JPS61128477A - Manufactore of conductive polymer negative electrode - Google Patents

Manufactore of conductive polymer negative electrode

Info

Publication number
JPS61128477A
JPS61128477A JP59250045A JP25004584A JPS61128477A JP S61128477 A JPS61128477 A JP S61128477A JP 59250045 A JP59250045 A JP 59250045A JP 25004584 A JP25004584 A JP 25004584A JP S61128477 A JPS61128477 A JP S61128477A
Authority
JP
Japan
Prior art keywords
electrode
conductive polymer
polypyrrole
negative electrode
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59250045A
Other languages
Japanese (ja)
Inventor
Akira Kato
昭 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP59250045A priority Critical patent/JPS61128477A/en
Publication of JPS61128477A publication Critical patent/JPS61128477A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To completely perform doping and dedoping by doping a specified anions in a conductive polymer and aging it. CONSTITUTION:Polypyrrole is used as a conductive polymer. A current collector, having a specified dimension, formed in a sheet by stacking graphite fibers is used as a positive electrode 2 and a platinum electrode 3 is used as a negative electrode, and both electrodes 2, 3 are immersed in an electrolyte. By applying a specified amount of current, a polypyrrole electrode 2 is formed on the positive side. Perchlorate ion is doped in polymerized polypyrrole. The potential of the electrode 1 is maintained at zero volt vs a reference electrode 4 to dedope from the electrode 2. The polypyrrole electrode and platinum electrode are immersed in a specified electrolyte and a specified amount of current is applied to dope to the polypyrrole electrode, then immersed in a specified electrode and constant current is applied between the electrode 3 serving as a counter electrode and the electrode 2 serving as a negative electrode for aging. Thereby, doping and dedoping are completely performed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はポリピロール等の導電性高分子材料からなる負
極の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a negative electrode made of a conductive polymer material such as polypyrrole.

〔従来の技術〕[Conventional technology]

従来より、電極として導電性高分子材料を用いた電池が
知られている(例えば、特開昭57−118375号公
報、特開昭57−123659号公報、特開昭57−1
41879号公報、特開昭57−137975号公報)
、これらの二次電池(以下、単に電池ともいう)は鉛電
池に比べて開路電圧が大きく、しかも軽量であるため出
力密度が大きいという優れた利点を有する。
Batteries using conductive polymer materials as electrodes are conventionally known (for example, JP-A-57-118375, JP-A-57-123659, JP-A-57-1).
41879, JP-A-57-137975)
These secondary batteries (hereinafter also simply referred to as batteries) have excellent advantages over lead batteries in that they have a higher open circuit voltage, are lighter in weight, and have a higher output density.

このうち導電性高分子としてのポリピロールやポリチェ
ニレン等は、電解により集電材上に重合できることが知
られている。上記導電性高分子は、ドーパントとしてC
It Oa 、B Fa 、P Fa等のアニオンをド
ーピングすることによりP型となり、正極に使用するこ
とが可能となる。
Among these, it is known that conductive polymers such as polypyrrole and polythenylene can be polymerized onto a current collector by electrolysis. The conductive polymer has C as a dopant.
By doping with anions such as ItOa, BFa, PFa, etc., it becomes P type and can be used as a positive electrode.

一方、N型ドープに関しては、最近になってようやくポ
リチェニレンに四級アンモニウムイオン(Ra N−但
しR:アルキル基)をドーピングできることが判った(
例えば、「電気化学」第52巻、磁1(1984)、電
気化学協会線、P80〜81)。
On the other hand, regarding N-type doping, it has recently been found that polythenylene can be doped with quaternary ammonium ions (Ra N-where R: alkyl group).
For example, "Electrochemistry" Vol. 52, Magneto 1 (1984), Electrochemical Association Line, pages 80-81).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記ポリチェニレンは四級アンモニウム
イオンのドープ、脱ドープ現象が生じるものの、このド
ープ、脱ドープは完全なものではなく、非常に薄い高分
子膜の場合に一時的に見られるだけである。このため、
二次電池の負極として使用できる段階には至っていない
。そこで、ポリチェニレン等の導電性高分子材料を負極
として使用できるように、ドープ、脱ドープが完全に行
なえる工夫が望まれていた。
However, although doping and dedoping phenomena of quaternary ammonium ions occur in the above-mentioned polythenylene, this doping and dedoping are not complete and are only observed temporarily in the case of a very thin polymer film. For this reason,
It has not yet reached the stage where it can be used as a negative electrode for secondary batteries. Therefore, there has been a desire for a device that can completely perform doping and dedoping so that conductive polymer materials such as polythenylene can be used as negative electrodes.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記問題を解決するためになされたもので、こ
の問題は、次に述べる本発明の導電性高分子材料製負極
の製造方法によって解決される。
The present invention was made to solve the above problem, and this problem is solved by the method for manufacturing a negative electrode made of a conductive polymer material of the present invention, which will be described below.

