JPS6050927A - Thin film formation - Google Patents

Thin film formation

Info

Publication number
JPS6050927A
JPS6050927A JP15869883A JP15869883A JPS6050927A JP S6050927 A JPS6050927 A JP S6050927A JP 15869883 A JP15869883 A JP 15869883A JP 15869883 A JP15869883 A JP 15869883A JP S6050927 A JPS6050927 A JP S6050927A
Authority
JP
Japan
Prior art keywords
target
target material
thin film
sputtering
sputtered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15869883A
Other languages
Japanese (ja)
Inventor
Riyouichi Hazuki
巴月 良一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP15869883A priority Critical patent/JPS6050927A/en
Publication of JPS6050927A publication Critical patent/JPS6050927A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Abstract

PURPOSE:To contrive the large improvement of the speed of film deposition by a method wherein the sputtered surface of a target material is previously processed to unnevenness. CONSTITUTION:Electrodes 2 and 3 are arranged in opposition in a sputter chamber container 1. The high frequency power from a high frequency power source 5 is impressed on the electrode 2. The target material 6 is placed on the lower surface of the electrode 2. The surface of this material 6 is processed so as to have a cross-section of e.g. triangular waveform. On the other hand, a substrate 7 is mounted on the electrode 3. In such a manner, when ions accelerated by cathode drop voltage advance vertically to the cathode, most of the ions collide with the surface of the target 6 obliquely, because the surface of the target 6 is not flat. This manner enables the increase in the amount of atoms sputtered from the target 6. This is because the efficiency of sputtering has the dependency on an angle of incidence, and because the sputtering effect reduces in the case of vertical incidence.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、スパッタリング法を利用した薄膜形成方法の
改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an improvement in a thin film forming method using a sputtering method.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、半導体ウェハ等の基板上に薄膜を形成する一つの
方法として、スパッタリング法が用いられている。一般
のスパッタリング法では、10−1〜10 ’ [to
rr]程度の真空中で異常グロー放電を起こし、陰極降
下電圧により陽イオンを陰極に加速衝撃する。この際、
陰極部に設置されたターゲット材料からその構成原子が
陽イオンのスパッタリングにより放出される。そして、
このターゲット材料から放出された原子を基板上に蒸着
することにより薄膜が形成される。
Conventionally, a sputtering method has been used as one method for forming a thin film on a substrate such as a semiconductor wafer. In the general sputtering method, 10-1 to 10' [to
An abnormal glow discharge is caused in a vacuum of about 100 mm, and the positive ions are accelerated and bombarded to the cathode by the cathode falling voltage. On this occasion,
The constituent atoms of the target material placed in the cathode section are ejected by sputtering of cations. and,
A thin film is formed by depositing atoms emitted from this target material onto a substrate.

しかしながら、この種の方法にあっては、膜の堆積速度
が遅く所望厚膜を得るのに長時間を要するという問題が
ある。すなわち、膜の堆積速度は電源出力、圧力等のス
パッタリング条件によりある程度速くできるが、例えば
酸化シリコン膜等の絶縁膜の堆積速度は通常100[人
/min ]前後、マグネトロンスパッタリング法を用
いてもこの数倍程度と遅い。このため、生産性を上げる
ためには、ターゲット面積を大きくして多数枚の基板上
に同時に膜を形成する必要があるが、この場合電源容量
を大きくする必要があり、また装置も高価なものとなる
However, this type of method has a problem in that the film deposition rate is slow and it takes a long time to obtain a desired thick film. In other words, the deposition rate of a film can be increased to some extent depending on sputtering conditions such as power supply output and pressure, but for example, the deposition rate of an insulating film such as a silicon oxide film is usually around 100 people/min. It is several times slower. Therefore, in order to increase productivity, it is necessary to increase the target area and form films on multiple substrates simultaneously, but in this case, the power supply capacity needs to be increased and the equipment is also expensive. becomes.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、スパッタリング装置の基本的な改良を
必要とすることなく、膜の堆積速度を大幅に向上させる
ことができ、生産性の向上をはかり得る薄膜形成方法を
提供することにある。
An object of the present invention is to provide a thin film forming method that can significantly increase the film deposition rate and improve productivity without requiring fundamental improvements to sputtering equipment.

