JPH10116620A - Thin type lithium battery and its production - Google Patents

Thin type lithium battery and its production

Info

Publication number
JPH10116620A
JPH10116620A JP8269499A JP26949996A JPH10116620A JP H10116620 A JPH10116620 A JP H10116620A JP 8269499 A JP8269499 A JP 8269499A JP 26949996 A JP26949996 A JP 26949996A JP H10116620 A JPH10116620 A JP H10116620A
Authority
JP
Japan
Prior art keywords
lithium battery
polymer
positive electrode
monomer
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8269499A
Other languages
Japanese (ja)
Other versions
JP3512082B2 (en
Inventor
Hiroe Nakagawa
裕江 中川
Seijiro Ochiai
誠二郎 落合
Yuichi Aihara
雄一 相原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP26949996A priority Critical patent/JP3512082B2/en
Publication of JPH10116620A publication Critical patent/JPH10116620A/en
Application granted granted Critical
Publication of JP3512082B2 publication Critical patent/JP3512082B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a thin type lithium battery which is excellent in initial capacity and a cycle life without requiring any special production process. SOLUTION: In a thin type lithium battery in which a positive electrode and a negative electrode face to each other via an electrolyte layer, a mixture forming the positive electrode and a mixture forming the negative electrode are formed by mixing at least electrode active material, electrolyte, and a monomer having a polymerizing functional group at a molecular chain end as a binding agent, and the thin type lithium battery having a binding property between the active material is obtained by the polymerization of the monomer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は薄形リチウム電池と
その製造方法に関するもので、さらに詳しくは、薄形リ
チウム電池の正極合剤および負極合剤の改良と、これら
正極合剤および負極合剤を用いた薄形リチウム電池の製
造方法の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin lithium battery and a method for manufacturing the same, and more particularly, to an improvement of a positive electrode mixture and a negative electrode mixture of a thin lithium battery, and a positive electrode mixture and a negative electrode mixture thereof. The present invention relates to an improvement in a method for manufacturing a thin lithium battery using the same.

【0002】[0002]

【従来の技術】近年、携帯電話、PHS、小型パーソナ
ルコンピュータなどの携帯機器類は、エレクトロニクス
技術の進展に伴って小型化、軽量化が著しく、これらの
機器類に用いられる電源としての電池においても小型
化、軽量化が求められるようになってきている。
2. Description of the Related Art In recent years, portable devices such as cellular phones, PHSs, and small personal computers have been significantly reduced in size and weight with the development of electronics technology. Miniaturization and weight reduction are required.

【0003】このような用途に期待できる電池の1つと
してリチウム電池があるが、既に実用化されているリチ
ウム一次電池に加えて、リチウム二次電池の実用化、高
容量化、長寿命化のための研究が進められている。
A lithium battery is one of the batteries that can be expected for such uses. In addition to the lithium primary battery that has already been put into practical use, a lithium secondary battery has been put to practical use, has a higher capacity, and has a longer life. Research is being pursued.

【0004】上記した種々のリチウム電池はいずれも円
筒形が中心である。一方、リチウム一次電池においては
固体電解質を用い、プリント技術を応用した製法により
薄形形状のものも実用化されているが、このような薄形
電池はリチウム二次電池やリチウムイオン二次電池にお
いては未だ実用化には至っていない。
[0004] The above-mentioned various lithium batteries are mainly cylindrical. On the other hand, in lithium primary batteries, thin-type ones have been put to practical use by using a solid electrolyte and a manufacturing method that applies printing technology, but such thin-type batteries are used in lithium secondary batteries and lithium-ion secondary batteries. Has not yet been put to practical use.

【0005】この理由として、以下のような要因が挙げ
られる。すなわち、円筒形電池の場合、正極、負極、お
よびセパレータからなる極群を円筒形の電槽に挿入した
後に液体状の電解液を注液するため、極群を加圧するこ
とにより活物質の電気的接触を保持することが容易であ
るのに対し、薄形電池の場合、正極と負極を電解質を介
して対向させているため、電極を加圧することが困難で
あり、電解液の膨潤により活物質の電気的接触が破壊さ
れ、サイクル寿命が短かくなるという欠点があった。
The reasons for this are as follows. That is, in the case of a cylindrical battery, an electrode group consisting of a positive electrode, a negative electrode, and a separator is inserted into a cylindrical battery case, and then a liquid electrolyte is injected. In the case of a thin battery, the positive electrode and the negative electrode are opposed to each other with the electrolyte interposed therebetween, which makes it difficult to pressurize the electrodes. There is a drawback that the electrical contact of the substance is broken and the cycle life is shortened.

【0006】そこで従来より、薄形リチウム二次電池に
おいては、正極合剤および負極合剤中に混合する結着剤
を調製することにより、活物質の電子伝導性およびイオ
ン伝導性を保持し、サイクル寿命を向上させる研究が行
われている。上記結着剤としては、ポリテトラフルオロ
エチレン(PTFE)やポリフッ化ビニリデン(PVD
F)などのフッ素系ポリマーが用いられており、これら
を正極活物質および負極活物質と共にN−メチル−2−
ピロリドンなどの溶媒に溶解して混合したものを正極合
剤および負極合剤とし、それぞれ集電体に塗布した後に
乾燥させてプレスする方法で正極および負極が製造され
ている。
Therefore, conventionally, in a thin lithium secondary battery, by preparing a binder mixed in a positive electrode mixture and a negative electrode mixture, the electron conductivity and the ion conductivity of the active material are maintained. Research is underway to improve cycle life. Examples of the binder include polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVD).
F) or the like, and these are used together with a positive electrode active material and a negative electrode active material in N-methyl-2-
A positive electrode and a negative electrode are manufactured by dissolving and mixing a solvent such as pyrrolidone as a positive electrode mixture and a negative electrode mixture, applying the mixture to a current collector, and then drying and pressing the mixture.