即ち、本発明の導電性高分子材料製負極の製造方法は、
原料モノマーを支持電解質と共に有機溶媒に溶かした電
解液中に集電材を浸漬した後、1mA/cm2〜60m
A/cm2で電解重合することにより成膜し、得られた
導電性高分子を、電解質としてトリフルオロメタンスル
ホン酸塩、ポリ硫酸ビニル塩あるいはポリスチレンスル
ホン酸塩のうちのいずれか一つを含む電解液中に浸漬し
、正極として通電して前記電解液のアニオンをドープし
、続いてこの導電性高分子を更に別の電解液中に浸漬し
て負極とし、正極との間に電流を流してエージングする
ことを特徴としている。
That is, the method for manufacturing a conductive polymer material negative electrode of the present invention is as follows:
After immersing the current collector in an electrolytic solution in which the raw material monomer and supporting electrolyte are dissolved in an organic solvent,
A film is formed by electrolytic polymerization at A/cm2, and the resulting conductive polymer is used as an electrolyte in an electrolytic solution containing any one of trifluoromethanesulfonate, polyvinyl sulfate, or polystyrene sulfonate. This conductive polymer is then immersed in another electrolytic solution to serve as a negative electrode, and a current is passed between it and the positive electrode to dope the anion of the electrolytic solution. It is characterized by

本発明において、負極に用いる導電性高分子材料として
はポリピロールやポリチェニレン、ポリピロールとポリ
チェニレンの共重合体等を用いることができる。正極と
してはポリピロールやポリチェニレン等の導電性高分子
の他、リチウム等のアルカリ金属等を用いることができ
る。
In the present invention, polypyrrole, polythenylene, a copolymer of polypyrrole and polythenylene, etc. can be used as the conductive polymer material used for the negative electrode. As the positive electrode, conductive polymers such as polypyrrole and polythenylene, as well as alkali metals such as lithium, etc. can be used.

本発明に用いる導電性高分子は、例えば、次の条件で電
解重合して作製する。
The conductive polymer used in the present invention is produced, for example, by electrolytic polymerization under the following conditions.

支持電解質としては、トリフルオロメタンスルホン酸塩
、テトラフルオロホウ酸塩あるいはへキサフルオロリン
酸塩を用い、この支持電解質を溶かす有機溶媒としては
、アセトニトリル(AN)、プロピレンカーボネート、
テトラヒドロフラン(T)(F)あるいはこれらの混合
液等を用いる。
As the supporting electrolyte, trifluoromethanesulfonate, tetrafluoroborate or hexafluorophosphate is used, and the organic solvent for dissolving this supporting electrolyte is acetonitrile (AN), propylene carbonate,
Tetrahydrofuran (T) (F) or a mixture thereof is used.

そして、上記支持電解質を有機溶媒に溶かした有機電解
液中に、集電体を浸漬する。この集電体としては、白金
板やグラフナイト繊維を重ねてシート状にしたもの等を
用いることができるが、投影面積当りの表面積が大きい
ものが望ましく、グラファイト繊維を重ねてシート状に
したものの方が白金板より集電体として望ましい。
Then, the current collector is immersed in an organic electrolyte solution in which the supporting electrolyte is dissolved in an organic solvent. As this current collector, a platinum plate or a sheet formed by stacking graphite fibers can be used, but it is preferable to use one with a large surface area per projected area. is more desirable as a current collector than a platinum plate.

