets 71(1) and 71(3) are each tilted by 15 degrees with respect to the center target 71(2). It is arranged like this. And targets 71(1) and 71
(2) and between 71(2) and 71(3). Permanent magnets 72(1), 72(2), and 72 each have a ring-shaped N pole surrounding a central S pole on the electrode portions on the back side of the
(3) is embedded. 72(0) is a yoke made of soft iron.

以上のように配置された電極及びSiターゲツト
を、スパツタリング装置を構成する真空槽内に、
中央のターゲツト71(2)の面が、薄膜を形成しよ
うとする基板面と平行するように、80mmの間隔を
もたせて配置し、次いで真空槽を排気してから
Arガスを1.3パスカルの圧力で封入し、基板と電
極間に1.5kwの高周波電力を印加して基板面に形
成させた膜厚の分布図がb図の上段部に○印で示
す曲線である。×印で示す従来装置に対するもの
は、電極として5インチ×15インチ(約125mm×
375mm)の長方形状の一枚のSiターゲツトを用い、
上記と同じ条件で形成した薄膜の厚さの分布図で
ある。本実施例によれば、形成される薄膜の均一
性が著しく改善されることがわかる。
The electrodes and Si target arranged as described above were placed in a vacuum chamber constituting a sputtering device.
The center target 71(2) is placed at a distance of 80 mm so that its surface is parallel to the surface of the substrate on which the thin film is to be formed, and then the vacuum chamber is evacuated.
The film thickness distribution diagram formed on the substrate surface by filling Ar gas at a pressure of 1.3 Pascal and applying 1.5 kW of high-frequency power between the substrate and the electrode is the curve indicated by the circle in the upper part of figure b. . The conventional device marked with an x has an electrode of 5 inches x 15 inches (approximately 125 mm x
Using a single rectangular Si target (375mm),
FIG. 3 is a distribution diagram of the thickness of a thin film formed under the same conditions as above. According to this example, it can be seen that the uniformity of the formed thin film is significantly improved.

このように、本実施例によれば、複数枚のター
ゲツトのそれぞれの裏面に永久磁石を埋め込み、
しかも各ターゲツト間にある程度の間隔を持たせ
ることにより、隣接する永久磁石により磁界同志
の相互作用を防止しながらターゲツト表面に平行
磁界を発生させることが可能となり、これにより
安定したプラズマを生じさせ、基板に形成される
膜の厚さを極めて均一性の良いものとすることが
できる。
As described above, according to this embodiment, a permanent magnet is embedded in the back surface of each of a plurality of targets,
Furthermore, by providing a certain amount of space between each target, it is possible to generate a parallel magnetic field on the target surface while preventing interaction between magnetic fields by adjacent permanent magnets, thereby generating stable plasma. The thickness of the film formed on the substrate can be made extremely uniform.

本発明の電極を構成する複数の平面板の相互間
の傾き角は10度乃至90度(即ち、基板に対しては
それぞれの平面板の傾き角が5度乃至45度)が最
適である。10度以下であると、本発明の効果が現
われない。一方、90度以上にすると、膜の形成速
度が減少するなどの問題点が生じてくる。さら
に、本発明の電極における平面板の個数、大き
さ、形状は、目的に応じて任意に選ぶことができ
る。
The optimum angle of inclination between the plurality of flat plates constituting the electrode of the present invention is 10 degrees to 90 degrees (that is, the angle of inclination of each plane plate to the substrate is 5 degrees to 45 degrees). If the temperature is less than 10 degrees, the effect of the present invention will not be achieved. On the other hand, if the angle is 90 degrees or more, problems such as a decrease in the film formation rate will occur. Furthermore, the number, size, and shape of the flat plates in the electrode of the present invention can be arbitrarily selected depending on the purpose.

なお、上述した実施例では、いずれも基板は固
定として説明したが、従来装置と同様に基板を運
動させて薄膜を形成する場合にも、本発明は適用
可能であり、大きな効果を生じさせることができ
る。
In addition, in the above-mentioned embodiments, the substrate is fixed, but the present invention is also applicable to the case where a thin film is formed by moving the substrate as in the conventional apparatus, and the present invention can produce great effects. I can do it.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、高品質
の薄膜が均一な膜厚で高速度で形成でき、また、
その製作費を低減させることができる利点があ
る。
As explained above, according to the present invention, a high-quality thin film can be formed with a uniform thickness at high speed, and
There is an advantage that the manufacturing cost can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来装置の説明図、第2図は従来装置
における膜形成機構の説明図、第3図は従来装置
により形成した膜の厚さの分布図、第4図は本発
明の一実施例の断面図、第5図は第4図における
膜形成機構の説明図、第6図は本発明実施例装置
により形成した膜の厚さの分布図、第7図は本発
明の他の実施例を示す断面図、第8図はシヤツタ
を複数個とした本発明の実施例図、第9図は第7
図構成に対する具体的寸法を含む本発明の実施例
図である。 符号の説明、11,44……真空槽、12,2
1,41,51,74,81……電極、13,2
2,42,52,71,82……ターゲツト、1
4,43……電極シールド、15,23,45,
53,86……基板支持台、16,24,46,
54,87……基板、17,47,84,85…
…シヤツタ、72……永久磁石、73……ターゲ
ツト表面。
Fig. 1 is an explanatory diagram of a conventional apparatus, Fig. 2 is an explanatory diagram of a film forming mechanism in the conventional apparatus, Fig. 3 is a distribution diagram of the thickness of a film formed by the conventional apparatus, and Fig. 4 is an embodiment of the present invention. 5 is an explanatory diagram of the film forming mechanism in FIG. 4, FIG. 6 is a distribution diagram of the thickness of the film formed by the apparatus according to the embodiment of the present invention, and FIG. 7 is another embodiment of the present invention. A sectional view showing an example, FIG. 8 is an embodiment of the present invention with a plurality of shutters, and FIG.
FIG. 3 is a diagram of an embodiment of the invention including specific dimensions for the diagram configuration; Explanation of symbols, 11, 44... Vacuum chamber, 12, 2
1, 41, 51, 74, 81... electrode, 13, 2
2, 42, 52, 71, 82...Target, 1
4, 43... Electrode shield, 15, 23, 45,
53, 86...Substrate support stand, 16, 24, 46,
54, 87...Substrate, 17, 47, 84, 85...
...Shatter, 72...Permanent magnet, 73...Target surface.