〔発明の概要〕[Summary of the invention]

本発明の骨子は、ターゲット材料の表面形状を改良し、
スパッタリングによりターゲット材料から放出される原
子の量を増大せしめることにある。
The gist of the present invention is to improve the surface shape of the target material,
The purpose is to increase the amount of atoms emitted from the target material by sputtering.

ターゲット材料の表面形状としては、従来平坦なものが
一般的である。ターゲット材料から放出される原子の量
は、イオンが斜め方向(特に45度の入射角)から入射
する方が垂直に入射するときよりも遥かに多い。従って
、ターゲット材料の表面を凹凸状に加工すれば、ターゲ
ット材料から放出される原子の量が増大すると考えられ
る。
Conventionally, the surface shape of the target material is generally flat. The amount of atoms ejected from the target material is much greater when the ions are incident from an oblique direction (particularly at an angle of incidence of 45 degrees) than when the ions are incident perpendicularly. Therefore, it is considered that by processing the surface of the target material into an uneven shape, the amount of atoms emitted from the target material increases.

本発明はこのような点に着目し、放電により生じたイオ
ンでターゲラ!・材料をスパッタリングし、所定の基板
表面上に薄膜を堆積形成するスパッタリング法による薄
膜形成方法において、ターゲット材料のスパッタリング
される表面を予め凹凸加工するようにした方法である。
The present invention focuses on these points, and uses ions generated by electric discharge to target the target! - A thin film forming method using a sputtering method in which a material is sputtered and a thin film is deposited on a predetermined substrate surface, in which the surface of the target material to be sputtered is processed to be roughened in advance.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、陰極降下電圧により加速されたイオン
が陰極に対して垂直に向かって来る際、ターゲット表面
が従来のように平坦でないため、イオンの大部分はター
ゲット表面に斜めに衝突することになり、ターゲットか
らスパッタされる原子の量が増加する。これは、スパッ
タリング効率に入射角依存性があり、垂直に入射する場
合、その“スパッタリング効果が小さくなるためである
According to the present invention, when ions accelerated by the cathode falling voltage come perpendicular to the cathode, most of the ions collide obliquely with the target surface because the target surface is not flat as in the conventional case. , which increases the amount of atoms sputtered from the target. This is because the sputtering efficiency is dependent on the angle of incidence, and when the incidence is perpendicular, the "sputtering effect" becomes smaller.

例えばArイオンでSiO2ターグツ1〜をスパッタリ
ングする場合、入射角が45度の場合は垂直入射に比べ
て、スパッタリング効果は約5倍になる。この結果とし
て、基板上での薄膜の堆積速度が向上する。また、ター
ゲットから飛び出す原子の角度分布がより広くなるため
、基板段差部での膜の被覆形状も改善される。
For example, when sputtering SiO2 tags 1 to 1 with Ar ions, when the incident angle is 45 degrees, the sputtering effect is about 5 times greater than when the incidence is perpendicular. This results in an increased rate of thin film deposition on the substrate. Furthermore, since the angular distribution of atoms ejected from the target becomes wider, the shape of the film covering the stepped portion of the substrate is also improved.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の一実施例方法に使用したスパッタリン
グ装置の概略構成を示す断面図である。
FIG. 1 is a sectional view showing a schematic configuration of a sputtering apparatus used in a method according to an embodiment of the present invention.