重合した導電性高分子は、トリフルオロメタンスルホン
酸塩、ポリ硫酸ビニル塩あるいはポリスチレンスルホン
酸塩のうちのいずれか一つを電解質として含む電解液中
に浸漬され、導電性高分子を正極(アノード)、白金等
を負極(カソード)として通電される。この結果、導電
性高分子には、上記3種類の電解質のうちのいずれかの
アニオン、例えばトリフルオロメタンスルホン酸イオン
がドープされる。なお、導電性高分子重合時に、上記ア
ニオンが既にドープされている場合は、更にドープ量が
増加することになる。一方、導電性高分子重合時に、上
記以外の他のアニオンがドープされでいる場合は、他の
アニオンを脱ドープしてから上記3種類の電解質のアニ
オンをドープするのが望ましい。
The polymerized conductive polymer is immersed in an electrolytic solution containing one of trifluoromethanesulfonate, polyvinyl sulfate, or polystyrene sulfonate as an electrolyte, and the conductive polymer is used as a positive electrode (anode). , is energized using platinum or the like as a negative electrode (cathode). As a result, the conductive polymer is doped with an anion of one of the three types of electrolytes, such as trifluoromethanesulfonate ion. Note that if the anion has already been doped during conductive polymerization, the amount of doping will further increase. On the other hand, if other anions other than those mentioned above have not been doped during polymerization of the conductive polymer, it is desirable to undope the other anions before doping with the anions of the three types of electrolytes.

アニオンをドープした後にエージングを行う。Aging is performed after doping with anions.

エージングは、電解液中に負極として導電性高分子を浸
漬し、定電流あるいは不定電流を一定時間以上流すこと
により行う。何時間電流を流すかは、電流の量や導電性
高分子の種類、更には導電性高分子の膜厚により異なる
が、例えば10mAの定電流でポリピロールのエージン
グを行う場合、30分以上が望ましく、1時間以上行う
のがより望ましい。このとき、導電性高分子の膜厚が厚
い稈長時間のエージングが必要となる。
Aging is performed by immersing a conductive polymer as a negative electrode in an electrolytic solution, and flowing a constant or non-constant current for a certain period of time or more. The number of hours for which the current is applied varies depending on the amount of current, the type of conductive polymer, and the thickness of the conductive polymer, but for example, when aging polypyrrole with a constant current of 10 mA, it is desirable to apply the current for 30 minutes or more. , it is more desirable to carry out the treatment for 1 hour or more. At this time, the culm, which has a thick conductive polymer film, requires long-term aging.

本発明で製造された負極を、有機電解質二次電池の負極
として用いる場合、電解質としてはテトラアルキルアン
モニウム塩類、アルカリ金属塩類を用いることができる
。そして、この電解質を溶かす有機溶媒としては、エー
テル類、アミド類、ピリジン、ジメチルスルホキシドあ
るいはこれらの混合液のように電子供与性の強いもの並
びにプロピレンカーボネート、アセトニトリル等を用い
ることができる。この有機溶媒のうち、エーテル類とし
てはテトラヒドロフラン(THF)、モノグリム(DM
E) 、アミド類としてはホルムアミド、ジメチルホル
ムアミド(DMF) 、ジメチルアセトアミド(DMA
) 、ヘキサメチルホスホルアミド(HMPA) 、N
−メチルピロリドン(NMP)を用いるのが望ましい。
When the negative electrode manufactured according to the present invention is used as a negative electrode of an organic electrolyte secondary battery, tetraalkylammonium salts and alkali metal salts can be used as the electrolyte. As the organic solvent for dissolving this electrolyte, those having strong electron-donating properties such as ethers, amides, pyridine, dimethyl sulfoxide, or a mixture thereof, propylene carbonate, acetonitrile, etc. can be used. Among these organic solvents, ethers include tetrahydrofuran (THF), monoglyme (DM
E) Amides include formamide, dimethylformamide (DMF), dimethylacetamide (DMA
), hexamethylphosphoramide (HMPA), N
-Methylpyrrolidone (NMP) is preferably used.

〔作用〕[Effect]

本発明の導電性高分子材料製負極の製造方法によれば、
トリフルオロメタンスルホン酸塩、ポリ硫酸ビニル塩あ
るいはポリスチレンスルホン酸塩から生じるアニオンを
ドープさせたこと、および導電性高分子を電解液中で負
極側にして一定時間二一ジングさせる(カソード反応)
ことにより、電極性能が大幅に向上する。
According to the method for manufacturing a conductive polymer material negative electrode of the present invention,
Doping with an anion generated from trifluoromethanesulfonate, polyvinyl sulfate, or polystyrene sulfonate, and subjecting the conductive polymer to the negative electrode side in an electrolytic solution for a certain period of time (cathode reaction)
This greatly improves electrode performance.