Claims (1)

【特許請求の範囲】[Claims] 1 基板支持台に設置した基板と陰極電極もしく
は高周波電極に設置したターゲツトとがシヤツタ
を介して向き合つて真空槽内に配置され、上記電
極への電圧印加で生成される高エネルギイオンの
衝突によりターゲツト表面からターゲツト構成原
子をたたき出しこの原子を基板上に堆積させて薄
膜を形成するスパツタリング装置において、上記
電極を互いにある傾き角をなす複数の平面板で形
成してこれらの複数電極板上に平板状のターゲツ
トを密着状に設置し、上記各平面板電極上のター
ゲツトの表面に平行な磁界成分を発生する、複数
個の永久磁石もしくは電磁石を各平面板電極ごと
にそれぞれ内蔵させたことを特徴とするスパツタ
リング装置。
1. A substrate placed on a substrate support stand and a target placed on a cathode electrode or high-frequency electrode are placed in a vacuum chamber, facing each other via a shutter, and the collision of high-energy ions generated by applying voltage to the electrodes causes In a sputtering device that ejects atoms constituting the target from the target surface and deposits these atoms on a substrate to form a thin film, the electrodes are formed of a plurality of flat plates that are inclined at a certain angle to each other, and a flat plate is placed on these multiple electrode plates. It is characterized by having a plurality of permanent magnets or electromagnets built into each of the flat plate electrodes, each of which generates a magnetic field component parallel to the surface of the target on each of the flat plate electrodes. sputtering equipment.
JP10275783A 1983-06-10 1983-06-10 Sputtering device Granted JPS59229480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10275783A JPS59229480A (en) 1983-06-10 1983-06-10 Sputtering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10275783A JPS59229480A (en) 1983-06-10 1983-06-10 Sputtering device

Publications (2)

Publication Number Publication Date
JPS59229480A JPS59229480A (en) 1984-12-22
JPS6361387B2 true JPS6361387B2 (en) 1988-11-29

Family

ID=14336072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10275783A Granted JPS59229480A (en) 1983-06-10 1983-06-10 Sputtering device

Country Status (1)

Country Link
JP (1) JPS59229480A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2607727Y2 (en) * 1992-01-29 2002-07-08 バルツァース ウント ライボルト ドイチュラント ホールディング アクチエンゲゼルシャフト Cathode sputtering equipment
JPH05287524A (en) * 1992-04-09 1993-11-02 Anelva Corp Target for magnetron sputtering
EP0704878A1 (en) * 1994-09-27 1996-04-03 Applied Materials, Inc. Uniform film thickness deposition of sputtered materials
JP5026631B2 (en) * 1999-06-24 2012-09-12 株式会社アルバック Sputtering equipment
US6267851B1 (en) * 1999-10-28 2001-07-31 Applied Komatsu Technology, Inc. Tilted sputtering target with shield to block contaminants
JP5916980B2 (en) * 2009-09-11 2016-05-11 シャープ株式会社 Manufacturing method of nitride semiconductor light emitting diode device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5776185A (en) * 1980-10-30 1982-05-13 Ulvac Corp Sputtering device
JPS57141930A (en) * 1981-02-27 1982-09-02 Hitachi Ltd Device for formation of thin film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5776185A (en) * 1980-10-30 1982-05-13 Ulvac Corp Sputtering device
JPS57141930A (en) * 1981-02-27 1982-09-02 Hitachi Ltd Device for formation of thin film

Also Published As

Publication number Publication date
JPS59229480A (en) 1984-12-22

Similar Documents

Publication Publication Date Title
TWI499682B (en) Plasma processing chambers and methods of depositing thin films
TW201329270A (en) Magnetron sputtering apparatus and method
JP2000144399A (en) Sputtering device
JPH11229132A (en) Sputter film forming device and sputter film forming method
US6471831B2 (en) Apparatus and method for improving film uniformity in a physical vapor deposition system
JPS6361387B2 (en)
EP0318441B1 (en) Apparatus and process for the deposition of a thin layer on a transparent substrate, in particular for the manufacture of sheets of glass
JPS627852A (en) Formation of thin film
JPH079062B2 (en) Spatter device
JP3254782B2 (en) Double-sided sputter film forming method and apparatus, and sputter film forming system
JPS60200962A (en) Planar magnetron sputtering method
JPS63282263A (en) Magnetron sputtering device
JPH01116068A (en) Bias sputtering device
JPS6233764A (en) Sputtering device
JP2755776B2 (en) High-speed deposition sputtering equipment
JP3038287B2 (en) Thin film production equipment
JPH0867981A (en) Sputtering device
JPS61170566A (en) Sputtering device
JPS63223173A (en) Method and apparatus for forming sputtered film
JPH05339726A (en) Magnetron sputtering device
JP2000080470A (en) Sputtering device having deflecting system
JP2001207258A (en) Rotating magnet, and inline type sputtering system
JPH05339725A (en) Sputtering device
JPS59116377A (en) Sputtering device
JPS61272374A (en) Sputtering device