図中1はスパッタ室容器で、この容器1内には平板状の
電極2,3が対向配置されている。上部電極2には整合
器4を介して高周波電源5からの高周波電力が印加され
ている。電極2の下面には、例えば酸化シリコン膜を形
成する場合として石英ガラス(SiO2)からなるター
ゲット材料6を設置する。このターゲット材料6の表面
は、第2図にその拡大図を示す如くピッチが2[s]の
3角波状の断面を持つように加工されている。なお、こ
の加工にはダイヤモンド等による切削、或いはエツチン
グを利用すればよい。下部電極3は通常設置されており
、この上に基板7が載置される。
In the figure, reference numeral 1 denotes a sputtering chamber container, and inside this container 1, flat electrodes 2 and 3 are arranged facing each other. High frequency power from a high frequency power source 5 is applied to the upper electrode 2 via a matching box 4 . A target material 6 made of quartz glass (SiO2) is placed on the lower surface of the electrode 2, for example, when forming a silicon oxide film. The surface of this target material 6 is processed to have a triangular wave-like cross section with a pitch of 2 [s], as shown in an enlarged view in FIG. Note that cutting with a diamond or the like or etching may be used for this processing. The lower electrode 3 is normally installed, and the substrate 7 is placed on top of this.

なお、図中8は容器1内にガスを導入するためのガス導
入口、9は容器1内のガスを排気するためのガス排気口
を示している。また、10は絶縁物を示している。
In the figure, 8 indicates a gas introduction port for introducing gas into the container 1, and 9 indicates a gas exhaust port for discharging the gas within the container 1. Further, 10 indicates an insulator.

次に、上記構成された装置を用いて酸化シリコン膜を形
成する場合について説明する。まず、容器1内をI X
 10 [torr]程度の真空度に排気したのち、ガ
ス導入口8より例えばArガスを導入し、容器1内のガ
ス圧を1Q [1tOrr]に保持する。次に、高周波
電力を例えば1 [KW]にして電極2.3間で放電を
生起し、Arイオンによりターゲット材料6をスパッタ
リングし、基板7上に酸化シリコン膜を堆積させる。タ
ーゲラ1〜材料6と基板7との距離は7.5[cm]と
した。
Next, a case will be described in which a silicon oxide film is formed using the apparatus configured as described above. First, inspect the inside of container 1 by
After evacuation to a degree of vacuum of about 10 [torr], for example, Ar gas is introduced from the gas inlet 8 to maintain the gas pressure inside the container 1 at 1Q [1 tOrr]. Next, the high frequency power is set to 1 KW, for example, to generate a discharge between the electrodes 2 and 3, and the target material 6 is sputtered with Ar ions to deposit a silicon oxide film on the substrate 7. The distance between Targetera 1 to Material 6 and the substrate 7 was 7.5 [cm].

以上の条件での酸化シリコン膜の堆積速度は450[人
/min ]であった。ターゲット材!’16として従
来の表面が平坦なものの場合、前記と同じ条件での堆積
速度は80[人、’man ]である。すなわち、本実
施例方法により、ターゲット材料の表面形状を変えるだ
けで、堆積速度は5倍以上に速くなった。
The deposition rate of the silicon oxide film under the above conditions was 450 people/min. Target material! In the case of a conventional film with a flat surface such as '16, the deposition rate under the same conditions as above is 80 [man, 'man]. That is, by the method of this example, the deposition rate was increased by more than five times by simply changing the surface shape of the target material.

なお、本発明は上述した実施例に限定されるものではな
い。例えば、前記ターゲット材料の表面形状は第2図に
限るものではなく、表面が平坦でなく傾斜部を多くもつ
ように加工すればよい。
Note that the present invention is not limited to the embodiments described above. For example, the surface shape of the target material is not limited to that shown in FIG. 2; it may be processed so that the surface is not flat but has many sloped parts.

また、ターゲット材料は石英に限るものではなく、形成
すべき膜の種類に応じて適宜室めればよい。
Further, the target material is not limited to quartz, and may be used as appropriate depending on the type of film to be formed.