〔実施例〕〔Example〕

次に、本発明の実施例を図面を参考にして説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

この実施例は導電性高分子としてポリピロールを用いた
場合を示す。
This example shows the case where polypyrrole is used as the conductive polymer.

モノマーとしてのピロールを0.2Mおよび支持電解質
としてリチウムバークロレート(LiCj104)を0
.2M、有機溶媒としてのアセトニトリルに溶かし、モ
レキュラシーブで脱水精製して重合用電解液1を調整し
た。次いで、グラファイト繊維を重ねてシート状に加工
した厚さ0.5鶴の1平方値角の集電体を正極2にし、
負極には白金電極3を用いてこの電解液に浸漬した。そ
して、7mA/cm2で10分間通電したところ正極側
にポリピロールが重合したポリピロール電極2が形成さ
れた。重合したポリピロールにはバークロレートイオン
(CjlOn−)がドープされている。
0.2 M of pyrrole as a monomer and 0.0 M of lithium barchlorate (LiCj104) as a supporting electrolyte.
.. 2M in acetonitrile as an organic solvent, and dehydrated and purified using a molecular sieve to prepare electrolyte solution 1 for polymerization. Next, a current collector with a thickness of 0.5 squares and a square value of 1 square value obtained by stacking graphite fibers and processing them into a sheet shape was used as the positive electrode 2,
A platinum electrode 3 was used as a negative electrode and immersed in this electrolyte. Then, when electricity was applied for 10 minutes at 7 mA/cm2, a polypyrrole electrode 2 in which polypyrrole was polymerized was formed on the positive electrode side. The polymerized polypyrrole is doped with verchlorate ions (CjlOn-).

次いで、第1図に示す重合時の状態のままで、ポリピロ
ール電極2の電位を照合電極4に対しOV (vsAg
/Ag”)の定電位で保持し、バークロレートイオン(
C104−)をポリピロール電極2から脱ドープした。
Next, while maintaining the polymerization state shown in FIG. 1, the potential of the polypyrrole electrode 2 is set to OV (vsAg
/Ag”), and the barchlorate ion (
C104-) was dedoped from the polypyrrole electrode 2.

次に、このポリピロール電極と白金板を、電解質として
のテトラブチルアンモニウムドリフルオロメタンスルホ
ネート(C4H9) aN CF is 030.5M
をアセトニトリルに溶かした電解液中に浸漬し、ポリピ
ロール電極を負極として10mAで15分間通電してト
リフルオロメタンスルホネートイオンCF 3S 03
−をポリピロール電極にドープさせた。
Next, this polypyrrole electrode and platinum plate were mixed with tetrabutylammonium dolifluoromethanesulfonate (C4H9) aN CF is 030.5M as an electrolyte.
was immersed in an electrolyte solution dissolved in acetonitrile, and electricity was applied at 10 mA for 15 minutes using a polypyrrole electrode as a negative electrode to generate trifluoromethanesulfonate ion CF 3S 03.
- was doped into the polypyrrole electrode.

続いて、トリフルオロメタンスルホネートイオンをドー
プさせたポリピロール電極を、電解質としてのテトラエ
チルアンモニウムバークロレート(CzHs) 4N 
G 1040.2 Mを有機溶媒としてのジメチルスル
ホキシド(DMSO)に溶かした電解液に浸漬し、白金
電極を対極としポリピロール電極を負極として10mA
の定電流で1時間エージングを行ったところ、負極作用
が発現した。
Subsequently, a polypyrrole electrode doped with trifluoromethanesulfonate ions was heated with tetraethylammonium barchlorate (CzHs) 4N as an electrolyte.
G 1040.2 M was immersed in an electrolyte solution containing dimethyl sulfoxide (DMSO) as an organic solvent, and the platinum electrode was used as the counter electrode and the polypyrrole electrode was used as the negative electrode at 10 mA.
When aging was performed for 1 hour at a constant current of , negative electrode action was developed.