【0007】[0007]

【発明が解決しようとする課題】上記した従来の薄形リ
チウム電池では、結着剤であるPTFEやPVDFなど
を正極活物質および負極活物質と共に溶解させるN−メ
チル−2−ピロリドンなどの溶媒を乾燥によって完全に
除去する必要があり、これが残存するとサイクル寿命特
性の劣化原因の1つとなると共に、製造工程も複雑化す
るという問題点があった。
In the above-mentioned conventional thin lithium battery, a solvent such as N-methyl-2-pyrrolidone in which a binder such as PTFE or PVDF is dissolved together with a positive electrode active material and a negative electrode active material is used. It has to be completely removed by drying, and if it remains, it becomes one of the causes of deterioration of cycle life characteristics, and there is a problem that the manufacturing process is complicated.

【0008】本発明は上記問題点に鑑みてなされたもの
であり、特殊な製造工程などを必要としなくても安定し
た電池性能を得ることができる薄形リチウム電池を提供
することを目的としたものである。
The present invention has been made in view of the above problems, and has as its object to provide a thin lithium battery capable of obtaining stable battery performance without requiring a special manufacturing process or the like. Things.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するた
め、本発明の第1は、正極と負極とを電解質層を介して
対向させた薄形リチウム電池において、前記正極を形成
する合剤および前記負極を形成する合剤が、少なくとも
電極活物質、電解液および結着剤として分子鎖末端に重
合性官能基を有するモノマーを混合したものであり、前
記モノマーの重合により活物質間の結着性を有すること
を特徴とするものである。さらに望ましくは、前記モノ
マーの分子量が2000以下であり、前記モノマーを単
独で重合したポリマーの電解液溶媒に対する膨潤度が、
重量百分率で130%以下、あるいは体積百分率で13
0%以下であり、さらに言えば、前記モノマーの構造
が、化5および化6で示される構造のうち少なくとも1
つから選択されることが望ましい。
Means for Solving the Problems To solve the above problems, a first aspect of the present invention is to provide a thin lithium battery in which a positive electrode and a negative electrode are opposed to each other with an electrolyte layer interposed therebetween. The mixture forming the negative electrode is a mixture of at least an electrode active material, an electrolytic solution, and a monomer having a polymerizable functional group at a molecular chain terminal as a binder, and binding between the active materials by polymerization of the monomer. It has characteristics. More preferably, the molecular weight of the monomer is 2,000 or less, the degree of swelling of the polymer obtained by polymerizing the monomer alone in an electrolyte solvent,
130% or less by weight percentage or 13% by volume percentage
0% or less, and more specifically, the structure of the monomer is at least one of the structures represented by Chemical Formulas 5 and 6.
It is desirable to select from one.

【0010】[0010]

【化5】 Embedded image

【0011】[0011]

【化6】 Embedded image

【0012】また、前記電解質層が有機ポリマーによっ
て構成される固体あるいはゲル状であり、前記電解質用
有機ポリマーが、前記結着剤としてのポリマーとは異種
の構造を有するポリマーあるいは同種の構造を有する異
なるポリマーであることが望ましい。さらにつけ加えれ
ば、前記電解液の溶媒が、環状エステル、鎖状エステ
ル、環状エーテル、鎖状エーテル、環状アミド、鎖状ア
ミドのいずれかの構造を持つ1種もしくは2種以上から
選択されることが望ましい。
Further, the electrolyte layer is a solid or gel composed of an organic polymer, and the organic polymer for the electrolyte has a polymer having a structure different from that of the polymer as the binder or a structure of the same kind. Desirably different polymers. In addition, the solvent of the electrolytic solution may be selected from one or more having one of a cyclic ester, a chain ester, a cyclic ether, a chain ether, a cyclic amide, and a chain amide. desirable.

【0013】また、上記課題を解決するため、本発明の
第2は、少なくとも正極活物質、電解液および結着剤を
混合して得た正極合剤を正極集電体上に塗布することに
より正極を形成する工程と、少なくとも負極活物質、電
解液および結着剤を混合して得た負極合剤を負極集電体
上に塗布することにより負極を形成する工程と、前記正
極と負極とを電解質を介して対向させると共にその端部
を接着剤で封止する工程とからなる薄形リチウム電池の
製造方法において、前記結着剤が、分子鎖末端に重合性
官能基を有する好ましくは分子量2000以下のモノマ
ーの状態で正極合剤および負極合剤中に混合され、正極
集電体上および負極集電体上に塗布した後、重合によっ
て活物質間を結着させるポリマーを形成することを特徴
とするものである。さらに望ましくは、前記モノマーを
単独で重合したポリマーの電解液溶媒に対する膨潤度
が、重量百分率で130%以下、あるいは体積百分率で
130%以下であり、さらに言えば、前記モノマーの構
造が、化7および化8で示される構造のうち少なくとも
1つから選択されることが望ましい。
In order to solve the above problems, a second aspect of the present invention is to apply a positive electrode mixture obtained by mixing at least a positive electrode active material, an electrolytic solution and a binder onto a positive electrode current collector. A step of forming a positive electrode, a step of forming a negative electrode by applying a negative electrode mixture obtained by mixing at least a negative electrode active material, an electrolytic solution and a binder on a negative electrode current collector; and And a step of sealing the end portion with an adhesive while interposing an electrolyte therebetween, wherein the binder has a polymerizable functional group at a molecular chain terminal, preferably a molecular weight. It is mixed into the positive electrode mixture and the negative electrode mixture in a state of a monomer of 2,000 or less, and after coating on the positive electrode current collector and the negative electrode current collector, forming a polymer that binds the active materials by polymerization. Features More preferably, the swelling degree of the polymer obtained by polymerizing the monomer alone in the electrolyte solvent is 130% or less by weight percentage or 130% or less by volume percentage, and more specifically, the structure of the monomer is It is desirable to select from at least one of the structures shown in Chemical formula 8 below.

