JPS61131477A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS61131477A
JPS61131477A JP59252907A JP25290784A JPS61131477A JP S61131477 A JPS61131477 A JP S61131477A JP 59252907 A JP59252907 A JP 59252907A JP 25290784 A JP25290784 A JP 25290784A JP S61131477 A JPS61131477 A JP S61131477A
Authority
JP
Japan
Prior art keywords
layer
substrate
diffusion layer
type
buried layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59252907A
Other languages
Japanese (ja)
Inventor
Takaharu Nawata
名和田 隆治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59252907A priority Critical patent/JPS61131477A/en
Publication of JPS61131477A publication Critical patent/JPS61131477A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To enhance the integration of an IC by forming an n<+> type diffused layer as a buried layer, and forming a source diffused layer in a vertical structure to arrive at the n<+> type buried layer thereby eliminating a VDD line. CONSTITUTION:A source diffused layer 7 of high density of 10<20>-10<21> order is contacted with an n<+> type buried layer 2. since the breakdown voltage of this p-n junction is approx. 1V, a conduction is taken in the normal use through the layer 7 and the layer 2 to a substrate 1. If a VDD line is taken from the lower of the substrate, the VDD line may not be provided as in the conventional example. When the substrate is assembled in a package connected to the ground, it is not necessary to form the VDD line.

Description

【発明の詳細な説明】 〔産業上の利用分野〕、。[Detailed description of the invention] [Industrial application field].

本発明は半導体装置、より詳しくはエピタキシャル層構
造を利用して形成しうる高濃度埋込層と、ソース、ドレ
イン拡散層との低電圧降伏を利用してグランド線を不要
とした半導体装置に関する。
The present invention relates to a semiconductor device, and more particularly to a semiconductor device that eliminates the need for a ground line by utilizing low voltage breakdown between a highly doped buried layer that can be formed using an epitaxial layer structure and source and drain diffusion layers.

〔従来の技術〕[Conventional technology]

第2図に従来の0MO5構造が断面図で示され、同図に
おいて、21はn型基板、22はpウェル、23と24
はそれぞれp++9ソース・ドレイン拡散層、25は例
えば多結晶シリコン(ポリシリコ7ン)で作ったゲー・
ト電極5.26はn+型の拡散層を示す、。
FIG. 2 shows a conventional 0MO5 structure in cross section, in which 21 is an n-type substrate, 22 is a p-well, 23 and 24
are respectively p++9 source/drain diffusion layers, and 25 is a gate layer made of polycrystalline silicon (polysilicon), for example.
The top electrode 5.26 represents an n+ type diffusion layer.

第2図の構造において点線で囲んだ部分は1つのトラン
ジスタを構成し、ホール(h)はソース拡散層23から
ドレイン拡散層24へ動き、VDCF線はソース拡散層
23とn+型型数散層26ら図示の如くに引き出されて
いる。
In the structure of FIG. 2, the part surrounded by the dotted line constitutes one transistor, the hole (h) moves from the source diffusion layer 23 to the drain diffusion layer 24, and the VDCF line moves between the source diffusion layer 23 and the n+ type scattering layer. 26 are pulled out as shown in the figure.

〔発明が解決しようとす条問題点〕[Article problem that the invention seeks to solve]

一般にトランジスタの製作においては、電源線、グラン
ド線、ゲート線4の3本が集、積回路(IC)の上を延
在する如°<坪形成されている。そのことは、ICの集
積度を高めるについての障害となり、また、ソース拡散
層23とn4″型拡散層の接続をとるについては、それ
ぞれρ体数層の窓開けをなし、これら2つの拡散層を例
えばアルミニウム(A4.)配線でつなぐ工程が必要と
なる。そして、かかる配線を形成する場合に、唇に他の
配線が設けられ!いるものであると、設計と製作に難し
い問題が発生する。
Generally, in manufacturing a transistor, three wires, a power supply line, a ground line, and a gate line 4, are formed so as to extend over an integrated circuit (IC). This becomes an obstacle to increasing the degree of integration of the IC, and when connecting the source diffusion layer 23 and the n4'' type diffusion layer, a window of ρ body number layer is opened for each, and these two diffusion layers are connected to each other. For example, a step is required to connect the wires with aluminum (A4.) wires.If such wires are formed and other wires are provided on the lips, difficult problems will occur in design and manufacturing. .