次に、本実施例により得られたポリピロール電極を用い
て、充放電試験を繰り返した。なお、比較のため、トリ
フルオロメタンスルホネートイオンをドープしない前の
ポリピロール電極についても充放電試験を行った。充放
電試験は、かかるポリピロール電極を陰極とし、10m
Aで通電した後、1mAの定電流で充放電を繰り返すこ
とにより行った。
Next, a charge/discharge test was repeated using the polypyrrole electrode obtained in this example. For comparison, a charge/discharge test was also conducted on a polypyrrole electrode that was not doped with trifluoromethanesulfonate ions. The charge/discharge test was carried out using the polypyrrole electrode as a cathode at a distance of 10 m.
After applying current at A, charging and discharging were repeated at a constant current of 1 mA.

充放電試験条件としては、電解液としてジメチルスルホ
キシド(DMSO)に0.5 Mのテトラエチルアンモ
ニウムバークロレート(CzHs)aNCβ04を溶か
したものを用い、1mAの定電流でポリピロールの重量
から計算してドープ率10mo1%まで充電し、終止電
圧−1,5V (vs Ag/Ag”)まで放電するの
を1サイクルとした。
The charge/discharge test conditions were as follows: 0.5 M tetraethylammonium verchlorate (CzHs) aNCβ04 dissolved in dimethyl sulfoxide (DMSO) was used as the electrolyte, and the doping rate was calculated from the weight of polypyrrole at a constant current of 1 mA. One cycle consisted of charging to 10mo1% and discharging to a final voltage of -1.5V (vs Ag/Ag'').

なお、充放電効率は、放電時間/充電時間の割合から求
めた。
Note that the charging/discharging efficiency was determined from the ratio of discharging time/charging time.

この結果を第2図に示す。第2図において、Aは本実施
例により得られたポリピロール電極を示し、Bは従来の
ポリピロール電極を示す。第2図より明らかなように、
本実施例のポリピロール電極は、トリフルオロメタンス
ルホネートイオンをドープしたことにより、負極として
の作用が著しく向上していることが判る。
The results are shown in FIG. In FIG. 2, A shows the polypyrrole electrode obtained by this example, and B shows the conventional polypyrrole electrode. As is clear from Figure 2,
It can be seen that the action of the polypyrrole electrode of this example as a negative electrode was significantly improved by doping with trifluoromethanesulfonate ions.

以上、本発明の特定の実施例について説明したが、本発
明は、この実施例に限定されるものではなく、特許請求
の範囲に記載の範囲内で種々の実施態様が包含されるも
のである。
Although specific embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and includes various embodiments within the scope of the claims. .

例えば、本実施例では、導電性高分子としてポリピロー
ルを用いる例を示したが、この導電性高分子としてはポ
リチェニレンやポリチェニレンとポリピロールの共重合
体等を用いてもよい。
For example, in this embodiment, an example is shown in which polypyrrole is used as the conductive polymer, but polythenylene, a copolymer of polythenylene and polypyrrole, etc. may also be used as the conductive polymer.

〔発明の効果〕〔Effect of the invention〕

以上より、本発明によれば、導電性高分子に特定のアニ
オンをドープすると共に、エージングを行うことにより
、導電性高分子材料製負極の実用化が図れるという優れ
た効果を奏する。本発明の製造方法により得られた導電
性高分子材料製負極は、導電性高分子からなるため軽量
であり、二次電池の負極として用いた場合、高エネルギ
密度、高出力密度を得ることができる。
As described above, according to the present invention, by doping a conductive polymer with a specific anion and performing aging, an excellent effect is achieved in that a negative electrode made of a conductive polymer material can be put to practical use. The negative electrode made of a conductive polymer material obtained by the manufacturing method of the present invention is lightweight because it is made of a conductive polymer, and when used as a negative electrode of a secondary battery, it is possible to obtain high energy density and high power density. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係る導電性高分子材料製負極
の製造方法の一工程を示す概略構成図、第2図は本発明
の実施例により得られたポリピロール電極の充放電試験
結果を示すグラフである。 1・−・−電解液 2−−−−−−ポリピロール電極 3−−−−−一白金電極 4−一一一・・照合電極
Fig. 1 is a schematic configuration diagram showing one step of the method for manufacturing a negative electrode made of conductive polymer material according to an example of the present invention, and Fig. 2 is a charge/discharge test result of a polypyrrole electrode obtained according to an example of the present invention. This is a graph showing. 1 - Electrolyte 2 - Polypyrrole electrode 3 - Platinum electrode 4 - 111 - Reference electrode

Claims (1)