さらに、装置の構成は前記第1図に何ら限定されるもの
ではなく、一対の平行平板電極をそなえたスパッタリン
グ装置であれば、適宜変更可能である。その他、本発明
の要旨を逸脱しない範囲で、種々変形して実施すること
ができる。
Furthermore, the configuration of the apparatus is not limited to that shown in FIG. 1, and can be modified as appropriate as long as it is a sputtering apparatus equipped with a pair of parallel plate electrodes. In addition, various modifications can be made without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例方法に使用したスパッタリン
グ装置の概略構成を示す断面図、第2図は上記装置に用
いた材料を拡大して示す断面図である。 1・・・スパッタ空容器、2,3・・・電極、4・・・
整合器、5・・・高周波電源、6・・・ターゲット、7
・・・基板、8ガス導入口、9・・・ガス排気口、10
・・・絶縁物。
FIG. 1 is a cross-sectional view showing a schematic configuration of a sputtering apparatus used in a method according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view showing an enlarged view of the materials used in the apparatus. 1... Empty sputtering container, 2, 3... Electrode, 4...
Matching box, 5... High frequency power supply, 6... Target, 7
... Board, 8 Gas inlet, 9... Gas exhaust port, 10
···Insulator.

Claims (2)

【特許請求の範囲】[Claims] (1)放電により生じたイオンでターゲット材料をスパ
ッタリングし、所定の基板表面上に薄膜を堆積形成する
スパッタリング法による薄膜形成方法において、前記タ
ーゲット材料のスパッタリングされる表面を予め凹凸加
工したことを特徴とする薄膜形成方法。
(1) A method for forming a thin film by a sputtering method in which a target material is sputtered with ions generated by electric discharge to deposit a thin film on a predetermined substrate surface, characterized in that the surface of the target material to be sputtered is processed to be roughened in advance. A method for forming a thin film.
(2)前記ターゲット材料のスパッタリングされる表面
を、断面が3角波形状となるよう加工したことを特徴と
する特許請求の範囲第1項記載の薄膜形成方法。 く3)前記ターゲット材料の表面凹凸における3角波形
状は、1角が90度の2等辺3角形であることを特徴と
する特許請求の範囲第2項記載の薄膜形成方法。
(2) The thin film forming method according to claim 1, wherein the surface of the target material to be sputtered is processed so that the cross section has a triangular wave shape. 3) The thin film forming method according to claim 2, wherein the triangular wave shape in the surface irregularities of the target material is an isosceles triangle with one angle of 90 degrees.
JP15869883A 1983-08-30 1983-08-30 Thin film formation Pending JPS6050927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15869883A JPS6050927A (en) 1983-08-30 1983-08-30 Thin film formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15869883A JPS6050927A (en) 1983-08-30 1983-08-30 Thin film formation

Publications (1)

Publication Number Publication Date
JPS6050927A true JPS6050927A (en) 1985-03-22

Family

ID=15677398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15869883A Pending JPS6050927A (en) 1983-08-30 1983-08-30 Thin film formation

Country Status (1)

Country Link
JP (1) JPS6050927A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238478A (en) * 1984-05-11 1985-11-27 Ulvac Corp Target for sputtering device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238478A (en) * 1984-05-11 1985-11-27 Ulvac Corp Target for sputtering device

Similar Documents

Publication Publication Date Title
US5080774A (en) Surface configuration means for vacuum coating device
JPH10229058A (en) Deposition chamber device with coating
US4897172A (en) Sputtering chamber structure for high-frequency bias sputtering process
JPS627852A (en) Formation of thin film
JPH10251849A (en) Sputtering device
JP2003027225A (en) Sputtering target and sputtering system
US4153528A (en) Contoured quartz anode plate
JPS6050927A (en) Thin film formation
JPS6147645A (en) Formation of thin film
EP0190051B1 (en) Method and apparatus for forming films
JPH0649936B2 (en) Bias spattering device
US20170178875A1 (en) Insulator target
JPS6277477A (en) Thin film forming device
JPH0360916B2 (en)
JP2761875B2 (en) Deposition film forming equipment by bias sputtering method
JPH02236277A (en) Sputtering method
JPS6197838A (en) Formation of thin film
JPS6043482A (en) Sputtering device
JPS6222430A (en) Sputtering formation method for tungsten film
JPH0758083A (en) Semiconductor manufacturing apparatus
JPH097949A (en) Manufacture of semiconductor element
JPH0774103A (en) Sputtering device and film forming method by sputtering
JPH03215664A (en) Thin film forming device
JPS61174725A (en) Thin film forming apparatus
JPS621864A (en) Formation of thin film