(問題点を解決するための手段) 本発明は、上記問題点を解消した半導体装置を提供する
もので、その手段は、−導電型の半導体基板に形成され
た前記基板と同導電型の埋込層と、該埋込層の上に成長
した基板と同導電型のエピタキシャル層とをもったトラ
ンジスタにおいて、前記エピタキシャル層に形成された
ソース拡散層とドレイン拡散層のうちソース拡散層のみ
が前記埋込層に接する構造とし、グランド電位が前記ソ
ース拡散層、埋込層を経て基板から取り出されることを
特徴とする半導体装置によってなされる。
(Means for Solving the Problems) The present invention provides a semiconductor device that solves the above-mentioned problems. In a transistor having a buried layer and an epitaxial layer grown on the buried layer and having the same conductivity type as the substrate, only the source diffusion layer is formed in the source diffusion layer and the drain diffusion layer formed in the epitaxial layer. This is achieved by a semiconductor device characterized in that it has a structure in contact with a buried layer, and a ground potential is taken out from the substrate via the source diffusion layer and the buried layer.

〔作用〕[Effect]

第2図に戻ると、Vpp線は基板21と同電位にある。 Returning to FIG. 2, the Vpp line is at the same potential as the substrate 21.

そこで、本発明においては、この基板と同電位のVl)
l)線を従来の例の如く基板の上に設けることなく、基
板内からとってVpp線を不要とする。
Therefore, in the present invention, Vl) which has the same potential as this substrate
l) Eliminate the need for Vpp lines by taking them from within the substrate instead of placing them on the substrate as in the conventional example.

そのためには、ソース拡散層とnゝ拡散層をpn接合を
形成する如くに作り、 Vpp線を基板からとる。しか
し、そうなると基板抵抗を考慮に入れなければならない
ので、n1型拡散層を基板表面付近にではなくn+型埋
込層として形成しておき、ソース拡散層23をこのn1
型埋込層にまで達する縦型構造にすることにより、Vb
b線を不要とするだけでなく、そうする場合に発生ずる
基板抵抗の問題をも解決するものである。
To do this, the source diffusion layer and the n-diffusion layer are formed to form a pn junction, and the Vpp line is taken from the substrate. However, in this case, the substrate resistance must be taken into account, so the n1 type diffusion layer is formed not near the substrate surface but as an n+ type buried layer, and the source diffusion layer 23 is formed in this n1 type.
By creating a vertical structure that reaches the mold buried layer, Vb
This not only eliminates the need for the b-line, but also solves the problem of substrate resistance that occurs when doing so.

(実施例〕 以下、図面を参照して本発明の実施例を詳細に説明する
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図に本発明の好ましい実施例であるcnos構造が
断面図で示され、同図において、1はn型基板、2はn
+型埋込層、3はエピタキシャル層、4はエピタキシャ
ル層3に形成されたpウェル、5はp+型のドレイン拡
散層、6はポリシリコンのゲート電極、7はp+型ソー
ス拡散層、をそれぞれ示す。
FIG. 1 shows a cross-sectional view of a CNOS structure which is a preferred embodiment of the present invention, in which 1 is an n-type substrate and 2 is an n-type substrate.
3 is an epitaxial layer, 4 is a p-well formed in the epitaxial layer 3, 5 is a p+ type drain diffusion layer, 6 is a polysilicon gate electrode, and 7 is a p+ type source diffusion layer, respectively. show.

上記のデバイスにおいては 1g211〜1021のオ
ーダーの高濃度のソース拡散層7がn“型埋込層2に接
している。そして、このpn接合の降伏電圧は実験によ
ると1v程度であるので、通常の使用において、ソース
拡散層7−s−nゝ型埋込層2一基板1へと導通がとれ
、第1図に示す如く基板の下からVpp線をとれば二従
来例の如く基板の上にVbb線を設ける必要がなくなる
。なお、基板がそれをグランドにおと讐パッケージに組
み立てられている場合には、図示のVEND線i―成す
る必要はない。
In the above device, the source diffusion layer 7 with a high concentration on the order of 1g211 to 1021 is in contact with the n" type buried layer 2.The breakdown voltage of this pn junction is about 1V according to experiments, so it is usually In using the source diffusion layer 7, the s-n type buried layer 2, and the substrate 1, conduction is established, and if the Vpp line is taken from the bottom of the substrate as shown in FIG. It is no longer necessary to provide a Vbb line at the VEND line shown in the figure.If the board is assembled into a package with the board connected to the ground, there is no need to provide a VBB line as shown in the figure.