【特許請求の範囲】[Claims] (1)原料モノマーを支持電解質と共に有機溶媒に溶か
した電解液中に集電材を浸漬した後、1mA/cm^2
〜60mA/cm^2で電解重合することにより成膜し
、得られた導電性高分子を、電解質としてトリフルオロ
メタンスルホン酸塩、ポリ硫酸ビニル塩あるいはポリス
チレンスルホン酸塩のうちのいずれか一つを含む電解液
中に浸漬し、正極として通電して前記電解液のアニオン
をドープし、続いてこの導電性高分子を更に別の電解液
中に浸漬して負極とし、正極との間に電流を流してエー
ジングすることを特徴とする導電性高分子材料製負極の
製造方法。
(1) After immersing the current collector in an electrolytic solution in which the raw material monomer and supporting electrolyte are dissolved in an organic solvent, the current flow rate is 1 mA/cm^2.
A film is formed by electrolytic polymerization at ~60 mA/cm^2, and the resulting conductive polymer is treated with one of trifluoromethanesulfonate, polyvinyl sulfate, or polystyrene sulfonate as an electrolyte. The conductive polymer is immersed in an electrolytic solution containing the polymer, and is energized as a positive electrode to dope the anion of the electrolytic solution.Then, this conductive polymer is further immersed in another electrolytic solution to serve as a negative electrode, and a current is applied between it and the positive electrode. A method for producing a negative electrode made of a conductive polymer material, characterized by aging by flowing.
JP59250045A 1984-11-27 1984-11-27 Manufactore of conductive polymer negative electrode Pending JPS61128477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59250045A JPS61128477A (en) 1984-11-27 1984-11-27 Manufactore of conductive polymer negative electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59250045A JPS61128477A (en) 1984-11-27 1984-11-27 Manufactore of conductive polymer negative electrode

Publications (1)

Publication Number Publication Date
JPS61128477A true JPS61128477A (en) 1986-06-16

Family

ID=17201992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59250045A Pending JPS61128477A (en) 1984-11-27 1984-11-27 Manufactore of conductive polymer negative electrode

Country Status (1)

Country Link
JP (1) JPS61128477A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0326484A2 (en) * 1988-01-25 1989-08-02 Commissariat A L'energie Atomique Electrochemical generator using an electronically conducting polymer of the polypyrrole group as a cathode, and treatment process for the capacity-to-weight ratio of this cathode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0326484A2 (en) * 1988-01-25 1989-08-02 Commissariat A L'energie Atomique Electrochemical generator using an electronically conducting polymer of the polypyrrole group as a cathode, and treatment process for the capacity-to-weight ratio of this cathode
EP0326484A3 (en) * 1988-01-25 1991-07-17 Commissariat A L'energie Atomique Electrochemical generator using an electronically conducting polymer of the polypyrrole group as a cathode, and treatment process for the capacity-to-weight ratio of this cathode

Similar Documents

Publication Publication Date Title
JP7084587B2 (en) Polymers, electrode active materials and secondary batteries
CN109599593B (en) Method for preparing solid-state battery with multilayer composite electrolyte
CN108538633B (en) Novel high-conductivity polymeric ionic liquid electrolyte for super capacitor
JPS6289749A (en) Electrode material
JPS61128477A (en) Manufactore of conductive polymer negative electrode
JPS61128478A (en) Manufacture of conductive polymer negative electrode
JPS61203565A (en) Secondary battery and its electrode
JPH01230216A (en) Energy storing apparatus for nonaqueous electrolyte
JPS61206170A (en) Secondary battery and its electrode
JPS61110975A (en) Organic electrolyte secondary battery
JP3051550B2 (en) Manufacturing method of battery electrode
Appetecchi et al. Plastic power sources
JPH10116620A (en) Thin type lithium battery and its production
JP2001257133A (en) Conductive polymer composite electrode and electrochemical capacitor
JPH01258408A (en) Energy storage device using non-aqueous electrolyte
JPS59157974A (en) Secondary battery
JP2716132B2 (en) Polyaniline battery
JPS63205063A (en) Manufacture of battery
JPS6337561A (en) Production of electrode for plastic cell positive electrode
JPH0193053A (en) Electrode for battery
JPS618855A (en) Cell and its manufacture
CN117937046A (en) Coated diaphragm and preparation method thereof
JPH01319268A (en) Secondary battery
JPS6226770A (en) Manufacture of organic electrolyte secondary battery
JP2826849B2 (en) Method for producing polyaniline