【0014】[0014]

【化7】 Embedded image

【0015】[0015]

【化8】 Embedded image

【0016】また、前記電解質層が有機ポリマーによっ
て構成される固体あるいはゲル状であり、前記電解質用
有機ポリマーが、前記結着剤としてのポリマーとは異種
の構造を有するポリマーあるいは同種の構造を有する異
なるポリマーであることが望ましい。さらにつけ加えれ
ば、前記電解液の溶媒が、環状エステル、鎖状エステ
ル、環状エーテル、鎖状エーテル、環状アミド、鎖状ア
ミドのいずれかの構造を持つ1種もしくは2種以上から
選択されることが望ましい。さらに望ましくは、前記結
着剤のポリマー形成方法が、電離性放射線照射による重
合であることを特徴とするものである。
Further, the electrolyte layer is a solid or gel composed of an organic polymer, and the organic polymer for the electrolyte has a polymer having a different structure from the polymer as the binder or a similar structure. Desirably different polymers. In addition, the solvent of the electrolytic solution may be selected from one or more having one of a cyclic ester, a chain ester, a cyclic ether, a chain ether, a cyclic amide, and a chain amide. desirable. More preferably, the method for forming a polymer of the binder is polymerization by irradiation with ionizing radiation.

【0017】[0017]

【作用】したがって、本発明は、正極合剤および負極合
剤中に結着剤として、分子鎖末端に重合性官能基を有す
る分子量2000以下のモノマーを混合し、集電体上へ
の塗布後重合させることにより、活物質間の結着性を有
するものとし、かつ、前記モノマーの分子量や前記モノ
マーを単独で重合したポリマーの電解液溶媒に対する膨
潤度、モノマーの構造、電解液層の有機ポリマーの構
造、および電解液溶媒の構造を規定することにより、活
物質の電気的接触を保持し、初期容量およびサイクル寿
命に優れた薄形リチウム電池を提供することができるも
のである。
Accordingly, the present invention provides a method of mixing a positive electrode mixture and a negative electrode mixture with a monomer having a molecular weight of 2,000 or less and having a polymerizable functional group at a molecular chain terminal as a binder, and coating the mixture on a current collector. By polymerizing, it has a binding property between active materials, and the molecular weight of the monomer and the degree of swelling of the polymer obtained by polymerizing the monomer alone in an electrolyte solvent, the structure of the monomer, and the organic polymer in the electrolyte layer By defining the structure of (1) and the structure of the electrolyte solvent, it is possible to provide a thin lithium battery which maintains the electrical contact of the active material and has excellent initial capacity and cycle life.

【0018】さらに、本発明は、前記結着剤を分子鎖末
端に重合性官能基を有する分子量2000以下のモノマ
ーとして正極合剤および負極合剤中に混合し、正極集電
体上および負極集電体上に塗布した後、重合によって活
物質間を結着させるポリマーを形成することとし、か
つ、前記モノマーの分子量や前記モノマーを単独で重合
したポリマーの電解液溶媒に対する膨潤度、モノマーの
構造、電解液層の有機ポリマーの構造、および電解液溶
媒の構造を規定することにより、溶媒除去などの特殊な
製造工程を必要としなくても初期容量およびサイクル寿
命に優れた薄形リチウム電池の製造方法を提供すること
ができるものである。
Furthermore, the present invention provides a method of mixing the above-mentioned binder as a monomer having a polymerizable functional group at a molecular chain terminal and having a molecular weight of 2,000 or less in a positive electrode mixture and a negative electrode mixture, on a positive electrode current collector and a negative electrode collector. After coating on the electric body, a polymer that binds the active material by polymerization is formed, and the molecular weight of the monomer and the degree of swelling of the polymer obtained by polymerizing the monomer alone in an electrolyte solvent, the structure of the monomer By defining the structure of the organic polymer in the electrolyte layer and the structure of the electrolyte solvent, it is possible to manufacture thin lithium batteries with excellent initial capacity and cycle life without the need for special manufacturing processes such as solvent removal. A method can be provided.

【0019】なお、前記モノマーの分子量が2000以
上となると、電解液溶媒に対する膨潤度が重量百分率で
130%以上又は体積百分率で130%以上となり、活
物質の電気的接触が保持できなくなるため好ましくな
い。
If the molecular weight of the monomer is 2,000 or more, the degree of swelling with respect to the electrolyte solvent becomes 130% or more by weight or 130% or more by volume, and it becomes impossible to maintain electrical contact with the active material. .