第1図に示すpチャネルCMO3は、下記の工程で製造
される。
The p-channel CMO3 shown in FIG. 1 is manufactured by the following steps.

■固有抵抗1Ω・C11%結晶方位(10G)のn型シ
リコン基板1を用意する。
(2) Prepare an n-type silicon substrate 1 with a specific resistance of 1Ω and a C11% crystal orientation (10G).

■□この基板に、燐または砒素をドーズ量1×10”/
cm’ 、100 KeVの加速エネルギーでイオン注
入して、n+型埋込層2を作る。
■□Add phosphorus or arsenic to this substrate at a dose of 1×10”/
cm', and an n+ type buried layer 2 is formed by ion implantation with an acceleration energy of 100 KeV.

■エピタキシャル成長によって、1〜2μmの厚さにエ
ピタキシャル層3を形成する。
(2) Form an epitaxial layer 3 to a thickness of 1 to 2 μm by epitaxial growth.

■例えば選択酸化法(LOCO5法)によって素子分離
のための1μ網程度め膜厚のフィールド酸化lit (
図示せず)を形成する。かくして得られた素子領域に下
記の工程を実施する。    。
■For example, use selective oxidation method (LOCO5 method) to perform field oxidation with a film thickness of about 1μ mesh for device isolation (
(not shown). The following steps are performed on the element region thus obtained. .

■絶縁膜(ゲート酸化膜)を作るために、例えば熱酸化
によって5iO2II!を500人の膜厚に形成する。
■To make an insulating film (gate oxide film), for example, 5iO2II! to a thickness of 500 people.

■ポリシリコンを全面に5000人の膜厚に被着して、
それをバターニングしてゲート電極6を形成する。  
°       □ ■ソース、ドレイン拡散を行う、すなわち、砒素をドー
ズ量5X101略/car2.100 KeVの加速エ
ネルギーでイオン注入□する。このとき、拡散層5と7
は同じ深さに作られる。
■Polysilicon is applied to the entire surface to a thickness of 5,000 people,
The gate electrode 6 is formed by patterning it.
° □ ■ Source and drain diffusion is performed, that is, arsenic is ion-implanted at a dose of 5×101 approximately/car with an acceleration energy of 2.100 KeV. At this time, diffusion layers 5 and 7
are made at the same depth.

■ドレイン拡散層5のみを例えばレジストでカバーする
(2) Cover only the drain diffusion layer 5 with, for example, a resist.

■ソース拡散層7だGjに、砒素をドーズ量l×101
5/ cm2.200 KeVの加速エネルギーでイオ
ン注入し、ソース拡散層7がflゝ型埋込層2にまで達
するようにする。
■ Arsenic is dosed l×101 in the source diffusion layer 7 Gj.
Ions are implanted with an acceleration energy of 5/cm2.200 KeV so that the source diffusion layer 7 reaches the fl-type buried layer 2.

[相]燐・シリケート・ガラス(PSG)を全面に化学
気相成長法(CV[)e)でlμ−程度の膜厚に成長す
る。    □ ■PSG IIにコンタクトホールを開ける。
[Phase] Phosphorous silicate glass (PSG) is grown on the entire surface by chemical vapor deposition (CV[)e) to a film thickness of about lμ-. □ ■Drill a contact hole in PSG II.

@^Eを全面に被着する。Apply @^E to the entire surface.

O・^lをパターニングして、電源線、ゲート線を形成
する。しかし、vpD線は形成する必要がない。
Pattern O.^l to form power supply lines and gate lines. However, the vpD line does not need to be formed.