【0020】[0020]

【発明の実施の形態】以下に本発明の詳細について実施
例に基づき説明する。図1に本発明の薄形リチウム電池
の断面図を示す。図1において、1は正極活物質である
コバルト酸リチウムを主成分とし、γ−ブチロラクトン
に1モル/リットルのLiBF4 を溶解した電解液およ
び分子内にアルキル鎖とエステル構造を持ち、分子末端
にアクリル基を持つアクリレートモノマーを重合した結
着剤を含む正極合剤であり、アルミ箔からなる正極集電
板3上に塗布されてなる。また、2は負極活物質である
カーボンを主成分とし、前記正極合剤1と同様の電解液
および結着剤を含む負極合剤であり、銅箔からなる負極
集電板4上に塗布されてなる。なお、前記正極合剤1と
負極合剤2は、各極活物質、電解液および結着剤の原料
であるアクリレートモノマーを混合し、各極集電体上に
塗布した後、電子線照射によりモノマーを重合させて結
着剤であるポリマーを形成させたものである。また、前
記正極合剤1と負極合剤2は、前記電解液およびポリエ
チレンオキサイドとポリプロピレンオキサイドの共重合
体の構造を持ち、分子末端にアクリル基を持ったアクリ
レートモノマーを重合したポリマーを主成分とするゲル
状の電解質5を介して対向させ、端部を接着剤で封止さ
れてなるものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below based on embodiments. FIG. 1 shows a cross-sectional view of the thin lithium battery of the present invention. In FIG. 1, reference numeral 1 denotes an electrolyte containing lithium cobalt oxide, which is a positive electrode active material, as a main component, 1 mol / liter of LiBF 4 dissolved in γ-butyrolactone, and an alkyl chain and ester structure in the molecule. This is a positive electrode mixture containing a binder obtained by polymerizing an acrylate monomer having an acrylic group, and is applied on the positive electrode current collector plate 3 made of aluminum foil. Reference numeral 2 denotes a negative electrode mixture mainly containing carbon as a negative electrode active material and containing the same electrolytic solution and binder as the positive electrode mixture 1, and is coated on a negative electrode current collector plate 4 made of copper foil. It becomes. The positive electrode mixture 1 and the negative electrode mixture 2 were prepared by mixing acrylate monomers, which are raw materials for the respective electrode active materials, the electrolytic solution and the binder, and applying the mixture on the respective electrode current collectors, followed by electron beam irradiation. It is obtained by polymerizing a monomer to form a polymer as a binder. The positive electrode mixture 1 and the negative electrode mixture 2 have a structure of the electrolyte and a copolymer of polyethylene oxide and polypropylene oxide, and mainly contain a polymer obtained by polymerizing an acrylate monomer having an acrylic group at a molecular terminal. The electrodes are opposed to each other with a gel electrolyte 5 formed therebetween, and the ends are sealed with an adhesive.

【0021】前記正極合剤1と負極合剤2に含有させた
結着剤の原料である化9で示されるアクリレートモノマ
ーの平均分子量は約400であり、重合によって形成さ
れるポリマーの電解液による膨潤度は体積百分率で12
5%である。
The average molecular weight of the acrylate monomer represented by Chemical Formula 9, which is a raw material of the binder contained in the positive electrode mixture 1 and the negative electrode mixture 2, is about 400, and depends on the electrolytic solution of the polymer formed by polymerization. The degree of swelling is 12 by volume percentage.
5%.

【0022】[0022]

【化9】 Embedded image

【0023】一方、電解質5に含有させたポリマーの原
料であるアクリレートモノマーの平均分子量は約800
0であり、重合によって形成されるポリマーの電解液に
よる膨潤度は体積百分率で350%である。
On the other hand, the average molecular weight of the acrylate monomer which is a raw material of the polymer contained in the electrolyte 5 is about 800
0, and the degree of swelling of the polymer formed by the polymerization with the electrolytic solution is 350% by volume percentage.

【0024】以上のような原料および製法により、容量
10mAhの薄形リチウム電池を作製し、本発明電池A
とした。
A thin lithium battery having a capacity of 10 mAh was manufactured by the above-described raw materials and manufacturing method, and the battery A of the present invention was manufactured.
And

【0025】同様に、正極合剤1および負極合剤2に含
有させる結着剤として、電解質5に使用しているものよ
り分子量の小さいポリエチレンオキサイドの構造を持
ち、分子末端にアクリル基を持ったアクリレートモノマ
ーを重合したポリマーを使用し、その他の条件は同一の
原料および製法により、容量10mAhの薄形リチウム
電池を作製し、比較電池Bとした。なお、比較電池Bに
使用した結着剤の原料であるアクリレートモノマーの平
均分子量は約2000であり、重合によって形成される
ポリマーの電解液による膨潤度は体積百分率で200%
である。
Similarly, the binder contained in the positive electrode mixture 1 and the negative electrode mixture 2 has a structure of polyethylene oxide having a smaller molecular weight than that used for the electrolyte 5 and has an acrylic group at the molecular terminal. A thin-film lithium battery having a capacity of 10 mAh was prepared using a polymer obtained by polymerizing an acrylate monomer and using the same raw materials and manufacturing method under the other conditions. The average molecular weight of the acrylate monomer, which is the raw material of the binder used for the comparative battery B, was about 2000, and the degree of swelling of the polymer formed by polymerization with the electrolytic solution was 200% by volume percentage.
It is.

【0026】また、正極合剤1および負極合剤2に含有
させる結着剤として、電解質5と同じポリエチレンオキ
サイドとポリプロピレンオキサイドの共重合体の構造を
持ち、分子末端にアクリル基を持ったアクリレートモノ
マーを重合したポリマーを使用し、その他の条件は同一
の原料および製法により、容量10mAhの薄形リチウ
ム電池を作製し、比較電池Cとした。
As a binder contained in the positive electrode mixture 1 and the negative electrode mixture 2, an acrylate monomer having the same copolymer structure of polyethylene oxide and polypropylene oxide as the electrolyte 5 and having an acrylic group at the molecular terminal is used. A thin-film lithium battery having a capacity of 10 mAh was produced using the polymer obtained by polymerizing the above and using the same raw materials and the same manufacturing method as the other conditions, to obtain Comparative Battery C.

【0027】さらに、正極合剤1および負極合剤2に含
有させる結着剤として、PVDFを使用し、前記正極合
剤1および負極合剤2は、各極活物質および結着剤の原
料であるPVDFをN−メチル−2−ピロリドンに溶解
した溶液を混合し、各極集電体上に塗布した後乾燥さ
せ、さらにプレスした後に電解液を注液する方法で形成
させたものとし、その他の条件は同一の原料および製法
により、容量10mAhの薄形リチウム電池を作製し、
従来電池Dとした。なお、PVDFの電解液による膨潤
度は体積百分率で160%である。
Further, PVDF is used as a binder to be contained in the positive electrode mixture 1 and the negative electrode mixture 2, and the positive electrode mixture 1 and the negative electrode mixture 2 are raw materials of the respective positive electrode active materials and the binder. A solution obtained by dissolving a certain PVDF in N-methyl-2-pyrrolidone is mixed, applied on each current collector, dried, pressed, and then injected with an electrolytic solution. The following conditions were used to produce a thin lithium battery with a capacity of 10 mAh using the same raw materials and manufacturing method.
Conventional battery D was used. The degree of swelling of the PVDF with the electrolytic solution is 160% by volume.

【0028】次に、これらの本発明電池A、比較電池
B、C、および従来電池Cについて、充放電サイクル試
験を行い、その結果得られたサイクル数と放電容量の関
係を図2に示す。なお、試験条件は、20℃の温度下で
1mAの電流で終止電圧4.2Vまで充電した後、1m
Aの電流で終止電圧2.7Vまで放電したものである。
図2から、従来電池Dの初期容量は設計容量のほぼ80
%が得られているが、サイクルを経過すると急激に容量
が低下し、5サイクル目には設計容量の50%を下回る
ことが分かった。この原因として、電解液によってPV
DFが膨潤することにより、電極中の活物質が電子的に
孤立するためと考えられる。また、充放電時にリチウム
イオンが移動することにより電解液の移動および活物質
の膨張収縮が生じるが、PVDFによる活物質の膨張収
縮の抑制が困難であるため、サイクル進行と共に急激な
容量の低下が発生するものと考えられる。
Next, a charge / discharge cycle test was performed on the battery A of the present invention, the comparative batteries B and C, and the conventional battery C, and the relationship between the number of cycles and the discharge capacity obtained as a result is shown in FIG. The test conditions were as follows: charge at a current of 1 mA at a temperature of 20 ° C. to a final voltage of 4.2 V;
The battery was discharged to a final voltage of 2.7 V by the current A.
From FIG. 2, the initial capacity of the conventional battery D is approximately 80 times the design capacity.
%, But it was found that the capacity rapidly decreased after the lapse of the cycle, and fell below 50% of the designed capacity in the fifth cycle. The reason for this is that PV
It is considered that the swelling of the DF electronically isolates the active material in the electrode. In addition, movement of lithium ions during charge and discharge causes movement of the electrolytic solution and expansion and contraction of the active material. However, it is difficult to suppress expansion and contraction of the active material by PVDF. It is thought to occur.

【0029】これに対し、比較電池Bは初期容量は設計
容量のほぼ90%が得られているが、サイクルを経過す
るとやはり急激に容量が低下し、10サイクル目に設計
容量の50%を下回ることが分かった。比較電池Cにつ
いてはさらにこの傾向が大きくなり、初期容量から設計
容量の20%しか得られず、3サイクル目には設計容量
の10%を下回ることが分かった。この原因として、比
較電池BおよびCに用いた結着剤であるポリマーが電解
液と親和性の高いポリエチレンオキサイドを分子内に持
つため、電解液に対する膨潤度が大きく、初期充電時に
電解液によって合剤が膨潤し、電極中の活物質が電子的
に孤立するためと考えられる。また、充放電時のリチウ
ムイオンの移動による電解液の移動および活物質の膨張
収縮のためさらに合剤が膨潤し、サイクル進行と共に急
激な容量の低下が発生するものと考えられる。
On the other hand, although the initial capacity of the comparative battery B is about 90% of the designed capacity, the capacity rapidly drops after the cycle, and falls below 50% of the designed capacity at the tenth cycle. I understood that. For the comparative battery C, this tendency was further increased, and only 20% of the designed capacity was obtained from the initial capacity, and it was found that the capacity was less than 10% of the designed capacity in the third cycle. The reason for this is that the polymer used as the binder used in the comparative batteries B and C has polyethylene oxide having high affinity for the electrolytic solution in the molecule, so that the degree of swelling with respect to the electrolytic solution is large, and the polymer is mixed by the electrolytic solution during initial charging. It is considered that the agent swells and the active material in the electrode is electronically isolated. In addition, it is considered that the mixture further swells due to the movement of the electrolyte due to the movement of lithium ions and the expansion and contraction of the active material during charge and discharge, and a rapid decrease in capacity occurs as the cycle proceeds.