なお、以上の説明はpチャネルCMO5の製造を例にと
ってなしたが、本発明の適用範囲はその場合に限定され
るものではない。
Note that although the above explanation has been made using the manufacture of a p-channel CMO 5 as an example, the scope of application of the present invention is not limited to that case.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、ICの製造におい
て、従来3本の配線を設ける必要があったのが2本で足
りることになるので、tCの集積度を高めるに有効であ
り、また面積が限定されたところデバイスを形成するに
便利である。
As explained above, according to the present invention, in the manufacture of ICs, only two wires are required instead of three wires in the past, which is effective in increasing the degree of integration of tC. It is convenient to form devices where the area is limited.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例の断面図、第2図は従来例の断面
図である。 図中、1はn型シリコン基板、2はn1型埋込層、3は
エピタキシャル層、4はpウェル、5はドレイン拡散層
、6はゲート電極、7はソース拡散層、をそれぞれ示す
。 第1図 第2図
FIG. 1 is a sectional view of an embodiment of the present invention, and FIG. 2 is a sectional view of a conventional example. In the figure, 1 is an n-type silicon substrate, 2 is an n1-type buried layer, 3 is an epitaxial layer, 4 is a p-well, 5 is a drain diffusion layer, 6 is a gate electrode, and 7 is a source diffusion layer. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims]  一導電型の半導体基板に形成された前記基板と同導電
型の埋込層と、該埋込層の上に成長した基板と同導電型
のエピタキシャル層とをもったトランジスタにおいて、
前記エピタキシャル層に形成されたソース拡散層とドレ
イン拡散層のうちソース拡散層のみが前記埋込層に接す
る構造とし、グランド電位が前記ソース拡散層、埋込層
を経て基板から取り出されることを特徴とする半導体装
置。
In a transistor having a buried layer formed on a semiconductor substrate of one conductivity type and having the same conductivity type as the substrate, and an epitaxial layer grown on the buried layer and having the same conductivity type as the substrate,
Among the source diffusion layer and drain diffusion layer formed in the epitaxial layer, only the source diffusion layer is in contact with the buried layer, and the ground potential is taken out from the substrate via the source diffusion layer and the buried layer. semiconductor device.
JP59252907A 1984-11-30 1984-11-30 Semiconductor device Pending JPS61131477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59252907A JPS61131477A (en) 1984-11-30 1984-11-30 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59252907A JPS61131477A (en) 1984-11-30 1984-11-30 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS61131477A true JPS61131477A (en) 1986-06-19

Family

ID=17243823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59252907A Pending JPS61131477A (en) 1984-11-30 1984-11-30 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS61131477A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6489557A (en) * 1987-09-30 1989-04-04 Toshiba Corp Semiconductor device
JP2010024661A (en) * 2008-07-16 2010-02-04 Shin Nikkei Co Ltd Connection window

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6489557A (en) * 1987-09-30 1989-04-04 Toshiba Corp Semiconductor device
JP2010024661A (en) * 2008-07-16 2010-02-04 Shin Nikkei Co Ltd Connection window

Similar Documents

Publication Publication Date Title
US5872037A (en) Method for manufacturing a vertical mosfet including a back gate electrode
JP2965783B2 (en) Semiconductor device and manufacturing method thereof
JPH05102432A (en) Static semiconductor memory device and manufacture thereof
JPS63129647A (en) Semiconductor device
JPS61131477A (en) Semiconductor device
JPH0783113B2 (en) Semiconductor device
JPH02101747A (en) Semiconductor integrated circuit and manufacture thereof
JPS62136867A (en) Semiconductor device
JPS6110268A (en) Complementary mos semiconductor device and manufacture thereof
JPS6230363A (en) Semiconductor device
US5008724A (en) Semiconductor device
JP3127951B2 (en) Semiconductor device and manufacturing method thereof
JPS6131633B2 (en)
JPH02105566A (en) Complementary semiconductor device
JPS61131476A (en) Semiconductor device
JPH0222858A (en) Semiconductor device
JPS63202971A (en) Semiconductor device
JP2680846B2 (en) Semiconductor memory device
JPH04196440A (en) Semiconductor device
JPH01248555A (en) Semiconductor device
JPH04150039A (en) Semiconductor device
JPH03196672A (en) Cmos integrated circuit
JPS627148A (en) Complementary semiconductor device and manufacture thereof
JPS61256674A (en) Semiconductor device
JPH04150038A (en) Semiconductor device