【0030】一方、本発明電池Aは充放電初期より設計
容量のほぼ100%が得られており、さらに100サイ
クル経過後も容量の低下はほとんど見られないことが分
かった。この原因として、本発明電池Aに用いた結着剤
であるポリマーが分子網目の小さい架橋性ポリマーであ
り、また、電解液と親和性の低いアルキル鎖を分子内に
持つため、電解液に対する膨潤度が小さく、初期充電時
に合剤が膨潤することはなく、電極中の活物質が電子的
に孤立することもないためと考えられる。また、充放電
時のリチウムイオンの移動による電解液の移動および活
物質の膨張収縮についても、ポリマーの分子網目が小さ
いために合剤の膨張を抑制し、サイクル進行による容量
の低下も抑制するものと考えられる。
On the other hand, in the battery A of the present invention, almost 100% of the designed capacity was obtained from the initial stage of charge and discharge, and it was found that the capacity was hardly reduced even after 100 cycles. The reason for this is that the polymer used as the binder in the battery A of the present invention is a crosslinkable polymer having a small molecular network, and has an alkyl chain having a low affinity for the electrolytic solution in the molecule. It is considered that the degree is small, the mixture does not swell at the time of initial charging, and the active material in the electrode is not electronically isolated. In addition, the movement of the electrolyte due to the movement of lithium ions during charge and discharge and the expansion and contraction of the active material also suppress the expansion of the mixture due to the small molecular network of the polymer, and also suppress the decrease in capacity due to cycle progress. it is conceivable that.

【0031】更に、化10に示されるモノマーを用いた
系においても上記と同様の結果が得られた。
Further, the same results as described above were obtained in a system using the monomer shown in Chemical formula 10.

【0032】[0032]

【化10】 Embedded image

【0033】[0033]

【発明の効果】上記の通り、本発明の薄形リチウム電池
およびその製造方法は、正極合剤および負極合剤中に結
着剤として、分子鎖末端に重合性官能基を有する分子量
2000以下のモノマーを混合し、集電体上への塗布後
重合させることにより、活物質間の結着性を有するもの
とし、かつ、前記モノマーの分子量や前記モノマーを単
独で重合したポリマーの電解液溶媒に対する膨潤度、モ
ノマーの構造、電解液層の有機ポリマーの構造、および
電解液溶媒の構造を規定することにより、電極中の活物
質の電気的接触を保持すると共に合剤の膨張を抑制する
ため、特殊な製造工程を必要としなくても初期容量およ
びサイクル寿命に優れた薄形リチウム電池を提供するこ
とができる。
As described above, the thin lithium battery and the method for producing the same according to the present invention can be used as a binder in the positive electrode mixture and the negative electrode mixture as a binder having a polymerizable functional group at a molecular chain terminal and having a molecular weight of 2000 or less. By mixing the monomers and polymerizing them after coating on the current collector, it is necessary to have a binding property between the active materials, and to the molecular weight of the monomers and the electrolyte solution solvent of the polymer obtained by polymerizing the monomers alone. By defining the degree of swelling, the structure of the monomer, the structure of the organic polymer of the electrolyte layer, and the structure of the electrolyte solvent, to maintain the electrical contact of the active material in the electrode and to suppress the expansion of the mixture, A thin lithium battery excellent in initial capacity and cycle life can be provided without requiring a special manufacturing process.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の薄形リチウム電池の断面図である。FIG. 1 is a sectional view of a thin lithium battery of the present invention.

【図2】本発明電池A、比較電池B、C、および従来電
池Cについて、充放電サイクル試験を行ったときのサイ
クル数と放電容量の関係を示した図である。
FIG. 2 is a diagram showing the relationship between the number of cycles and the discharge capacity when a charge / discharge cycle test is performed on a battery A of the present invention, comparative batteries B and C, and a conventional battery C.

【符号の説明】[Explanation of symbols]

1 正極合剤 2 負極合剤 3 正極集電体 4 負極集電体 5 電解質 6 接着剤 DESCRIPTION OF SYMBOLS 1 Positive electrode mixture 2 Negative electrode mixture 3 Positive electrode current collector 4 Negative electrode current collector 5 Electrolyte 6 Adhesive

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01M 10/40 H01M 10/40 Z ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI H01M 10/40 H01M 10/40 Z

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 正極と負極とを電解質層を介して対向さ
せた薄形リチウム電池において、前記正極を形成する合
剤および前記負極を形成する合剤が、少なくとも電極活
物質、電解液および結着剤として分子鎖末端に重合性官
能基を有するモノマーを混合したものであり、前記モノ
マーの重合により活物質間の結着性を有することを特徴
とする薄形リチウム電池。
In a thin lithium battery in which a positive electrode and a negative electrode are opposed to each other with an electrolyte layer interposed therebetween, a mixture forming the positive electrode and a mixture forming the negative electrode include at least an electrode active material, an electrolytic solution, and a binder. A thin lithium battery comprising a mixture of a monomer having a polymerizable functional group at a molecular chain terminal as an adhesive, and having a binding property between active materials by polymerization of the monomer.
【請求項2】 前記モノマーの分子量が、2000以下
である請求項1記載の薄形リチウム電池。
2. The thin lithium battery according to claim 1, wherein the monomer has a molecular weight of 2000 or less.
【請求項3】 前記モノマーを単独で重合したポリマー
の電解液溶媒に対する膨潤度が、重量百分率で130%
以下、あるいは体積百分率で130%以下である請求項
1記載の薄形リチウム電池。
3. The polymer obtained by polymerizing the monomer alone has a degree of swelling in an electrolyte solvent of 130% by weight percentage.
2. The thin lithium battery according to claim 1, wherein the lithium battery has a volume percentage of 130% or less.
【請求項4】 前記モノマーの構造が、化1および化2
で示される構造のうち少なくとも1つから選択される請
求項1記載の薄形リチウム電池。 【化1】 【化2】
4. The structure of said monomer is
The thin lithium battery according to claim 1, wherein the lithium battery is selected from at least one of the following structures: Embedded image Embedded image
【請求項5】 前記電解質層が有機ポリマーによって構
成される固体あるいはゲル状であり、前記電解質用有機
ポリマーが、請求項1記載の結着剤としてのポリマーと
は異種の構造を有するポリマーあるいは同種の構造を有
する異なるポリマーである請求項1記載の薄形リチウム
電池。
5. The electrolyte layer is a solid or gel composed of an organic polymer, and the organic polymer for the electrolyte is a polymer having a different structure from the polymer as the binder according to claim 1 or the same. The thin lithium battery according to claim 1, which is a different polymer having the following structure:
【請求項6】 前記電解液の溶媒が、環状エステル、鎖
状エステル、環状エーテル、鎖状エーテル、環状アミ
ド、鎖状アミドのいずれかの構造を持つ1種もしくは2
種以上から選択されている請求項1記載の薄形リチウム
電池。
6. The solvent for the electrolytic solution is one or two of a cyclic ester, a chain ester, a cyclic ether, a chain ether, a cyclic amide, and a chain amide.
The thin lithium battery according to claim 1, wherein the lithium battery is selected from at least one species.
【請求項7】 少なくとも正極活物質、電解液および結
着剤を混合して得た正極合剤を正極集電体上に塗布する
ことにより正極を形成する工程と、少なくとも負極活物
質、電解液および結着剤を混合して得た負極合剤を負極
集電体上に塗布することにより負極を形成する工程と、
前記正極と負極とを電解質を介して対向させると共にそ
の端部を接着剤で封止する工程とからなる薄形リチウム
電池の製造方法において、前記結着剤が、分子鎖末端に
重合性官能基を有するモノマーの状態で正極合剤および
負極合剤中に混合され、正極集電体上および負極集電体
上に塗布した後、重合によって活物質間を結着させるポ
リマーを形成することを特徴とする薄形リチウム電池の
製造方法。
7. A step of forming a positive electrode by applying a positive electrode mixture obtained by mixing at least a positive electrode active material, an electrolytic solution and a binder onto a positive electrode current collector; A step of forming a negative electrode by applying a negative electrode mixture obtained by mixing the binder and a negative electrode current collector,
A step of causing the positive electrode and the negative electrode to face each other via an electrolyte and sealing the ends thereof with an adhesive, wherein the binder has a polymerizable functional group at a molecular chain terminal. It is mixed with the positive electrode mixture and the negative electrode mixture in the state of a monomer having the following formula, is applied on the positive electrode current collector and the negative electrode current collector, and then forms a polymer that binds the active materials by polymerization. Of manufacturing a thin lithium battery.
【請求項8】 前記モノマーの分子量が、2000以下
である請求項7記載の薄形リチウム電池。
8. The thin lithium battery according to claim 7, wherein the monomer has a molecular weight of 2000 or less.
【請求項9】 前記モノマーを単独で重合したポリマー
の電解液溶媒に対する膨潤度が、重量百分率で130%
以下、あるいは体積百分率で130%以下である請求項
7記載の薄形リチウム電池の製造方法。
9. The polymer obtained by polymerizing the monomer alone has a degree of swelling in an electrolyte solvent of 130% by weight.
The method for producing a thin lithium battery according to claim 7, wherein the volume percentage is 130% or less.
【請求項10】 前記モノマーの構造が、化3および化
4で示される構造のうち少なくとも1つから選択される
請求項7記載の薄形リチウム電池の製造方法。 【化3】 【化4】
10. The method for producing a thin lithium battery according to claim 7, wherein the structure of the monomer is selected from at least one of the structures shown in Chemical formulas 3 and 4. Embedded image Embedded image
【請求項11】 前記電解質層が有機ポリマーによって
構成される固体あるいはゲル状であり、前記電解質用有
機ポリマーが、請求項7記載の結着剤としてのポリマー
とは異種の構造を有するポリマーあるいは同種の構造を
有する異なるポリマーである請求項7記載の薄形リチウ
ム電池の製造方法。
11. The electrolyte layer is a solid or gel composed of an organic polymer, and the organic polymer for electrolyte is a polymer having a structure different from that of the polymer as a binder according to claim 7, or the same. The method for producing a thin lithium battery according to claim 7, wherein the polymer is a different polymer having the following structure.
【請求項12】 前記電解液の溶媒が、環状エステル、
鎖状エステル、環状エーテル、鎖状エーテル、環状アミ
ド、鎖状アミドのいずれかの構造を持つ1種もしくは2
種以上から選択されている請求項7記載の薄形リチウム
電池の製造方法。
12. The solvent for the electrolytic solution is a cyclic ester,
1 or 2 having any structure of a chain ester, a cyclic ether, a chain ether, a cyclic amide, and a chain amide
The method for producing a thin lithium battery according to claim 7, which is selected from at least one kind.
【請求項13】 前記結着剤のポリマー形成方法が、電
離性放射線照射による重合である請求項7記載の薄形リ
チウム電池の製造方法。
13. The method for producing a thin lithium battery according to claim 7, wherein the method of forming the polymer of the binder is polymerization by irradiation with ionizing radiation.
JP26949996A 1996-10-11 1996-10-11 Thin lithium battery and method of manufacturing the same Expired - Fee Related JP3512082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26949996A JP3512082B2 (en) 1996-10-11 1996-10-11 Thin lithium battery and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26949996A JP3512082B2 (en) 1996-10-11 1996-10-11 Thin lithium battery and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH10116620A true JPH10116620A (en) 1998-05-06
JP3512082B2 JP3512082B2 (en) 2004-03-29

Family

ID=17473285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26949996A Expired - Fee Related JP3512082B2 (en) 1996-10-11 1996-10-11 Thin lithium battery and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3512082B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11238503A (en) * 1998-02-20 1999-08-31 Yuasa Corp Nonaqueous electrolyte secondary battery
JP2000507387A (en) * 1997-01-17 2000-06-13 イドロ―ケベック Polymer based electrolyte composition for electrochemical power plant
JP2002534775A (en) * 1999-01-05 2002-10-15 エス・アール・アイ・インターナシヨナル Fabrication of electrodes and devices containing electrodes
JP2009510688A (en) * 2005-09-29 2009-03-12 エルジー・ケム・リミテッド Electrode having improved performance and electrochemical element having the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01169873A (en) * 1987-12-25 1989-07-05 Ube Ind Ltd Cell
JPH06150906A (en) * 1992-11-02 1994-05-31 Asahi Chem Ind Co Ltd Nonaqueous secondary battery
JPH06223876A (en) * 1993-01-27 1994-08-12 Yuasa Corp Battery
JPH06243896A (en) * 1992-12-25 1994-09-02 Tdk Corp Lithium secondary battery
JPH08124562A (en) * 1994-10-21 1996-05-17 Dainippon Printing Co Ltd Manufacture of plate for nonaqueous electrolytic secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01169873A (en) * 1987-12-25 1989-07-05 Ube Ind Ltd Cell
JPH06150906A (en) * 1992-11-02 1994-05-31 Asahi Chem Ind Co Ltd Nonaqueous secondary battery
JPH06243896A (en) * 1992-12-25 1994-09-02 Tdk Corp Lithium secondary battery
JPH06223876A (en) * 1993-01-27 1994-08-12 Yuasa Corp Battery
JPH08124562A (en) * 1994-10-21 1996-05-17 Dainippon Printing Co Ltd Manufacture of plate for nonaqueous electrolytic secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000507387A (en) * 1997-01-17 2000-06-13 イドロ―ケベック Polymer based electrolyte composition for electrochemical power plant
JP4831588B2 (en) * 1997-01-17 2011-12-07 バシウム・カナダ・インコーポレーテッド Electrochemical generator
JPH11238503A (en) * 1998-02-20 1999-08-31 Yuasa Corp Nonaqueous electrolyte secondary battery
JP2002534775A (en) * 1999-01-05 2002-10-15 エス・アール・アイ・インターナシヨナル Fabrication of electrodes and devices containing electrodes
JP2009510688A (en) * 2005-09-29 2009-03-12 エルジー・ケム・リミテッド Electrode having improved performance and electrochemical element having the same
JP2013140806A (en) * 2005-09-29 2013-07-18 Lg Chem Ltd Electrode with enhanced performance and electrochemical element including the same

Also Published As

Publication number Publication date
JP3512082B2 (en) 2004-03-29

Similar Documents

Publication Publication Date Title
CN109004229B (en) Lithium ion battery positive electrode material additive, positive electrode material thereof and lithium ion secondary battery
JP2003059535A (en) Lithium polymer cell
CN111647345B (en) Lithium ion battery negative electrode polymer protective coating and preparation method and application thereof
JP3500245B2 (en) Gel-like solid electrolyte secondary battery
ITMI951650A1 (en) PROCEDURE FOR THE PREPARATION OF A CURRENT COLLECTOR IN CONTACT WITH THE CATHODIC MATERIAL
JP2003331838A (en) Lithium secondary battery
JP3512082B2 (en) Thin lithium battery and method of manufacturing the same
CN113698718B (en) Zwitterionic hydrogel, electrolyte, secondary battery or super capacitor, and electric equipment
JP4161437B2 (en) Lithium battery
JP3700736B2 (en) Manufacturing method of thin lithium battery
KR20230136944A (en) Hydrogel electrolyte and zinc ion battery using the same
JP2001052710A (en) Primer-coated collector for battery, battery comprising the same and its manufacture
JP2003068364A (en) Secondary battery
JP2000311715A (en) Lithium secondary battery
JP3578185B2 (en) Thin lithium battery and method of manufacturing the same
JP2003317695A (en) Nonaqueous electrolyte lithium ion cell and separator there for
JP4054925B2 (en) Lithium battery
JP4669980B2 (en) Thin lithium secondary battery
JP2002008726A (en) Solid electrolyte secondary battery and its manufacturing method
JP4624589B2 (en) Vanadium-based composite positive electrode for solid-state lithium polymer battery and lithium polymer battery using the same
JP4379966B2 (en) Lithium battery
JP3282524B2 (en) Hybrid electrolyte and battery using the same
JP4438141B2 (en) Polymer lithium secondary battery
Appetecchi et al. Plastic power sources
JPH11185815A (en) Battery and manufacture of battery

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031231

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100116

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees